Меню
Бесплатно
Главная  /  Внутренняя отделка  /  Автоматика котла, управление котлом и котельной. Автоматизация котельных

Автоматика котла, управление котлом и котельной. Автоматизация котельных

Современные технологии в области отопительных установок позволяют человеку производить минимальный контроль над процессом их работы. Котельная автоматика – это система управления котлом, которая регулирует режим его работы. А именно температурный режим, теплоотдачу и т.д. Их схемы могут быть разными, но абсолютно все такие устройства являются экономными и удобными в использовании.

Рис. 1

Функции установки

Автоматика котельных установок выполняет такие задачи:

  • Управляет процессом включения и выключения котлов в системе оборудования (пуск/остановка), авторозжиг;
  • Подключение резервного оборудования (если оно есть в схеме) – если основные котлы, по какой-то причине остановились;
  • Регулировка характеристик теплоносителя;
  • Регулировка мощности оборудования (котлов в схеме);
  • Защитная функция, которая срабатывает при выходе котлов из строя;
  • Энергосбережение при работе котельной;
  • Оповещает об аварийной ситуации, путем включения сигнализации (могут быть разные схемы: световые, звуковые);
  • Контролирует показания индикаторов и датчиков, определяющих температуру (воздуха и теплоносителя), давление воды и насосов;
  • Предотвращение закипания теплоносителя;
  • Предотвращение замерзания системы.

Автоматическое оборудование минимизирует роль человека в управлении отопительной котельной. Есть системы, которые при возникновении аварийной ситуации отправляют СМС – оповещение оператору данного оборудования.

Все современные схемы отопительных установок оснащены автоматическим управлением. Недорогие из них имеют простую систему автоматики. Это подразумевает ручную регулировку, то есть запрограммированное включение/выключение котла. А дорогие установки с самой современной автоматической системой управления можно программировать на снижение температуры в определенное время суток, подачу горячей воды установленной температуры и т.д.

Безопасность автоматической установки

Одной из основных функций автоматических установок является обеспечение безопасности пользователей и котельного оборудования.

Сигнализация, которая означает возникновение непредвиденной ситуации в установке, оповещает об:

  • Утечке газа или другого топлива;
  • Увеличении или снижении давления (газа, воды, пара) в системе;
  • Авариях котлов;
  • Выброса угарного газа;
  • Нарушении пожарной безопасности.

Схема котельной автоматики устроена таким образом, чтобы оператор мог управлять ею дистанционно. При этом он может просматривать дневник неисправностей, благодаря которому работники сервисного центра с легкостью выявят все сбои в системе. Также есть возможность управлять установкой с помощью телефона. Для этого используется специальный код, при наборе которого автоматика переходит на другой режим работы (предварительно установленный).

Конструкция (схема) установки

Котельную автоматику разделяют на несколько уровней. К ним можно отнести:

  • І уровень– в комплектации есть термостаты и регуляторы, которые поддерживают температуру воздуха, а также возможность отопительного графика.
  • ІІ уровень– ко всем функциям первой категории добавляются еще регуляторы мощности оборудования, а также ее контролеры и возможность каскадного подключения и его регуляторы.
  • ІІІ уровень – имеет пульт управления, который выводит на экран все показания датчиков и регуляторов.
Рис. 2

Устанавливают автоматическую станцию котельной в специальном металлическом шкафу.

В эту схему входят:

  • Контроллеры, которые программируются;
  • Вторичные источники питания;
  • Бесперебойное питание схемы;
  • Концентратор;
  • Операторская панель;
  • Коммутационная аппаратура;
  • Компьютер.

Рис. 3

Процесс работы

Котельная автоматика может управлять котлами с каскадным подключением. При функционировании котельной с каскадной схемой идет слабая нагрузка и увеличивается срок эксплуатации установки. Так как автоматическая система управления включает котлы и насосы попеременно. При всем эта система отопления очень экономна и обеспечивает нужную температуру в помещении.

Зависимо от сезона установка автоматического управления включает нужное количество котлов. Автоматика может без вмешательства оператора определить оптимальную температуру воздуха и режим отопления. Установка оснащена клапанами, работу которых регулирует автоматика. Например, в схеме есть смесительный и клапан сервопривода. Эти клапаны работают в заданном режиме, при этом гарантируется экономия топлива и энергии, а также комфортная температура воздуха.

Если такая котельная автоматика установлена на производстве, то есть возможность, для осуществления экономии, устанавливать определенное расписание на отопление и подачу горячей воды. В выходные и праздничные дни, а также в ночное время температуру воздуха можно снижать, а горячая вода может и вовсе отсутствовать. Такие меры экономят до 40% топлива.

Современные микропроцессорные установки управления имеют более сложные схемы. Благодаря им можно устанавливать разную температуру в разных частях отопительной системы. То есть в разных контурах, например, радиаторный контур, контур теплых полов и т.д. Некоторые современные установки могут управлять одновременно 15 независимыми контурами. И при этом еще и регулировать режим под погодные условия.

Благодаря новым автоматическим установкам (схемам) котельные стают более экологическими. Это происходит благодаря сниженному количеству употребляемого топлива. И конечно нужно отметить, что в схеме данного оборудования есть дополнительные мощные фильтры.

По всем вопросам автоматизации котельных, пожалуйста, обращайтесь по телефону, указанному в "шапке" сайта.

Современная котельная проектируется и изготавливается для работы в автоматическом режиме без постоянного присутствия обслуживающего персонала. состоит из общекотельной автоматики (А), которая объединяет в себе котловую А, А горелочных устройств, А регулирования в тепловых контурах, А системы химводоподготовки, А управления и сигнализации.

Котловая автоматика при автоматизации котельной :

Как правило, автоматизированная котельная изготавливается на базе двух или более котлов. На каждом котле установлен блок управления котлом, газовая или комбинированная горелка c двухступенчатым или модулируемым регулированием тепловой мощности и интегрированной системой безопасности газо-воздушного тракта на основе программного топочного автомата и первичных датчиков-реле.

Установленное в котельной оборудование обеспечивает автоматический розжиг горелок, а так же прекращение подачи топлива в горелки (защиту котлов) в следующих случаях:

  • падение давления газа к горелке ниже минимально допустимого уровня;
  • падение давления воздуха к горелке ниже минимально допустимого уровня;
  • погасание либо отрыв пламени в топке;
  • превышение давления воды в котле выше максимально допустимого;
  • падение давления воды в котле ниже минимально допустимого;
  • превышение максимально допустимой температура воды на выходе из котла;
  • пропадание электропитания.

Дисплей блока управления котла позволяет оперативно контролировать текущие температурные параметры среды котлового контура, обратного и подающего трубопроводов к котлам и при необходимости считывать коды возникающих неисправностей. В случае аварийного останова любого из котлов формируется соответствующий информационный сигнал, используемый в схеме общекотельной светозвуковой сигнализации.

Автоматизация регулирования в тепловых контурах котельных :

Основными функциями погодозависимого контроллера (блока управления) являются:

  • регулирование температуры сетевой воды отопления и вентиляции по адаптивному отопительному графику в зависимости от температуры наружного воздуха, воздействием управляющих импульсов на электроприводы трехходовых клапанов смешения.
  • поддержание заданной температуры воды ГВС управлением насосами внутреннего контура.
  • каскадное управление работой котлов.

Блок управления отопительными контурами выполняет функцию погодозависимого регулирования в контуре тепловых завес и стабилизации температуры горячего водоснабжения

Щит управления и сигнализации (ЩУиС) :

Автоматизация котельных предусматривает:

  • работа всех циркуляционных насосов в режиме: 1 рабочий, 2-ой резервный, с контролем перепада давления на насосах и при необходимости, переключением на резерв. АВР насосов обычно реализуется применением специализированных приборов "CАУ МП-15" (САУ 1...5) фирмы "ОВЕН" cмонтированных на лицевой панели щита управления и сигнализации и позволяющих задавать временное чередование работы каждого насоса и автоматическое подключение резервного насоса при падении значения заданного дифференциального давления по сигналам от соответствующего датчика-реле. Управление насосами: местное (ручное включение) и дистанционное, предусмотрена возможность использования внешних управляющих сигналов.
  • прекращение подачи газа в котельную путем закрытия клапана отсекателя газа при пожаре или загазованности помещения котельной выше нормы метаном либо оксидом углерода, а так же при отключении электроэнергии. Повторное открытие клапана производится вручную при возврате в нормальное состояние параметров концентрации в воздухе котельной вышеперечисленных газов и отсутствии аварийного сообщения по цепям пожарной сигнализации.

Схема аварийной сигнализации предусматривает выдачу световых (на передней панели ЩУиС) и звуковых сигналов в следующих ситуациях:

  • повышение концентрации метана в помещении
  • повышение концентрации "CO" в помещении
  • закрытие отсечного клапана
  • авария одного или нескольких котлов
  • авария одного или нескольких насосов
  • отклонение от нормы давления воды в обратном трубопроводе отопления (и внутреннего контура)
  • отклонение от нормы давления воды водопровода.

Причем световой сигнал остается и после пропадания причин срабатывания сигнализации и снимается вручную нажатием соответствующей кнопки на панели ЩУиС (для возможности отслеживания архива аварий).

Проектом автоматизации котельной реализована и возможность вывода на удаленный диспетчерский пункт следующих аварийных сигналов (светозвуковая сигнализация):

  • авария технологического оборудования котельной.
  • пожар в котельной.
  • загазованность в котельной.
  • несанкционированный доступ в котельную.
  • закрытие отсечного газового клапана.

Диспетчерский щит (ЩДС) котельной реализован на базе прибора охранно-пожарного ВЭРС Пк8, на 8 контролируемых каналов с резервным аккумуляторным питанием, световой и звуковой сигнализацией.

Пульт ЩДС размещается в помещении с постоянным присутствием проинструктированного персонала (например - комната охраны) для принятия неотложных мер в случае аварийной ситуации.

Проект автоматизации котельной разрабатывается в соответствии с действующими нормами и правилами и соответствует требованиям безопасной эксплуатации при соблюдении мероприятий, предусмотренных рабочей документацией.

Разработка проекта автоматизации котельных выполняется на основании задания, составленного при выполнении теплотехнической части проекта. Общими задачами контроля и управления работой любой энергетической установки является обеспечение:

Выработки в каждый момент необходимого количества теплоты при определенных его параметрах давлении и температуре;

Экономичности сжигания топлива, рационального использования электроэнергии для собственных нужд установки и сведения потерь теплоты к минимуму;

Надежности и безопасности, т.е установления и сохранения нормальных условий работы каждого агрегата, исключающих возможность неполадок и аварий как собственно агрегата, так и вспомогательного оборудования.

Исходя из перечисленных выше задач и указаний, все контрольные приборы можно разделить на пять групп, предназначенных для измерения:

1. Расхода воды, топлива, воздуха и дымовых газов.

2. Давлений воды, газа воздуха, измерения разрежения в элементах и газоходах котла и вспомогательного оборудования.

3. Температур воды, воздуха и дымовых газов

4. Уровня воды в баках, деаэраторах и других емкостей.

5. Качественного состава газов и воды.

Вторичные приборы могут быть указывающими, регистрирующими и суммирующими. Для уменьшения числа вторичных приборов на тепловом щите часть величин собирают на один прибор с помощью переключателей; для ответственных величин на вторичном приборе отмечают красной чертой предельно допустимые значения их замеряют непрерывно..

Кроме приборов, выведенных щит управления, часто применяются местная установка контрольно-измерительных приборов: термометров для измерения температур воды; манометров для измерения давления; различных тягомеров и газоанализаторов.

Регулирование процесса горения в котле КВ-ТС-20 выполняется тремя регуляторами: регулятором тепловой нагрузки, регулятором воздуха и регулятором разряжения.

Регулятор тепловой нагрузки получает командный импульс от главного корректирующего регулятора, а также импульсы по расходу воды. Регулятор тепловой нагрузки воздействует на орган, регулирующий подачу топлива в топку.

Регулятор общего воздуха поддерживает отношение « топливо-воздух», получая импульсы по расходу топлива от датчика и по перепаду давления в воздухоподогревателе.

Постоянное разряжение в топке поддерживается с помощью регулятора в топке котла и воздействующего на направляющий аппарат дымососа. Между регулятором воздуха и регулятором разряжения имеется динамическая связь, задача которой заключается в подаче дополнительного импульса в переходных режимах, что позволяет сохранить правильный тягодутьевой режим в процессе срабатывания регулятора воздуха и разряжения.

Устройство динамической связи обладает направленностью действия, т. е. ведомым регулятором может быть только регулятор разряжения.

Слежение за расходом сетевой и питательной воды устанавливаются регуляторы питания.

Термометр расширения ртутный:

Промышленные ртутные термометры изготавливаются с вложенной шкалой и по форме нижней части с резервуаром бывают прямые типа А и угловые типа Б, изогнутые под углом 90є в сторону, противоположную шкале. При измерении температуры нижняя часть термометров полностью опускается в измеряемую среду, т.е. глубина погружения их является постоянной.

Термометры расширения являются показывающими приборами, располагаемыми по месту измерения. Принцип действия их основан на тепловом расширении жидкости в стеклянном резервуаре в зависимости от измеряемой температуры.

Термоэлектрический термометр:

Для измерения высоких температур с дистанционной передачей показаний применяются термоэлектрические термометры, работа которых основана на принципе термоэлектрического эффекта. Хромель - копелевые термоэлектрические термометры развивают термо - эдс, значительно превышающую термо - эдс других стандартных термоэлектрических термометров. Диапазон применения хромель - копелевых термоэлектрических термометров от - 50є до + 600є С. Диаметр электродов от 0,7 до 3,2 мм.

Трубчато - пружинный манометр:

Наиболее широкое применение для измерения избыточного давления жидкости, газа и пара получили манометры, обладающие простой и надежной конструкцией, наглядностью показаний и небольшими размерами. Существенными достоинствами этих приборов являются также большой диапазон измерений, возможность автоматической записи и дистанционной передачи показаний.

Принцип действия деформационного манометра основан на использовании деформации упругого чувствительного элемента, возникающей под влиянием измеряемого давления.

Весьма распространенным видом деформационных приборов, используемых для определения избыточного давления, являются трубчато - пружинные манометры, играющие исключительно важную роль в технических измерениях. Эти приборы изготавливают с одновитковой трубчатой пружиной, представляющую собой изогнутую по окружности металлическую упругую трубку овального сечения.

Один конец спиральной пружины соединен с шестеренкой, а другой закреплен неподвижно на стойке, поддерживающей передаточный механизм.

Под действием измеряемого давления трубчатая пружина частично раскручивается и тянет за собой поводок, приводящий в движение зубчато - секторный механизм и стрелку манометра, перемещающуюся вдоль шкалы. Манометр имеет равномерную круговую шкалу с центральным углом 270 - 300є.

Автоматический потенциометр:

Основной особенностью потенциометра является то, что в нем развиваемая термоэлектрическим термометром термо - э. д. с. уравновешивается (компенсируется) равным ей по величине, но обратным по знаку напряжением от источника тока, расположенного в приборе, которое затем измеряется с большой точностью.

Автоматический малогабаритный потенциометр типа КСП2 - показывающий и самопишущий прибор с длиной линейной шкалы и шириной диаграммной ленты 160 мм. Основная погрешность показаний прибора ±0,5 и записи ±0,1%.

Вариация показаний не превышает половины основной погрешности. Скорость движения диаграммной ленты может составлять 20, 40, 60, 120, 240 или 600, 1200, 2400 мм/ч.

Потенциометр питается от сети переменного тока напряжением 220 В, частотой 50 Гц. Потребляемая прибором мощность 30 В ·А. Изменение напряжения питания на ±10% номинального не влияет на показания прибора. Допустимое значение температуры окружающего воздуха 5 - 50єС и относительной влажностью 30 - 80%. Габариты потонцеометра 240 х 320 х 450 мм. и масса 17 кг.

Деформационные электрические манометры рекомендуется устанавливать вблизи места отбора давления, закрепляя вертикально ниппелем вниз. Для манометров окружающий воздух может иметь температуру 5 - 60єС и относительную влажность 30 - 95 %. Они должны быть удалены от мощных источников переменных магнитных полей (электродвигателей, трансформаторов и т.д.)

Манометр содержит трубчатую пружину 1, закрепленную в держателе 2 с помощью втулки 3. К свободному концу пружины подвешен на рычаге 4 магнитный плунжер 5, расположенный в сидящем на держателе магнитомодуляционном преобразователе 6. Рядом с последним на откидном кронштейне закреплено усилительное устройство 7.

Прибор заключен в стальной корпус 8 с защитным кожухом 9, приспособленный для утопленного монтажа. Сообщение манометра с измеряемым давлением производится при помощи штуцера держателя, а подключение соединительных проводов посредством коробки зажимов 10. Манометр снабжен корректором нуля 11. Габариты прибора 212 х 240 х 190 мм. и масса 4,5 кг.

Манометры типа МПЕ могут применяться с одним или несколькими вторичными приборами постоянного тока: автоматическими электронными показывающими и самопишущими миллиамперметрами типов КСУ4, КСУ3,

КСУ2, КСУ1, КПУ1 И КВУ1, градуированными в единицах давления, магнитоэлектрическими показывающими и самопишущими миллиамперметрами типов Н340 и Н349,машинами центрального контроля и др. Автоматические электронные миллиамперметры постоянного тока отличаются от соответствующих автоматических потенциометров только включенным параллельно входу калиброванным нагрузочным резистором, падение напряжения на котором от протекающего тока манометра является измеряемой величиной.

Магнитоэлектрические миллиамперметры типов Н340 и Н349 имеют ширину шкалы и диаграммной ленты 100 мм. класс точности прибора 1,5. Диаграммная лента приводится в движение со скоростью 20 - 5400 мм/ч от синхронного микродвигателя, питаемого от сети переменного тока напряжением 127 или 220 В, частотой 50 Гц.

Габариты прибора 160 х 160 х 245 мм. и масса 5 кг.

Регулятор прямого действия:

Примером регулятора прямого действия является регулирующий клапан.

Клапан состоит из чугунного корпуса 1, закрытого снизу фланцевой крышкой 2, которая закрывает отверстие для спуска заполняющей клапан среды и для чистки клапана. В корпус клапана ввернуты седла 3 из нержавеющей стали. На седла садится плунжер 4 . Рабочие поверхности плунжера притерты к седлам 3.Плунжер соединен со штоком 6, который может поднимать и опускать плунжер. Шток ходит в сальниковом устройстве. Сальник уплотняет крышку 7, крепящуюся к корпусу клапана. Для смазки трущихся поверхностей штока в сальниковое устройство подается масло из масленки 5. клапаном управляет мембранно - рычажное устройство, состоящее из бугеля 8, мембранной головки 13, рычага 1 и грузов 16,17. В мембранной головке между верхней и нижней чашей зажата резиновая мембрана 15, опирающаяся на тарелку 14, посаженную на шток 9 бугеля. В штоке 9 закреплен шток 6. Шток бугеля имеет призму 12, на которую опирается рычаг 11, вращающийся на призменной опоре 10, закрепленной в бугеле 8.

В верхней чаше мембранной головки имеется отверстие, в котором закрепляется импульсная трубка, подводящая импульс давления к мембране. Под действием увеличенного давления мембрана прогибается и увлекает тарелку 14 и шток бугеля 9 вниз. Усиление, развиваемое мембраной, уравновешивается грузами 16 и 17, подвешенными на рычаге. Грузы 17 служат для грубой регулировки заданного давления. С помощью груза 16, перемещающегося вдоль рычага, производят более точную регулировку клапана.

Давление на мембранную головку передается непосредственно регулируемой средой.

Исполнительный механизм:

Для регулирования потока жидкости, газа или пара в технологическом процессе служат регулирующие органы. Перемещение регулирующих органов осуществляется исполнительными механизмами.

Регулирующие органы и исполнительные механизмы могут быть в виде двух отдельных агрегатов, связанных между собой с помощью тяг рычагов или тросов, или в виде комплектного устройства, где регулирующий орган жестко связан с исполнительным механизмом и образует моноблок.

Исполнительный механизм, получая команду от регулятора или от командного аппарата, управляемого человеком, преобразуют эту команду в механическое перемещение регулирующего органа.

Механизм электрический, однооборотный, предназначен для перемещения регулирующих органов в системах релейного регулирования и дистанционного управления. Механизм воспринимает электрическую команду, представляющую собой трехфазное напряжение сети 220 или 380 В. Команда может подаваться с помощью магнитного контактного пускателя.

Исполнительный механизм состоит из электродвигательной части

I - сервопривода и колонки управления, II блок сервопривода. Сервопривод состоит из трехфазного асинхронного реверсивного двигателя 3 с короткозамкнутым ротором. С вала двигателя момент вращения передается на редуктор 4, состоящий из двух ступеней червячной передачи. На входной вал редуктора насаживается рычаг 2, который с помощью штанги сочленяется с регулирующим органом.

Вращая ручной маховик 1, при ручном управлении можно повернуть выходной вал редуктора без помощи электродвигателя. При ручном управлении маховиком механическая передача от электродвигателя к маховику разъединяется.

Регулирующий орган предназначен для изменения расхода регулируемой среды, энергии или каких - либо других величин в соответствии с требованиями технологии.

В тарельчатых клапанах запирающая и дросселирующая поверхность выполняется плоской. У клапана с гладкими рабочими поверхностями пробочного типа, характеристика линейная, т. е. пропускная способность клапана прямо пропорциональна ходу плунжера.

Регулирование осуществляется за счет изменения проходного сечения путем поступательного перемещения шпинделя при вращении маховика при помощи рычага, сочленяемого через штангу с электрическим исполнительным механизмом.

Запорными органами клапаны служить не могут.

Контрольный пускатель:

Пускатели ПМТР - 69 выполняют на базе магнитных реверсивных контактов, каждый из которых имеет три нормально разомкнутых силовых контакта, включенных в цепь питания электродвигателя. Кроме того, пусковое устройство имеют тормозное устройство, выполненного на базе электрического конденсатора и подключаемые через размыкающие контакты к одной из статорных обмоток электродвигателя. При замыкании любой группы силовых контактов размыкаются вспомогательные контакты и конденсатор отключается от электродвигателя, двигаясь по инерции, взаимодействует с остаточным магнитным полем статора и наводит в его обмотках эдс.

Вспомогательные контакты, замыкая цепь статорной обмотки конденсатора, создают в статоре собственное магнитное поле ротора и статора вызывает противодействующий вращению тормозной эффект, который препятствует выбегу исполнительного механизма. Основным недостатком пускателей является невысокая надежность (подгорание контактов, замыкание).

Блок имеет три токовых и один по напряжению входы. Блок Р - 12 состоит из основных узлов: входных цепей ВхЦ, усилителей постоянного тока УПТ 1 и УПТ 2, блока ограничения МО, при этом УПТ 2 позволяет получать на выходе один токовый сигнал и дополнительный сигнал по напряжению. Блок Р - 12 получает питание от блока БП, на который поступает дополнительный сигнал от блока управления БУ.

Сигнал от датчика поступает на узел входных цепей, куда подается также сигнал задающего устройства I зу. Далее сигнал рассогласования у идет на усилитель постоянного тока УПТ 1, проходя через сумматор, где формируются сигналы рассогласования от входных цепей и обратной связи. Блок ограничения ОМ сигнала обеспечивает дальнейшее его преобразования, ограничивая сигнал по минимуму и максимуму. Усилитель УПТ 2 является окончательным блоком усиления. Блок обратной связи МД получает сигнал с выхода усилителя УПТ 2 и обеспечивает плавное переключение цепей с ручного управления на автоматическое. Блок обратной связи МД обеспечивает формирование сигнала управления в соответствии с П -, ПИ - или ПИД законами регулирования.

Технологическая защита.

Во избежание аварийных режимов системы управления оборудованием при чрезмерных отклонениях параметров и для обеспечения безопасности работы снабжают устройствами технологических защит.

В зависимости от результатов воздействия на оборудование защиты подразделяют: на производящие остановку или отключение агрегатов; переводящие оборудование в режим пониженных нагрузок; выполняющие локальные операции и переключения; предотвращающие аварийные ситуации.

Устройства защит должны быть надежными в предаварийных и аварийных ситуациях, т. е. в действиях защит должны отсутствовать отказы или ложные срабатывания. Отказы в действиях защит приводят к несвоевременному отключению оборудования и дальнейшему развитию аварии, а ложные срабатывания выводят оборудование из нормального технологического цикла, что снижает эффективность его работы. Для удовлетворения этих требований используют высоконадежные приборы и устройства, а также соответствующие построения схем защиты.

В защиты входят источники дискретной информации датчики, контактные приборы, вспомогательные контакты, логические элементы и релейная цепь управления. Срабатывание защит должно обеспечить однозначность действия, при этом перевод оборудования в рабочий режим после его защитой осуществляется после проверки и устранения причин, вызвавших срабатывание.

При проектирование тепловых защит котлов, турбин и другого теплового оборудования предусматривают так называемый приоритет действия защит, т. е. выполнение в первую очередь операций для той из защит, которая вызывает большую степень разгрузки. Все защиты имеют независимые источники питания и возможность фиксации причин срабатывания, а также световую и звуковую сигнализации.

Технологическая сигнализация.

Общие сведения о сигнализации.

Технологическая сигнализация, входящая в систему управления, предназначена для оповещения оперативного персонала о недопустимых отклонениях параметров и режима работы оборудования.

В зависимости от требований, предъявляемых к сигнализации, ее условно можно разделить на несколько видов: сигнализация, обеспечивающая надежность и безопасность работы оборудования; сигнализация, фиксирующая срабатывания защит оборудования и причин срабатывания; аварийная сигнализация, оповещающая о недопустимых отклонениях основных параметров и требующая немедленного останова оборудования; сигнализация неисправности электропитания различного оборудования и аппаратуры.

Все сигналы поступают на световые и звуковые приборы блочного щита управления. Звуковая сигнализация бывает двух видов: предупредительной (звонок) и аварийной (сирена) .

Световую сигнализацию изготавливают в двухцветном исполнении (красные или зеленые лампочки) или с помощью светящихся табло, на которых указывается причина срабатывания сигнализации.

Вновь поступившие сигналы на фоне уже контролируемых оператором могут остаться незамеченными, поэтому схемы сигнализации строят так, чтобы новый сигнал выделялся миганием.

Функциональная схема устройства сигнализации.

Схема сигнализации получает питание от источника постоянного тока ИП, что повышает их надежность. Сигнал включения СВ сигнализации подается на блок релейного прерывания сигнала БРП, а затем параллельно на световое табло СТ и звуковое устройство ЗУ. При этом в БРП схема выполнена так, что обеспечивает прерывистое свечение на табло и постоянный звуковой сигнал.

После приема сигнала и снятия звука схема должна быть готовой к принятию следующего сигнала, независимо от того, вернулся ли сигнализирующий параметр к своему номинальному значению.

Каждый световой сигнал должен сопровождаться звуковым для привлечения внимания обслуживающего персонала.

Средства сигнализации.

Электронно-контактный манометр.

Для измерения и сигнализации давления применяется манометр типа ЭКМ с трубчатой пружиной. Манометр имеет корпус диаметром 160 мм. с задним фланцем и радиальный штуцер. Прибор содержит стрелку 1, задающие сигнальные стрелки 2 и 3 (минимальную и максимальную), устанавливаемые на заданные значения давлений при помощи ключа. Коробку 4 с зажимами для присоединения к прибору цепи сигнализаций. Механизм манометра заключен в корпус 5. Прибор сообщается с измеряемой средой через штуцер 6.

При достижении любого из заданных придельных давлений контакт, связанный с указательной стрелкой, соприкасается с контактом, расположенным на соответствующей сигнальной стрелке, и замыкает цепь сигнализации. Контактное устройство питается от сети постоянного или переменного тока, напряжением 220 В.

Для автоматизации котлов ДКВР, ДЕ, которые работают на топливе газ/мазут и котлов ТВГ, КВ-Г работающих на природном газе, используют комплекты автоматического регулирования на базе системы Контур”, автоматики безопасности и управления в щите типа Щ-К2 (Щ-К2У).

Система «Контур» освоена Московским заводом тепловой автоматики (МЗТА) в 1978 г. до этого времени МЗТА выпускал электронно-гидравлическую систему «Кристалл».

Рис. 28. Лицевая панель приборов системы «Контур».

Автоматика регулирования «Контур» (см.рис. 29) предназначена для регулирования параметров технологического процесса котлоагрегатов .

Каждый автоматический регулятор имеет:

1. Датчик (первичный прибор).

2. Регулирующий прибор (усилитель).

З. Исполнительный механизм.

4. Регулирующий орган.

Д — датчик, реагирует на смену измеренного параметра и превращает изменение параметра в электрический сигнал. Датчик состоит из измерительного и электрического преобразователей.

Измерительным преобразователем может быть эластичная мембрана, манометрическая трубка и др.

Электрический преобразователь представляет собой дифференциально-трансформаторную катушку и стальной сердечник.

I - первичная обмотка дифференциально-трансформаторной катушки;

II - вторичная обмотка дифференциально-трансформаторной катушки;

III - стальной сердечник;

IV - эластичная мембрана измерительного преобразователя.

Рис. 29. Схема системы автоматического регулирования «Контур» на паровых котлах типа ДВКР.

Датчик получает питание »U вх = 12 (24)В от своего регулирующего прибора Р.25. U вых изменяет свое значение в зависимости от положения стального сердечника III.

Р.25 — регулирующий прибор с задатчиком. Он осуществляет питание своего датчика, от которого поступает электрический сигнал U вых, который сравнивается с заданным и при неравенстве этих сигналов на выходе Р.25 возникает усиленный электрический сигнал, который включает в работу исполнительный механизм.

ИМ — исполнительный механизм — бывает гидравлическим типа ГИМ и электрическим типа МЭО (механизм электрический одновращательный).

Он перемещает регулирующий орган.

РО — регулирующий орган. В зависимости от параметров, которые регулируются, им может быть: регулирующая заслонка (РЗ), направляющий аппарат дутьевого вентилятора (НАДВ), направляющий аппарат дымососа (НАД), регулирующий клапан (РК).

На паровых котлах устанавливаются регуляторы:

1 - Регулятор давления пара в барабане котла.

2 - Регулятор соотношения «газ-воздух».

3 - Регулятор разрежения в топке.

4 - Регулятор уровня воды в барабане котла.


Автоматика защиты котла предназначена для отключения подачи топлива к горелкам котла при отклонении параметров безопасности за допустимые границы.

По параметрам разрежения в топке и уровне воды в барабане отключения подачи топлива происходит с выдержкой по времени 15-20 сек . Этим исключается влияние кратковременных изменений разрежения и уровня, которые не могут вызвать аварию котла.

Когда система защиты находится во включенном состоянии, кон такты датчиков, контролирующие включенные в схему параметры, за крыты. Соответствующие им промежуточные реле и электромагнит , управляющий клапаном-отсекателем, находятся под напряжением. Клапан-отсекатель на топливе открыт. В таком состоянии система защиты находится до тех пор, пока включенные в нее параметры находятся в границах нормы.

В случае отклонения одного из параметров за допустимые границы размыкается контакт соответствующего датчика, пропадает ток на промежуточном реле и электромагните, управляющем клапаном-отсекателем топлива. Отключение подачи топлива сопровождается загоранием табло причины отключения и «Котел отключен», затем включается звуковая сигнализация.

К органам контроля защиты относятся шесть световых табло типа ТСВ (двухламповых), установленных в верхней части лицевой панели щита автоматики Щ-К2 (Щ-К2У). Во включенном состоянии табло не горит, а при срабатывании защиты загораются лампы только одного табло, что указывает на причину срабатывания, а также лампы табло «Котел отключен».

Открытие клапана-отсекателя осуществляется рычагами клапана, установленного на газопроводе перед котлом.

К органам управления защитой на щите Щ-К2 (Щ-К2У) относятся переключатель котла, переключатель топлива, переключатель фотодатчиков.

Ручка переключателя котла имеет четыре фиксированных положения:

1) вертикальное — защита выключена;

2) 90° от вертикали по часовой стрелке — предварительное включение (розжиг запальников);

3) 135° по часовой стрелке - защита полностью включена (поставлена в дежурное состояние);

4) 45° от вертикали против часовой стрелки — защита предварительно отключена.

Ручкё переключателя топлива имеет два фиксированных положения:

а) вертикальное — котел работает на мазуте;

б) горизонтальное (90° против часовой стрелки) — котел работает на газе.

Ручка переключателя фотодатчиков имеет два фиксированных положения:

а) вертикальное — контролируется факел левой горелки;

б) 45° от вертикали против часовой стрелки — контролируется факел правой горелки.

К технологической защите относятся:

Автоматика безопасности котла;

Технологическая сигнализация;

Автомат контроля пламени АКП.

Датчики автоматики безопасности:

1. Давление газа — датчик типа ДН или ДД.

2. Давление воздуха — датчик типа ДН.

3. Разрежение в топке — датчик типа ДНТ.

4. Наличие пламени — электронный блок контроля пламени с фотоэлементом или контрольным электродом.

5. Давление пара — ЭКМ (электр. манометр).

6. Уровень воды в барабане может контролироваться :

а) при помощи электродов, размещенных в равномерной колонке, которая связана с барабаном котла;

б) при помощи уровнемерной колонки и дифманометра-уровнемера с задатчиками.

Действие автоматики безопасности должна приводить к отключению подачи топлива к горелкам при отключении контролируемых параметров за пределы допустимых значений.

Учитывая, что аварийные режимы возникают чаще всего из-за неправильных действий обслуживающего персонала при пуске котла, в схему автоматики безопасности в качестве составной части включается дистанционный и автоматический розжиг, в процессе которого должны быть обеспечены:

1. Контроль за правильным выполнением предпусковых операций.

3. Заполнение котла водой.

4. Контроль за нормальным состоянием параметров при пуске.

5. Дистанционный розжиг запальника со щита управления.

Для паровых котлов независимо от давления пара и производительности должны быть установлены устройства, которые автоматически отключат подачу топлива к грелкам при:

1 - повышении или понижении давления топлива перед горелками;

2 - понижении давления воздуха перед горелками с принудительной подачей воздуха;

3 - понижении разряжения в топке;

4 - погашении факела горелок;

5 - повышении давления пара сверх рабочего;

6 - повышении или понижении уровня воды в барабане котла за допустимые пределы;

7 - неисправности звеньев защиты, включая исчезновение напряжения.

Включение системы автоматики «Контур» проводится в следующей последовательности :

1. Подготовить котел к розжигу в соответствии с производственной инструкцией.

2. Убедиться, что на щит Щ-К2 (Щ-К2У) подается напряжение питания.

3. Слесарю КИП и А проверить установку необходимых вставок по защите :

а) необходимого уровня воды в барабане;

б) необходимого разрежения в толке;

в) нормального давления воздуха перед горелками. После этого на лицевой панели щита гаснет соответствующее сигнальное табло. Когда останутся гореть только табло «Котел отключен», «Факела нет» и «Давление газа низкое», необходимо:

4. Возвратить ручку переключателя котла на щите Щ-К2 (Щ-К2У) в положение «Предварительно включен». При этом положении ручки включается запальник и гаснет сигнальное табло «Факела нет».

5. После появления факела запальника взвести рычаги клапана- отсекателя (открыть проход газа).

6. Разжечь каждую горелку, открыв вручную краны (задвижки) перед горелками. Давление газа на горелки установить по режимной карте (30% — не нагрузка).

7. Отрегулировать подачу воздуха и разрежения в топке.

8. После розжига горелок с выдержкой во времени отключается за пальник.

9. Ручку переключателя котла устанавливаем в положение «Включено». Защиту котла устанавливаем в дежурное состояние.

10. Когда давление в котле достигнет рабочего, подключить котел к общекотельному паровому коллектору.

11. Сделать запись в сменном журнале о розжиге котла с указанием времени.

Плановая остановка котла осуществляется плавным изменением одного из параметров, включенных в систему защиты. При выходе этого параметра за допустимые пределы срабатывает защита и котел останавливается. При этом проверяется работа защиты.

После отключения котла клапаном-отсекателем закрыть «контрольный» и «рабочий» краны (задвижки) перед горелками и от крыть продувочные «свечи» между ними. Закрыть задвижку на газопроводе перед котлом, открыв «свечу» на газовом коллекторе котла.

Закрыть главный паровой вентиль на котле и отключить его от главного парового коллектора. При подъеме давления в котле сбросить его через предохранительный клапан. Уровень воды в барабане поддерживать в пределах высшего рабочего уровня роды в котле.

Сделать запись в сменном журнале с указанием времени остановки котла.