Меню
Бесплатно
Главная  /  Гипсокартон  /  Что такое фотосинтез. Фотосинтез: все, что надо о нем знать

Что такое фотосинтез. Фотосинтез: все, что надо о нем знать

Растения получают все необходимое для роста и развития из окружающей среды. Этим они отличаются от других живых организмов. Для того, чтобы они хорошо развивались, нужны плодородная почва, естественный или искусственный полив и хорошая освещенность. В темноте ничего расти не будет.

Почва является источником воды и питательных органических соединений, микроэлементов. Но деревья, цветы, травы нуждаются также в солнечной энергии. Именно под воздействием солнечных лучей происходят определенные реакции, в результате которых углекислый газ, поглощаемый из воздуха, превращается в кислород. Такой процесс называется фотосинтезом. Химическая реакция, протекающая под воздействием солнечного света, приводит также к образованию глюкозы и воды. Эти вещества жизненно необходимы для того, чтобы растение развивалось.

На языке химиков реакция выглядит так: 6CO2 + 12H2O + свет = С6Н12О6 + 6O2 + 6Н2О. Упрощенный вид уравнения: углекислый газ + вода + свет = глюкоза + кислород + вода.

Дословно «фотосинтез» переводится как «вместе со светом». Это слово состоит из двух простых слов «фото» и «синтез». Солнце является очень мощным источником энергии. Люди используют его для выработки электричества, утепления домов, нагревания воды. Растениям тоже нужна энергия солнца для поддержания жизни. Глюкоза, образующаяся в процессе фотосинтеза - это простой сахар, являющийся одним из самых важных питательных веществ. Растения используют его для роста и развития, а избыток откладывается в листьях, семенах, плодах. Не все количество глюкозы остается в зеленых частях растений и плодах в неизменном виде. Простые сахара имеют свойство превращаться в более сложные, к числу которых можно отнести крахмал. Такие запасы растения расходуют в периоды нехватки питательных веществ. Именно ими обусловлена питательная ценность трав, плодов, цветов, листьев для животных и людей, употребляющих растительную пищу.

Как растения поглощают свет

Процесс фотосинтеза достаточно сложный, но его можно описать кратко, чтобы он стал понятным даже для детей школьного возраста. Один из самых распространенных вопросов касается механизма поглощения света. Каким образом световая энергия попадает в растения? Процесс фотосинтеза протекает в листьях. В листьях всех растений есть зеленые клетки - хлоропласты. Они содержат вещество под названием хлорофилл. Хлорофилл - пигмент, который придает листьям зеленый цвет и отвечает за поглощение световой энергии. Многие люди не задумывались о том, почему листья большинства растений широкие и плоские. Оказывается, природой предусмотрено это не случайно. Широкая поверхность позволяет поглотить большее количество солнечных лучей. По этой же причине солнечные батареи делают широкими и плоскими.

Верхняя часть листьев защищена восковым слоем (кутикулой) от потери воды и неблагоприятного воздействия погоды, вредителей. Его называют палисадным. Если внимательно посмотреть на лист, можно увидеть, что его верхняя сторона более яркая и гладкая. Насыщенный цвет получается за счет того, что в этой части хлоропластов больше. Избыток света может снизить способность растения производить кислород и глюкозу. Под воздействием яркого солнца хлорофилл повреждается и это замедляет фотосинтез. Замедление происходит и с приходом осени, когда света становится меньше, а листья начинают желтеть по причине разрушения в них хлоропластов.

Нельзя недооценивать роль воды в протекании фотосинтеза и в поддержании жизни растений. Вода нужна для:

  • обеспечения растений растворенными в ней минералами;
  • поддержания тонуса;
  • охлаждения;
  • возможности протекания химических и физических реакций.

Воду деревья, кустарники, цветы поглощают из почвы корнями, а далее влага поднимается по стеблю, переходит в листья по прожилкам, которые видны даже невооруженным глазом.

Углекислый газ проникает через маленькие отверстия в нижней части листа - устьица. В нижней части листа клетки расположены таким образом, чтобы углекислый газ мог проникать более глубоко. Это также позволяет кислороду, образующемуся при фотосинтезе, легко покидать лист. Как и все живые организмы, растения наделены способностью дышать. При этом, в отличие от животных и людей, они поглощают углекислый газ и выделяют кислород, а не наоборот. Там, где много растений, воздух очень чистый, свежий. Именно поэтому так важно заботиться о деревьях, кустарниках, разбивать скверы и парки в крупных городах.

Световая и темновая фазы фотосинтеза

Процесс фотосинтеза сложный и состоит из двух фаз - световой и темновой. Световая фаза возможна только в присутствии солнечных лучей. Под воздействием света молекулы хлорофилла ионизируются, в результате чего образуется энергия, которая служит катализатором химической реакции. Порядок событий, происходящих в этой фазе, выглядит так:

  • на молекулу хлорофилла попадает свет, который поглощается зеленым пигментом и переводит его в возбужденное состояние;
  • происходит расщепление воды;
  • синтезируется АТФ, которая является аккумулятором энергии.

Темновая фаза фотосинтеза протекает без участия световой энергии. На данном этапе образуется глюкоза и кислород. При этом важно понимать, что образование глюкозы и кислорода происходит круглосуточно, а не только в ночное время. Темновой фаза называется потому, что для ее протекания присутствие света больше не нужно. Катализатором выступает АТФ, которая была синтезирована ранее.

Значение фотосинтеза в природе

Фотосинтез - один из самых значимых природных процессов. Он необходим не только для поддержания жизни растений, но и для всего живого на планете. Фотосинтез нужен для:

  • обеспечения животных и людей питанием;
  • удаления углекислого газа и насыщения воздуха кислородом;
  • поддержания круговорота питательных веществ.

Все растения зависимы от скорости протекания фотосинтеза. Солнечную энергию можно рассматривать в качестве фактора, который провоцирует или сдерживает рост. Например, в южных районах и областях солнца много и растения могут вырастать достаточно высокими. Если рассматривать то, как процесс протекает в водных экосистемах, на поверхности морей, океанов нет недостатка в солнечных лучах и в этих слоях наблюдается обильный рост водорослей. В более глубоких слоях воды существует дефицит солнечной энергии, что сказывается на темпах роста водной флоры.

Процесс фотосинтеза способствует формированию озонового слоя в атмосфере. Это очень важно, так как он помогает защитить все живое на планете от губительного воздействия ультрафиолетовых лучей.

Как понятно из названия, фотосинтез по своей сути являет собой природный синтез органических веществ, превращая СО2 из атмосферы и воду в глюкозу и свободный кислород.

При этом необходимо наличие энергии солнечного света.

Химическое уравнение процесса фотосинтеза в общем можно представить в следующем виде:

Фотосинтез имеет две фазы: темную и световую. Химические реакции темной фазы фотосинтеза существенно отличаются от реакций световой фазы, однако темная и световая фаза фотосинтеза зависят друг от друга.

Световая фаза может происходить в листьях растений исключительно при солнечном свете. Для темной же необходимо наличие углекислого газа, именно поэтому растение все время должно поглощать его из атмосферы. Все сравнительные характеристики темной и световой фаз фотосинтеза будут предоставлены ниже. Для этого была создана сравнительная таблица «Фазы фотосинтеза».

Световая фаза фотосинтеза

Основные процессы в световой фазе фотосинтеза происходят в мембранах тилакоидов. В ней участвуют хлорофилл, белки-переносчики электронов, АТФ-синтетаза (фермент, ускоряющий реацию) и солнечный свет.

Далее механизм реакции можно описать так: когда солнечный свет попадает на зеленые листья растений, в их структуре возбуждаются электроны хлорофилла (заряд отрицательный), которые перейдя в активное состояние, покидают молекулу пигмента и оказываются на внешней стороне тилакоида, мембрана которого заряжена также отрицательно. В то же время молекулы хлорофилла окисляются и уже окисленные они восстанавливаются, отбирая таким образом электроны у воды, которая находится в структуре листа.

Этот процесс приводит к тому, что молекулы воды распадаются, а созданные в результате фотолиза воды ионы, отдают свои электроны и превращаются в такие радикалы ОН, которые способны проводить дальнейшие реакции. Далее эти реакционноспособные радикалы ОН объединяются, создавая полноценные молекулы воды и кислород. При этом свободный кислород выходит во внешнюю среду.

В результате всех этих реакций и превращений, мембрана тилакоида листа с одной стороны заряжается положительно (за счет иона Н+), а с другой — отрицательно (за счет электронов). Когда разность между этими зарядами в двух сторонах мембраны достигает больше 200 мВ, протоны проходят через специальные каналы фермента АТФ-синтетазы и за счет этого происходит превращение АДФ до АТФ (в результате процесса фосфорилизации). А атомный водород, который освобождается из воды, восстанавливает специфический переносчик НАДФ+ до НАДФ·Н2. Как видим, в результате световой фазы фотосинтеза происходит три основных процесса:

  1. синтез АТФ;
  2. создание НАДФ·Н2;
  3. образование свободного кислорода.

Последний освобождается в атмосферу, а НАДФ·Н2 и АТФ берут участие в темной фазе фотосинтеза.

Темная фаза фотосинтеза

Темная и световая фазы фотосинтеза характеризуются большими затратами энергии со стороны растения, однако темная фаза протекает быстрее и требует меньше энергии. Для реакций темной фазы не нужен солнечный свет, поэтому они могут происходить и днем и ночью.

Все основные процессы этой фазы протекают в строме хлоропласта растения и являют собой своеобразную цепочку последовательных превращений углекислого газа из атмосферы. Первая реакция в такой цепи – фиксация углекислого газа. Чтобы она проходила более плавно и быстрее, природой был предусмотрен фермент РиБФ-карбоксилаза, который катализирует фиксацию СО2.

Далее происходит целый цикл реакций, завершением которого является преобразование фосфоглицериновой кислоты в глюкозу (природный сахар). Все эти реакции используют энергию АТФ и НАДФ Н2, которые были созданы в световой фазе фотосинтеза. Помимо глюкозы в результате фотосинтеза образуются также и другие вещества. Среди них разные аминокислоты, жирные кислоты, глицерин, а также нуклеотиды.

Фазы фотосинтеза: таблица сравнений

Критерии сравнения Световая фаза Темная фаза
Солнечный свет Обязателен Необязателен
Место протекание реакций Граны хлоропласта Строма хлоропласта
Зависимость от источника энергии Зависит от солнечного света Зависит от АТФ и НАДФ Н2, образованных в световой фазе и от количества СО2 из атмосферы
Исходные вещества Хлорофилл, белки-переносчики электронов, АТФ-синтетаза Углекислый газ
Суть фазы и что образуется Выделяется свободный О2, образуется АТФ и НАДФ Н2 Образование природного сахара (глюкозы) и поглощение СО2 из атмосферы

Фотосинтез — видео

— синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света:

6СО 2 + 6Н 2 О + Q света → С 6 Н 12 О 6 + 6О 2 .

У высших растений органом фотосинтеза является лист, органоидами фотосинтеза — хлоропласты (строение хлоропластов — лекция №7). В мембраны тилакоидов хлоропластов встроены фотосинтетические пигменты: хлорофиллы и каротиноиды. Существует несколько разных типов хлорофилла (a, b, c, d ), главным является хлорофилл a . В молекуле хлорофилла можно выделить порфириновую «головку» с атомом магния в центре и фитольный «хвост». Порфириновая «головка» представляет собой плоскую структуру, является гидрофильной и поэтому лежит на той поверхности мембраны, которая обращена к водной среде стромы. Фитольный «хвост» — гидрофобный и за счет этого удерживает молекулу хлорофилла в мембране.

Хлорофиллы поглощают красный и сине-фиолетовый свет, отражают зеленый и поэтому придают растениям характерную зеленую окраску. Молекулы хлорофилла в мембранах тилакоидов организованы в фотосистемы . У растений и синезеленых водорослей имеются фотосистема-1 и фотосистема-2, у фотосинтезирующих бактерий — фотосистема-1. Только фотосистема-2 может разлагать воду с выделением кислорода и отбирать электроны у водорода воды.

Фотосинтез — сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы .

Световая фаза

Эта фаза происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента — АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящейся во внутритилакоидном пространстве. Это приводит к распаду или фотолизу воды:

Н 2 О + Q света → Н + + ОН — .

Ионы гидроксила отдают свои электроны, превращаясь в реакционноспособные радикалы.ОН:

ОН — → .ОН + е — .

Радикалы.ОН объединяются, образуя воду и свободный кислород:

4НО. → 2Н 2 О + О 2 .

Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н + заряжается положительно, с другой за счет электронов — отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200 мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идет на восстановление специфического переносчика НАДФ + (никотинамидадениндинуклеотидфосфат) до НАДФ·Н 2:

2Н + + 2е — + НАДФ → НАДФ·Н 2 .

Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1) синтезом АТФ; 2) образованием НАДФ·Н 2 ; 3) образованием кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ·Н 2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

1 — строма хлоропласта; 2 — тилакоид граны.

Темновая фаза

Эта фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ.

Первая реакция в этой цепочке — фиксация углекислого газа; акцептором углекислого газа является пятиуглеродный сахар рибулозобифосфат (РиБФ); катализирует реакцию фермент рибулозобифосфат-карбоксилаза (РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях используются энергии АТФ и НАДФ·Н 2 , образованных в световую фазу; цикл этих реакций получил название «цикл Кальвина»:

6СО 2 + 24Н + + АТФ → С 6 Н 12 О 6 + 6Н 2 О.

Кроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время различают два типа фотосинтеза: С 3 - и С 4 -фотосинтез.

С 3 -фотосинтез

Это тип фотосинтеза, при котором первым продуктом являются трехуглеродные (С 3) соединения. С 3 -фотосинтез был открыт раньше С 4 -фотосинтеза (М. Кальвин). Именно С 3 -фотосинтез описан выше, в рубрике «Темновая фаза». Характерные особенности С 3 -фотосинтеза: 1) акцептором углекислого газа является РиБФ, 2) реакцию карбоксилирования РиБФ катализирует РиБФ-карбоксилаза, 3) в результате карбоксилирования РиБФ образуется шестиуглеродное соединение, которое распадается на две ФГК. ФГК восстанавливается до триозофосфатов (ТФ). Часть ТФ идет на регенерацию РиБФ, часть превращается в глюкозу.

1 — хлоропласт; 2 — пероксисома; 3 — митохондрия.

Это светозависимое поглощение кислорода и выделение углекислого газа. Еще в начале прошлого века было установлено, что кислород подавляет фотосинтез. Как оказалось, для РиБФ-карбоксилазы субстратом может быть не только углекислый газ, но и кислород:

О 2 + РиБФ → фосфогликолат (2С) + ФГК (3С).

Фермент при этом называется РиБФ-оксигеназой. Кислород является конкурентным ингибитором фиксации углекислого газа. Фосфатная группа отщепляется, и фосфогликолат становится гликолатом, который растение должно утилизировать. Он поступает в пероксисомы, где окисляется до глицина. Глицин поступает в митохондрии, где окисляется до серина, при этом происходит потеря уже фиксированного углерода в виде СО 2 . В итоге две молекулы гликолата (2С + 2С) превращаются в одну ФГК (3С) и СО 2 . Фотодыхание приводит к понижению урожайности С 3 -растений на 30-40% (С 3 -растения — растения, для которых характерен С 3 -фотосинтез).

С 4 -фотосинтез — фотосинтез, при котором первым продуктом являются четырехуглеродные (С 4) соединения. В 1965 году было установлено, что у некоторых растений (сахарный тростник, кукуруза, сорго, просо) первыми продуктами фотосинтеза являются четырехуглеродные кислоты. Такие растения назвали С 4 -растениями . В 1966 году австралийские ученые Хэтч и Слэк показали, что у С 4 -растений практически отсутствует фотодыхание и они гораздо эффективнее поглощают углекислый газ. Путь превращений углерода в С 4 -растениях стали называть путем Хэтча-Слэка .

Для С 4 -растений характерно особое анатомическое строение листа. Все проводящие пучки окружены двойным слоем клеток: наружный — клетки мезофилла, внутренний — клетки обкладки. Углекислый газ фиксируется в цитоплазме клеток мезофилла, акцептор — фосфоенолпируват (ФЕП, 3С), в результате карбоксилирования ФЕП образуется оксалоацетат (4С). Процесс катализируется ФЕП-карбоксилазой . В отличие от РиБФ-карбоксилазы ФЕП-карбоксилаза обладает большим сродством к СО 2 и, самое главное, не взаимодействует с О 2 . В хлоропластах мезофилла много гран, где активно идут реакции световой фазы. В хлоропластах клеток обкладки идут реакции темновой фазы.

Оксалоацетат (4С) превращается в малат, который через плазмодесмы транспортируется в клетки обкладки. Здесь он декарбоксилируется и дегидрируется с образованием пирувата, СО 2 и НАДФ·Н 2 .

Пируват возвращается в клетки мезофилла и регенерирует за счет энергии АТФ в ФЕП. СО 2 вновь фиксируется РиБФ-карбоксилазой с образованием ФГК. Регенерация ФЕП требует энергии АТФ, поэтому нужно почти вдвое больше энергии, чем при С 3 -фотосинтезе.

Значение фотосинтеза

Благодаря фотосинтезу, ежегодно из атмосферы поглощаются миллиарды тонн углекислого газа, выделяются миллиарды тонн кислорода; фотосинтез является основным источником образования органических веществ. Из кислорода образуется озоновый слой, защищающий живые организмы от коротковолновой ультрафиолетовой радиации.

При фотосинтезе зеленый лист использует лишь около 1% падающей на него солнечной энергии, продуктивность составляет около 1 г органического вещества на 1 м 2 поверхности в час.

Хемосинтез

Синтез органических соединений из углекислого газа и воды, осуществляемый не за счет энергии света, а за счет энергии окисления неорганических веществ, называется хемосинтезом . К хемосинтезирующим организмам относятся некоторые виды бактерий.

Нитрифицирующие бактерии окисляют аммиак до азотистой, а затем до азотной кислоты (NH 3 → HNO 2 → HNO 3).

Железобактерии превращают закисное железо в окисное (Fe 2+ → Fe 3+).

Серобактерии окисляют сероводород до серы или серной кислоты (H 2 S + ½O 2 → S + H 2 O, H 2 S + 2O 2 → H 2 SO 4).

В результате реакций окисления неорганических веществ выделяется энергия, которая запасается бактериями в форме макроэргических связей АТФ. АТФ используется для синтеза органических веществ, который проходит аналогично реакциям темновой фазы фотосинтеза.

Хемосинтезирующие бактерии способствуют накоплению в почве минеральных веществ, улучшают плодородие почвы, способствуют очистке сточных вод и др.

    Перейти к лекции №11 «Понятие об обмене веществ. Биосинтез белков»

    Перейти к лекции №13 «Способы деления эукариотических клеток: митоз, мейоз, амитоз»

Процесс фотосинтеза является одним из важнейших биологических процессов, протекающих в природе, ведь именно благодаря ему происходит образование органических веществ из углекислого газа и воды под действием света, именно это явление и называют фотосинтезом. И что самое важное, в процессе фотосинтеза происходит выделение , жизненно необходимого для существования жизни на нашей удивительной планете.

История открытия фотосинтеза

История открытия явления фотосинтеза уходит своими корнями на четыре века в прошлое, когда в далеком 1600 году некий бельгийский ученый Ян Ван Гельмонт поставил не сложный эксперимент. Он поместил веточку ивы (предварительно записав ее начальный вес) в мешок, в котором также находилось 80 кг земли. А затем на протяжении пяти лет растение поливалось исключительно водой. Каким же было удивление ученого, когда по прошествии пяти лет вес растения увеличился на 60 кг, при том, что масса земли уменьшилась всего лишь на 50 грамм, откуда взялась столь внушительная прибавка в весе, так и оставалось для ученого загадкой.

Следующий важный и интересный эксперимент, ставший преддверием к открытию фотосинтеза, был поставлен английским ученым Джозефом Пристли в 1771 году (любопытно, что по роду своей профессии мистер Пристли был священником англиканской церкви, но в историю вошел именно как выдающийся ученый). Что же сделал мистер Пристли? Он поместил мышь под колпак и через пять дней та умерла. Затем он снова поместил еще одну мышь под колпак, но в этот раз вместе с мышкой под колпаком была веточка мяты и в результате мышь осталась живой. Полученный результат навел ученого на мысль, о том, что существует некий процесс, противоположный дыханию. Еще одним важным выводом этого эксперимента стало открытие кислорода, как жизненно необходимого всем живим существам (первая мышка умерла от его отсутствия, вторая же выжила, благодаря веточке мяты, которая в процессе фотосинтеза как раз создала кислород).

Так был установлен факт, что зеленые части растений способны выделять кислород. Затем уже в 1782 году швейцарский ученый Жан Сенебье доказал, что углекислый газ под воздействием света разлагается в зеленых растений – фактически была открыта еще одна сторона фотосинтеза. Затем еще через 5 лет французский ученый Жак Бусенго обнаружил, что поглощение растениями воды происходит и при синтезе органических веществ.

И финальным аккордом в череде научных открытий связанных с явлением фотосинтеза стало открытие немецкого ботаника Юлиуса Сакса, которому в 1864 году удалось доказать, что объем потребляемого углекислого газа и выделяемого кислорода происходит в пропорции 1:1.

Значение фотосинтеза в жизни человека

Если представить образно, то лист любого растения можно сравнить с маленькой лабораторией, окна которой выходят на солнечную сторону. В этой самой лаборатории идет образование органических веществ и кислорода, являющегося основой для существования органической жизни на Земле. Ведь без кислорода и фотосинтеза на Земле просто бы не существовало жизни.

Но если фотосинтез столь важен для жизни и выделения кислорода, то как живут люди (да и не только люди), например в пустыне, где минимум зеленых растений, или например, в индустриальном городе, где деревья редкость. Дело в том, что на долю наземных растений приходится всего 20% выделяемого в атмосферу кислорода, остальные же 80% выделяются морскими и океанскими водорослями, недаром ведь мировой океан порой называю «легкими нашей планеты».

Формула фотосинтеза

Общую формулу фотосинтеза можно записать следующим образом:

Вода + Углекислый газ + Свет > Углеводы + Кислород

А вот такой вид имеет формула химической реакции фотосинтеза

6СО 2 + 6Н 2 О = С6Н 12 О 6 + 6О 2

Значение фотосинтеза для растений

А теперь попробуем ответить на вопрос, для чего нужен фотосинтез растениям. В действительности обеспечение кислородом атмосферы нашей планеты, далеко не единственная причина протекания фотосинтеза, этот биологический процесс жизненно необходим не только людям и животным, но и самим растениям, ведь органические вещества, которые образуются в ходе фотосинтеза, составляют основу жизнедеятельности растений.

Как происходит фотосинтез

Главным двигателем фотосинтеза является хлорофилл – специальный пигмент, содержащийся в клетках растений, который помимо всего прочего отвечает за зеленую окрасу деревьев и прочих растений. Хлорофилл представляет собой сложное органическое соединение, обладающее к тому же важным свойством – способностью к поглощению солнечного света. Поглощая его, именно хлорофилл приводит в действие ту маленькую биохимическую лабораторию, содержащуюся в каждом маленьком листочке, в каждой травине и каждой водоросли. Далее происходит фотосинтеза (формулу смотрите выше) в ходе которой и происходит преображение воды и углекислого газа в необходимые растениям углеводы и необходимый всему живому кислород. Механизмы фотосинтеза являются гениальным творением природы.

Фазы фотосинтеза

Также процесс фотосинтеза состоит из двух стадий: светлой и темновой. И ниже мы детально напишем о каждой из них.

Бесхлорофилльный фотосинтез

Пространственная локализация

Фотосинтез растений осуществляется в хлоропластах : обособленных двухмембранных органеллах клетки. Хлоропласты могут быть в клетках плодов , стеблей , однако основным органом фотосинтеза, анатомически приспособленным к его ведению, является лист . В листе наиболее богата хлоропластами ткань палисадной паренхимы. У некоторых суккулентов с вырожденными листьями (например, кактусы) основная фотосинтетическая активность связана со стеблем.

Свет для фотосинтеза захватывается более полно благодаря плоской форме листа, обеспечивающей большое отношение поверхности к объёму. Вода доставляется из корня по развитой сети сосудов (жилок листа). Углекислый газ поступает отчасти посредством диффузии через кутикулу и эпидермис , однако большая его часть диффундирует в лист через устьица и по листу по межклеточному пространству. Растения, осуществляющие CAM фотосинтез, сформировали особые механизмы для активной ассимиляции углекислого газа.

Внутреннее пространство хлоропласта заполнено бесцветным содержимым (стромой) и пронизано мембранами (ламеллами), которые соединяясь друг с другом образуют тилакоиды , которые в свою очередь группируются в стопки, называемые граны . Внутритилакоидное пространство отделено и не сообщается с остальной стромой, предполагается также что внутреннее пространство всех тилакоидов сообщается между собой. Световые стадии фотосинтеза приурочены к мембранам, автотрофная фиксация CO 2 происходит в строме.

В хлоропластах имеются свои ДНК , РНК , рибосомы (70s типа), идёт синтез белка (хотя этот процесс и контролируется из ядра). Они не синтезируются вновь, а образуются путём деления предшествующих. Всё это позволило считать их потомками свободных цианобактерий, вошедших в состав эукариотической клетки в процессе симбиогенеза .

Фотосистема I

Светособирающий комплекс I содержит примерно 200 молекул хлорофилла.

В реакционном центре первой фотосистемы находится димер хлорофилла a с максимумом поглощения при 700 нм (П700). После возбуждения квантом света он восстанавливает первичный акцептор - хлорофилл a, тот - вторичный (витамин K 1 или филлохинон), после чего электрон передаётся на ферредоксин, который и восстанавливает НАДФ с помощью фермента ферредоксин-НАДФ-редуктазы.

Белок пластоцианин, восстановленный в b 6 f комплексе, транспортируется к реакционному центру первой фотосистемы со стороны внутритилакоидного пространства и передаёт электрон на окисленный П700.

Циклический и псевдоциклический транспорт электрона

Помимо полного нециклического пути электрона, описанного выше, обнаружены циклический и псевдоциклический.

Суть циклического пути заключается в том, что ферредоксин вместо НАДФ восстанавливает пластохинон, который переносит его назад на b 6 f комплекс. В результате образуется больший протонный градиент и больше АТФ, но не возникает НАДФН.

При псевдоциклическом пути ферредоксин восстанавливает кислород, который в дальнейшем превращается в воду и может быть использован в фотосистеме II. При этом также не образуется НАДФН.

Темновая стадия

В темновой стадии с участием АТФ и НАДФН происходит восстановление CO 2 до глюкозы (C 6 H 12 O 6). Хотя свет не требуется для осуществления данного процесса, он участвует в его регуляции.

С 3 -фотосинтез, цикл Кальвина

В третьей стадии участвуют 5 молекул ФГА, которые через образование 4-, 5-, 6- и 7-углеродных соединений объединяются в 3 5-углеродных рибулозо-1,5-бифосфата, для чего необходимы 3АТФ.

Наконец, две ФГА необходимы для синтеза глюкозы . Для образования одной её молекулы требуется 6 оборотов цикла, 6 CO 2 , 12 НАДФН и 18 АТФ.

С 4 -фотосинтез

Основные статьи: Цикл Хетча-Слэка-Карпилова , С4-фотосинтез

При низкой концентрации растворённого в строме CO 2 рибулозобифосфаткарбоксилаза катализирует реакцию окисления рибулозо-1,5-бифосфата и его распад на 3-фосфоглицериновую кислоту и фосфогликолевую кислоту, которая вынужденно используется в процессе фотодыхания .

Для увеличения концентрации CO 2 растения С 4 типа изменили анатомию листа. Цикл Кальвина у них локализуется в клетках обкладки проводящего пучка, в клетках мезофилла же под действием ФЕП-карбоксилазы фосфоенолпируват карбоксилируется с образованием щавелеуксусной кислоты, которая превращается в малат или аспартат и транспортируется в клетки обкладки, где декарбоксилируется с образованием пирувата , возвращаемого в клетки мезофилла.

С 4 фотосинтез практически не сопровождается потерями рибулозо-1,5-бифосфата из цикла Кальвина, поэтому более эффективен. Однако он требует не 18, а 30 АТФ на синтез 1 молекулы глюкозы. Это оправдывает себя в тропиках, где жаркий климат требует держать устьица закрытыми, что препятствует поступлению CO 2 в лист, а также при рудеральной жизненной стратегии.

САМ фотосинтез

Позже было установлено, что помимо выделения кислорода растения поглощают углекислый газ и при участии воды синтезируют на свету органическое вещество. В Роберт Майер на основании закона сохранения энергии постулировал, что растения преобразуют энергию солнечного света в энергию химических связей. В В. Пфеффер назвал этот процесс фотосинтезом.

Хлорофиллы были впервые выделены в П. Ж. Пельтье и Ж. Кавенту. Разделить пигменты и изучить их по отдельности удалось М. С. Цвету с помощью созданного им метода хроматографии . Спектры поглощения хлорофилла были изучены К. А. Тимирязевым , он же, развивая положения Майера, показал, что именно поглощенные лучи позволяют повысить энергию системы, создав вместо слабых связей С-О и О-Н высокоэнергетические С-С (до этого считалось что в фотосинтезе используются жёлтые лучи, не поглощаемые пигментами листа). Сделано это было благодаря созданному им методу учёта фотосинтеза по поглощённому CO 2: в ходе экспериментов по освещению растения светом разных длин волн (разного цвета) оказалось, что интенсивность фотосинтеза совпадает со спектром поглощения хлорофилла.

Окислительно-восстановительную сущность фотосинтеза (как оксигенного, так и аноксигенного) постулировал Корнелис ван Ниль . Это означало, что кислород в фотосинтезе образуется полностью из воды, что экспериментально подтвердил в А. П. Виноградов в опытах с изотопной меткой. В г. Роберт Хилл установил, что процесс окисления воды (и выделения кислорода), а также ассимиляции CO 2 можно разобщить. В - Д. Арнон установил механизм световых стадий фотосинтеза, а сущность процесса ассимиляции CO 2 была раскрыта Мельвином Кальвином с использованием изотопов углерода в конце 1940-х , за эту работу в ему была присуждена Нобелевская премия .

Прочие факты

См. также

Литература

  • Холл Д., Рао К. Фотосинтез: Пер. с англ. - М.: Мир, 1983.
  • Физиология растений / под ред. проф. Ермакова И. П. - М.: Академия, 2007
  • Молекулярная биология клетки / Альбертис Б., Брей Д. и др. В 3 тт. - М.: Мир, 1994
  • Рубин А. Б. Биофизика. В 2 тт. - М.: Изд. Московского университета и Наука, 2004.
  • Чернавская Н. М.,