Меню
Бесплатно
Главная  /  Подоконники, откосы и отливы  /  Энергия фотосинтеза у растений. Как и где происходит процесс фотосинтеза у растений

Энергия фотосинтеза у растений. Как и где происходит процесс фотосинтеза у растений

Каждое живое существо на планете нуждается в пище или энергии, чтобы выжить. Некоторые организмы питаются другими существами, тогда как другие могут производить свои собственные питательные элементы. сами производят продукты питания, глюкозу, в процессе, который называется фотосинтезом.

Фотосинтез и дыхание взаимосвязаны. Результатом фотосинтеза является глюкоза, которая хранится как химическая энергия в . Эта накопленная химическая энергия получается в результате превращения неорганического углерода (углекислого газа) в органический углерод. Процесс дыхания высвобождает накопленную химическую энергию.

Помимо продуктов, которые они производят, растениям также необходим углерод, водород и кислород, чтобы выжить. Вода, поглощенная из почвы, обеспечивает водород и кислород. Во время фотосинтеза, углерод и вода используются для синтеза пищи. Растения также нуждаются в нитратах, чтобы производить аминокислоты (аминокислота - ингредиент для выработки белка). В дополнение к этому, они нуждаются в магнии для производства хлорофилла.

Заметка: Живые существа, которые зависят от других продуктов питания называются . Травоядные, такие как коровы, а также растения, питающиеся насекомыми, являются примерами гетеротрофов. Живые существа, производящие собственную пищу, называются . Зеленые растения и водоросли - примеры автотрофов.

В этой статье вы узнаете больше о том, как происходит фотосинтез у растений и об необходимы для этого процесса условиях.

Определение фотосинтеза

Фотосинтез - это химический процесс, посредством которого растения, некоторые и водоросли производят глюкозу и кислород из углекислого газа и воды, используя только свет в качестве источника энергии.

Этот процесс чрезвычайно важен для жизни на Земле, поскольку благодаря ему выделяется кислород, от которого зависит вся жизнь.

Зачем растениям нужна глюкоза (пища)?

Подобно людям и другим живым существам, растения также нуждаются в питании для поддержания жизнедеятельности. Значение глюкозы для растений заключается в следующем:

  • Глюкоза, полученная в результате фотосинтеза, используется во время дыхания для высвобождения энергии, необходимой растению для других жизненно важных процессов.
  • Растительные клетки также превращают часть глюкозы в крахмал, который используют по мере необходимости. По этой причине мертвые растения используются в качестве биомассы, ведь в них хранится химическая энергия.
  • Глюкоза также необходима, чтобы производить другие химические вещества, такие как белки, жиры и растительные сахара, необходимые для обеспечения роста и других важных процессов.

Фазы фотосинтеза

Процесс фотосинтеза разделен на две фазы: световую и темновую.

Световая фаза фотосинтеза

Как следует из названия, световые фазы нуждаются в солнечном свете. В светозависимых реакциях энергия солнечного света поглощается хлорофиллом и преобразуется в запасенную химическую энергию в виде молекулы электронного носителя НАДФН (никотинамидадениндинуклеотидфосфат) и молекулы энергии АТФ (аденозинтрифосфат). Световые фазы протекают в тилакоидных мембранах в пределах хлоропласта.

Темновая фаза фотосинтеза или цикл Кальвина

В темновой фазе или цикле Кальвина возбужденные электроны из световой фазы обеспечивают энергию для образования углеводов из молекул углекислого газа. Не зависящие от света фазы иногда называют циклом Кальвина из-за цикличности процесса.

Хотя темновые фазы не используют свет в качестве реагента (и, как результат, могут происходить днем или ночью), им необходимо, чтобы продукты светозависимых реакций функционировали. Независимые от света молекулы зависят от молекул энергоносителей - АТФ и НАДФН - для создания новых молекул углеводов. После передачи энергии молекулы энергоносители возвращаются к световым фазам для получения более энергичных электронов. Кроме того, несколько ферментов темновой фазы активируются с помощью света.

Схема фаз фотосинтеза

Заметка: Это означает, что темновые фазы не будут продолжаться, если растения будут лишены света слишком долго, так как они используют продукты световых фаз.

Строение листьев растений

Мы не можем полностью изучить фотосинтез, не зная больше о строении листа. Лист адаптирован для того, чтобы играть жизненно важную роль в процессе фотосинтеза.

Внешнее строение листьев

  • Площадь

Одной из самых главных особенностей растений является большая площадь поверхности листьев. Большинство зеленых растений имеют широкие, плоские и открытые листья, которые способны захватывать столько солнечной энергии (солнечного света), сколько необходимо для фотосинтеза.

  • Центральная жилка и черешок

Центральная жилка и черешок соединяются вместе и являются основанием листа. Черешок располагает лист таким образом, чтобы он получал как можно больше света.

Простые листья имеют одну листовую пластину, а сложные - несколько. Листовая пластинка - одна из самых главных составляющих листа, которая непосредственно участвует в процессе фотосинтеза.

  • Жилы

Сеть жилок в листьях переносит воду от стеблей к листьям. Выделяемая глюкоза также направляется в другие части растения из листьев через жилки. Кроме того, эти части листа поддерживают и удерживают листовую пластину плоской для большего захвата солнечного света. Расположение жилок (жилкование) зависит от вида растения.

  • Основание листа

Основанием листа выступает самая нижняя его часть, которая сочленена со стеблем. Зачастую, у основания листа располагается парное количество прилистников.

  • Край листа

В зависимости от вида растения, край листа может иметь различную форму, включая: цельнокрайнюю, зубчатую, пильчатую, выемчатую, городчатую и т.п.

  • Верхушка листа

Как и край листа, верхушка бывает различной формы, включая: острую, округлую, туповатую, вытянутую, оттянутою и т.д.

Внутреннее строение листьев

Ниже представлена ​​близкая схема внутреннего строения тканей листьев:

  • Кутикула

Кутикула выступает главным, защитным слоем на поверхности растения. Как правило, она толще на верхней части листа. Кутикула покрыта веществом, похожим на воск, благодаря которому защищает растение от воды.

  • Эпидермис

Эпидермис - слой клеток, который является покровной тканью листа. Его главная функция - защита внутренних тканей листа от обезвоживания, механических повреждений и инфекций. Он также регулирует процесс газообмена и транспирации.

  • Мезофилл

Мезофилл - это основная ткань растения. Здесь происходит процесс фотосинтеза. У большинства растений мезофилл разделен на два слоя: верхний - палисадный и нижний - губчатый.

  • Защитные клетки

Защитные клетки - специализированные клетки в эпидермисе листьев, которые используются для контроля газообмена. Они выполняют защитную функцию для устьица. Устьичные поры становятся большими, когда вода есть в свободном доступе, в противном случае, защитные клетки становятся вялыми.

  • Устьице

Фотосинтез зависит от проникновения углекислого газа (CO2) из воздуха через устьица в ткани мезофилла. Кислород (O2), полученный как побочный продукт фотосинтеза, выходит из растения через устьица. Когда устьица открытые, вода теряется в результате испарения и должна быть восполнена через поток транспирации, водой, поглощенной корнями. Растения вынуждены уравновешивать количество поглощенного СО2 из воздуха и потерю воды через устьичные поры.

Условия, необходимые для фотосинтеза

Ниже приведены условия, которые необходимы растениям для осуществления процесса фотосинтеза:

  • Углекислый газ. Бесцветный природный газ без запаха, обнаруженный в воздухе и имеет научное обозначение CO2. Он образуется при горении углерода и органических соединений, а также возникает в процессе дыхания.
  • Вода . Прозрачное жидкое химическое вещество без запаха и вкуса (в нормальных условиях).
  • Свет. Хотя искусственный свет также подходит для растений, естественный солнечный свет, как правило, создает лучшие условия для фотосинтеза, потому что в нем присутствует природное ультрафиолетовое излучение, которое оказывает положительное влияние на растения.
  • Хлорофилл. Это зеленый пигмент, найденный в листьях растений.
  • Питательные вещества и минералы. Химические вещества и органические соединения, которые корни растений поглощают из почвы.

Что образуется в результате фотосинтеза?

  • Глюкоза;
  • Кислород.

(Световая энергия показана в скобках, поскольку она не является веществом)

Заметка: Растения получают CO2 из воздуха через их листья, и воду из почвы через корни. Световая энергия исходит от Солнца. Полученный кислород выделяется в воздух из листьев. Получаемую глюкозу можно превратить в другие вещества, такие как крахмал, который используется как запас энергии.

Если факторы, способствующие фотосинтезу, отсутствуют или присутствуют в недостаточном количестве, это может негативно повлиять на растение. Например, меньшее количество света создает благоприятные условия для насекомых, которые едят листья растения, а недостаток воды замедляет.

Где происходит фотосинтез?

Фотосинтез происходит внутри растительных клеток, в мелких пластидах, называемых хлоропластами. Хлоропласты (в основном встречающиеся в слое мезофилла) содержат зеленое вещество, называемое хлорофиллом. Ниже приведены другие части клетки, которые работают с хлоропластом, чтобы осуществить фотосинтез.

Строение растительной клетки

Функции частей растительной клетки

  • : обеспечивает структурную и механическую поддержку, защищает клетки от , фиксирует и определяет форму клетки, контролирует скорость и направление роста, а также придает форму растениям.
  • : обеспечивает платформу для большинства химических процессов, контролируемых ферментами.
  • : действует как барьер, контролируя движение веществ в клетку и из нее.
  • : как было описано выше, они содержат хлорофилл, зеленое вещество, которое поглощает световую энергию в процессе фотосинтеза.
  • : полость внутри клеточной цитоплазмы, которая накапливает воду.
  • : содержит генетическую марку (ДНК), которая контролирует деятельность клетки.

Хлорофилл поглощает световую энергию, необходимую для фотосинтеза. Важно отметить, что поглощаются не все цветовые длины волны света. Растения в основном поглощают красную и синюю волны - они не поглощают свет в зеленом диапазоне.

Углекислый газ в процессе фотосинтеза

Растения получают углекислый газ из воздуха через их листья. Углекислый газ просачивается через маленькое отверстие в нижней части листа - устьицу.

Нижняя часть листа имеет свободно расположенные клетки, чтобы углекислый газ достиг других клеток в листьях. Это также позволяет кислороду, образующемуся при фотосинтезе, легко покидать лист.

Углекислый газ присутствует в воздухе, которым мы дышим, в очень низких концентрациях и служит необходимым фактором темновой фазы фотосинтеза.

Свет в процессе фотосинтеза

Лист обычно имеет большую площадь поверхности, поэтому он может поглощать много света. Его верхняя поверхность защищена от потери воды, болезней и воздействия погоды восковым слоем (кутикулой). Верх листа находится там, где падает свет. Этот слой мезофилла называется палисадным. Он приспособлен для поглощения большого количества света, ведь в нем находится много хлоропластов.

В световых фазах, процесс фотосинтеза увеличивается с большим количеством света. Больше молекул хлорофилла ионизируется, и больше генерируется АТФ и НАДФН, если световые фотоны сосредоточены на зеленом листе. Хотя свет чрезвычайно важен в световых фазах, необходимо отметить, что чрезмерное его количество может повредить хлорофилл, и уменьшить процесс фотосинтеза.

Световые фазы не слишком сильно зависят от температуры, воды или углекислого газа, хотя все они нужны для завершения процесса фотосинтеза.

Вода в процессе фотосинтеза

Растения получают воду, необходимую для фотосинтеза через свои корни. Они имеют корневые волоски, которые разрастаются в почве. Корни характеризуются большой площадью поверхности и тонкими стенками, что позволяет воде легко проходить сквозь них.

На изображении представлены растения и их клетки с достаточным количеством воды (слева) и ее нехваткой (справа).

Заметка: Корневые клетки не содержат хлоропластов, поскольку они, как правило, находятся в темноте и не могут фотосинтезировать.

Если растение не впитывает достаточное количество воды, оно увядает. Без воды, растение будет не способно фотосинтезировать достаточно быстро, и может даже погибнуть.

Какое значение имеет вода для растений?

  • Обеспечивает растворенными минералами, которые поддерживают здоровье растений;
  • Является средой для транспортировки ;
  • Поддерживает устойчивость и прямостояние;
  • Охлаждает и насыщает влагой;
  • Дает возможность проводить различные химические реакции в растительных клетках.

Значение фотосинтеза в природе

Биохимический процесс фотосинтеза использует энергию солнечного света для преобразования воды и углекислого газа в кислород и глюкозу. Глюкоза используется в качестве строительных блоков в растениях для роста тканей. Таким образом, фотосинтез - это способ, благодаря которому формируются корни, стебли, листья, цветы и плоды. Без процесса фотосинтеза растения не смогут расти или размножаться.

  • Продуценты

Из-за фотосинтетической способности, растения известны как продуценты и служат основой почти каждой пищевой цепи на Земле. (Водоросли являются эквивалентом растений в ). Вся пища, которую мы едим, происходит от организмов, являющихся фотосинтетиками. Мы питаемся этими растениями напрямую или едим животных, таких как коровы или свиньи, которые потребляют растительную пищу.

  • Основа пищевой цепи

Внутри водных систем, растения и водоросли также составляют основу пищевой цепи. Водоросли служат пищей для , которые, в свою очередь, выступают источником питания для более крупных организмов. Без фотосинтеза в водной среде жизнь была бы невозможна.

  • Удаление углекислого газа

Фотосинтез превращает углекислый газ в кислород. Во время фотосинтеза углекислый газ из атмосферы поступает в растение, а затем выделяется в виде кислорода. В сегодняшнем мире, где уровни двуокиси углерода растут ужасающими темпами, любой процесс, который устраняет углекислый газ из атмосферы, является экологически важным.

Растения и другие фотосинтезирующие организмы играют жизненно важную роль в круговороте питательных веществ. Азот в воздухе фиксируется в растительных тканях и становится доступным для создания белков. Микроэлементы, находящиеся в почве, также могут быть включены в растительную ткань и стать доступными для травоядных животных, дальше по пищевой цепи.

  • Фотосинтетическая зависимость

Фотосинтез зависит от интенсивности и качества света. На экваторе, где солнечный свет обилен весь год и вода не является ограничивающим фактором, растения имеют высокие темпы роста, и могут стать довольно большими. И наоборот, фотосинтез в более глубоких частях океана встречается реже, поскольку свет не проникает в эти слои, и в результате эта экосистема оказывается более бесплодной.

Со школьной скамьи понятие фотосинтез ассоциируется с зеленым цветом. Это цвет пигмента под названием хлорофилл. Без его скопления в листьях процесс фотосинтеза не возможен. Как же выживает белая секвойя?

Фотосинтез растений зиждется на 0,4% световых лучей. Половина из них не доходит до поверхности планеты. Из оставшихся для фотосинтеза подходит только 1/8. Работают ограничения по длине световой волны. Из подходящих лучей растения забирают 0,4%.

Если переводить в энергию, это 1% от ее общего количества. Привычное течение фотосинтеза проходит под действием света солнца. Однако, искусственные лучи растения тоже научились использовать.

Световой фотосинтез сводится к получению глюкозы. Она идет на питание . Побочный продукт реакции — кислород. Он выбрасывается представителями флоры во внешнюю среду, пополняя атмосферу Земли.

Получаются кислород и глюкоза в ходе реакции меж углекислым газом и водой. Хлорофилл в этом взаимодействии – своеобразный катализатор. Без него реакция не возможна.

Интересно, что хлорофилл встречается только в растениях. Функции, возложенные на пигмент, напоминают работу крови в организме животных. Хлорофилл подобен молекуле гемоглобина, но с магнием в центре.

В клетках же человеческой крови задействовано железо. Тем не менее, на организмы людей хлорофилл оказывает близкое к гемоглобину действие, а именно, повышает уровень кислорода крови и ускоряет обмен азота.

Реакция фотосинтеза может протекать быстро, или медленно. Все зависит от условий среды. Важны: интенсивность светового потока, температура воздуха, его насыщение углекислым газом и кислородом. Идеалом считается достижение точки компенсации. Так называют совпадение скоростей дыхания растения и выделения им кислорода.

Если свет в клетки хлоропласты, в коих скапливается хлорофилл, поступает сверху, то воду для реакции растения выкачивают из почвы. Вот зачем нужен полив растений. Недостаток влаги тормозит реакции фотосинтеза. В итоге, растение желтеет, то есть теряет хлорофилл.

Полей представителя флоры в этот момент, листья не зазеленеют. Выкачивать воду из почвы тоже помогает хлорофилл. Получается замкнутый круг. Нет полива – нет хлорофилла, нет хлорофилла – нет доставки воды в растение.

Теперь, уделим внимание глюкозе. Раз зелень вырабатывает ее из воды и углекислого газа, значит, из неорганического получается органика. Присоединяя к сахару то фосфор, то серу, то азот, растения производят витамины, жиры, белки, крахмалы. Дополнения к глюкозе травы да деревья берут из почвы. Элементы поступают растворенными в воде.

Фазы фотосинтеза

Фазы фотосинтеза – это деление процесса на фотолиз и восстановительную реакцию. Первый протекает на свету и сводится к выделению водорода. Кислород служит побочным продуктом реакции, однако, тоже нужным растению. Оно использует газ в процессе дыхания.

Световая фаза фотосинтеза возбуждает хлорофилл. От переизбытка энергии, его электрон отрывается и начинает перемещение по цепи органических соединений. В ходе путешествия частица способствует синтезу аденозиндифосфорной кислоты из аденозинтрифосфорной.

На это уходит данная электрону энергия. АДФ нужна для образования растением нуклеотидов. Они входят в нуклеиновые кислоты, без которых не возможен метаболизм представителей флоры.

Растратив энергию, электрон возвращается к молекуле хлорофилла. Эта клетка фотосинтеза вновь захватывает квант света. Уставший от работы электрон подкрепляется ею, опять отправляясь на дело. Такова световая фаза процесса. Однако, он не останавливается и в темноте.

Темновой фотосинтез направлен на захват из внешней среды уже углекислого газа. Вместе с водородом он участвует в образовании 6-углеродного сахара. Это и есть глюкоза. Этот результат фотосинтеза сопровождается, так же, образованием веществ, помогающих захватывать новые порции углекислого газа.

Захватываются они опять же, хлоропластами. Те тратят энергию, накопленную за день. Ресурс идет на связывание углекислого газа с рибулозобисфосфатом. Это 5-углеродный сахар. Реакция дает две молекулы фосфоглицериновой кислоты.

В каждой из них по 3 атома углерода. Это один из этапов цикла Кальвина. Он протекает в строме, то есть подстилке хлоропластов. Состоит цикл из трех реакций. Сначала, углекислый газ присоединяется к рубулозо-1,5-дифосфату.

Для реакции обязательно присутствие рубулозобифосфата-карбоксилазы. Это фермент. В его присутствии рождается гексоза. Из нее и получаются молекулы фосфоглицериновой кислоты.

После получения фосфоглицеринового соединения растение восстанавливает его до глицеральдегида-3-фосфата. Его молекулы идут на два «направления». В первом образуется глюкоза, а во втором рубулозо-1,5-дифосфат. Он, как помним, подхватывает газ углекислый.

Фотосинтез на обеих стадиях протекает в растениях активно, поскольку те приспособились захватывать днем максимальное количество энергии солнца. Вспомним школьные классы. Фотосинтезу посвящены несколько уроков ботаники.

Учителя рассказывают, почему у большинства растений плоские и широкие листья. Так представители флоры увеличивают площадь для улавливания квантов света. Не зря и люди сделали солнечные батареи широкими, но плоскими.

Фотосинтез углекислого газа

Углекислый газ проникает в растения через устица. Это подобие пор в листьях, стволах. Процесс всасывания газа и выпуска после через те же устица кислорода напоминает дыхание у людей.

Разница лишь в чередовании стадий. Люди вдыхают кислород, а выдыхают углекислый газ. У растений все наоборот. Так на планете удерживается равновесие двух газов в атмосфере.

Продукты фотосинтеза несут в себе энергию солнца. Животные перерабатывать ее не умеют. Съесть растения – единственная возможность «зарядиться» от дневного светила.

Перерабатывая углекислое соединение, растения способны давать людям и животным в два раза больше. Представители флоры работают с 0,03% газа в атмосфере. Как видно, углекислый газ в ней не из преобладающих.

В искусственных условиях ученые доводили процент углекислого вещества в воздухе до 0,05%. Огурцы, при этом, давали в 2 раза больше плодов. Так же реагировали на изменения , .

Уровень углекислого газа ученые повышали, сжигая в теплицах опилки и прочие отходы деревообрабатывающей промышленности. Интересно, что при концентрации газа в 0,1% растения уже не были рады.

Многие виды начинали болеть. У помидоров, к примеру, в атмосфере с переизбытком углекислого соединения начинали желтеть и скручиваться листья. Это еще одно подтверждение опасности перенасыщения атмосферы CO 2 . Продолжая вырубку лесов и развитие промышленности, человек рискует поставить оставшиеся растения в непригодные для них условия.

Повышать уровень углекислого газа до оптимального можно не только путем сжигания отходов древесины, но и внося в почву удобрения. Они провоцируют размножение бактерий.

Многие микроорганизмы вырабатывают углекислое соединение. Сосредотачиваясь у земли, оно тут же захватывается растениями, идя на благо представителей флоры и всего населения Земли.

Значение фотосинтеза

Если допустить повышение уровня углекислого газа в нижних слоях атмосферы повсеместно, а не только в экспериментальных теплицах, наступит парниковый эффект. Это то самое глобальное потепление, которое то ли уже приближается, то ли и не «светит».

Ученые не сходятся во мнениях. Если говорить о фактах, говорящих в пользу парникового эффекта, вспоминается таяние льдов Антарктики. Там обитают белые медведи. Уже несколько лет они включены в .

Частью жизни медведей исторически является преодоление водных широт на пути к новым ледникам. Устремляясь к ним, животные все чаще выбиваются из сил, так и не достигнув цели. Водные просторы увеличиваются.

Доплыть до клочков суши становится все сложнее. Порой, медведи гибнут в пути. Порой, краснокнижные хищники добираются до земли, но изможденными. Сил на охоту и переходов уже по твердой почве не остается.

Из вышесказанного делаем вывод: без фотосинтеза или с сокращением его доли, уровень углекислого газа в атмосфере спровоцирует парниковый эффект. Изменится не только климат планеты, но и состав ее обитателей, их облик, приспособления к окружающей среде.

Так будет до тех пор, пока доля углекислого соединения в воздухе не достигнет критического 1%. Далее, под вопрос встает сам фотосинтез. Воды мировых океанов могут остаться единственным его источником. Водоросли ведь тоже «дышат». Клетки, хранящие хлорофилл, у них другие.

Однако, суть процесса фотосинтеза у наземных и водных растений одна. Концентрация углекислого газа в атмосфере не обязательно передается водной среде. В ней баланс может сохраниться.

Некоторые ученые предполагают, что при постепенном увеличении доли углекислого газа в воздухе, представители флоры смогут приспособиться к новым условиям. Помидоры не станут сворачивать листья, капитулируя перед реалиями будущего.

Возможно, растения эволюционируют, научившись перерабатывать большее количество СО 2 . Догадка ученых относится к категории «лучше не проверять». Слишком рискованно.

Значение фотосинтеза связано не только с поддержанием жизни самих растений и насыщением атмосферы Земли кислородом. Ученые бьются над искусственным проведением реакций.

Расщепляемая под действием радиации солнца на водород и кислород вода – источник энергии. Энергия эта, в отличие от получаемой из нефтепродуктов и каменного угля, экологически чистая, безопасная.

Где происходит фотосинтез – не важно. Важна энергия, которую он несет с собой. Пока, человек получает ресурс, лишь поглощая растительную пищу. Возникает вопрос, как же выживают плотоядные? Они не зря охотятся на травоядных, а не себе подобных. В мясе животных, питающихся травами и листьями, сохраняется часть их энергии.

Кроме энергии фотосинтеза важны и его продукты. Кислород, к примеру, идет не только на дыхание животных, но и на образования озонового слоя. Он располагается в стратосфере Земли, на границе с космосом.

Озон – одна из модификаций кислорода, которую тот принимает, поднимаясь на тысячекилометровые высоты. Здесь элемент борется с радиацией Солнца. Не будь озонового слоя, излучение светила достигало бы поверхности планеты в опасных для всего живого дозах.

Интересно, что в деле поддержания баланса газов на планете могут помочь некоторые беспозвоночные. Слизень Elisia Chloroti, к примеру, научился ассимилировать хлоропласты водорослей.

Обитатель морей съедает их, «приручая» клетки с хлорофиллом в слизистой своего желудка. Геном слизня кодирует белки, необходимые зеленому пигменту для фотосинтеза.

Выработанные вещества поставляются хлоропластам и те «кормят» беспозвоночное сладенькой глюкозой. На ней и люди некоторое время способны выживать. Достаточно вспомнить больницы, где ослабленным вводят глюкозу внутривенно.

Сахар – основной источник энергии и, главное, быстрый. Цепочка преобразования глюкозы в чистую энергию короче, чем цепь преобразований жиров, белков. Конечно, сахар научились синтезировать искусственно.

Но, многие ученые склоняются к мнению, что полезнее для организма глюкоза растений, фруктов и овощей. Это подобно эффекту витаминов. У синтетических и природных один состав, но чуть разниться положение атомов. Опыты доказывают, что аптечный витамин С пользу дает сомнительную, а вот то же вещество из лимона или капусты – бесспорную.

Бесспорна и польза фотосинтеза. Он привычен и, одновременно, хранит еще много тайн. Познавайте их, дабы обеспечить счастливое будущее и себе, и планете в целом.

Важнейшим органическим процессом, без которого существование всех живых существ нашей планеты было бы под вопросом, является фотосинтез. Что такое фотосинтез? известно всем со школы. Грубо говоря, это процесс образования органических веществ из углекислого газа и воды, который происходит на свету и сопровождается выделением кислорода. Более сложное определение звучит следующим образом: фотосинтез - процесс преобразования световой энергии в энергию химических связей веществ органического происхождения при участии фотосинтетических пигментов. В современной практике под фотосинтезом обычно понимают совокупность процессов поглощения, синтеза и использования света в ряде эндергонических реакций, одной из которых является превращение углекислого газа в органические вещества. А теперь давайте узнаем подробнее, как протекает фотосинтез и на какие фазы этот процесс делится!

Общая характеристика

Хлоропласты, которые есть у каждого растения, отвечают за фотосинтез. Что такое хлоропласты? Это овальные пластиды, в которых содержится такой пигмент, как хлорофилл. Именно хлорофилл определяет зеленую окраску растений. У водорослей данный пигмент представлен в составе хроматофор - пигментсодержащих светоотражающих клеток разной формы. Бурые и красные водоросли, которые обитают на значительных глубинах, куда плохо попадает солнечный свет, имеют иные пигменты.

Вещества фотосинтеза входят в состав автотроф - организмов, способных синтезировать из неорганических веществ органические. Они являются самой нижней ступенью пищевой пирамиды, поэтому входят в рацион всех живых организмов планеты Земля.

Польза фотосинтеза

Зачем же нужен фотосинтез? Кислород, который выделяется из растений во время фотосинтеза, поступает в атмосферу. Поднимаясь в ее верхние слои, он образует озон, который защищает земную поверхность от сильного солнечного излучения. Именно благодаря озоновому экрану живые организмы могут комфортно находиться на суше. Кроме того, как известно, кислород нужен для дыхания живых организмов.

Ход процесса

Все начинается с того, что в хлоропласты попадает свет. Под его влиянием органеллы вытягивают из почвы воду, а также делят ее на водород и кислород. Таким образом, имеют место два процесса. Фотосинтез растений начинается в момент, когда листья уже впитали воду и углекислый газ. Световая энергия аккумулируется в тилакоидах - специальных отсеках хлоропластов, и делит молекулу воды на две составляющие. Часть кислорода уходит на дыхание растения, а оставшаяся часть - в атмосферу.

Затем углекислый газ попадает в пиреноиды - белковые гранулы, окруженные крахмалом. Сюда же поступает водород. Смешавшись друг с другом, эти вещества образуют сахар. Эта реакция также проходит с выделением кислорода. Когда сахар (обобщающее название простых углеводов) смешивается с азотом, серой и фосфором, поступающими в растение из почвы, образуется крахмал (сложный углевод), белки, жиры, витамины и прочие вещества, необходимые для жизни растений. В абсолютном большинстве случаев фотосинтез происходит в условиях природного освещения. Однако искусственное освещение также может в нем поучаствовать.

Вплоть до 60-х годов двадцатого века науке был известен один механизм восстановления углекислого газа - по С 3 -пентозофосфатному пути. Недавно австралийские ученые доказали, что у некоторых видов растений данный процесс может протекать по циклу С 4 -дикарбоновых кислот.

У растений, которые восстанавливают углекислый газ по С 3 пути, фотосинтез лучше всего проходит при умеренной температуре и слабой освещенности, в лесах или темных местах. К таковым растениям можно отнести львиную долю культурных растений и почти все овощи, которые составляют основу нашего рациона.

У второго класса растений фотосинтез активнее всего протекает в условиях высокой температуры и сильной освещенности. В эту группу входят растения, которые произрастают в тропическом и теплом климате, к примеру кукуруза, сахарный тростник, сорго и так далее.

Метаболизм растений, кстати говоря, был обнаружен весьма недавно. Ученым удалось выяснить, что некоторые растения имеют специальные ткани для сохранения запасов воды. Углекислый газ у них скапливается в виде органических кислот и переходит в углеводы лишь через 24 часа. Этот механизм дает растениям возможность сэкономить воду.

Как проходит процесс?

Мы уже знаем в общих чертах, как протекает процесс фотосинтеза и какой фотосинтез бывает, теперь давайте познакомимся с ним глубже.

Начинается все с того, что растение поглощает свет. Ей в этом помогает хлорофилл, который в виде хлоропластов располагается в листьях, стеблях и плодах растения. Основное количество данного вещества сконцентрировано именно в листьях. Все дело в том, что благодаря своей плоской структуре, лист притягивает много света. А чем больше света, тем больше энергии для фотосинтеза. Таким образом, листья в растении выступают своеобразными локаторами, улавливающими свет.

Когда свет поглощен, хлорофилл пребывает в возбужденном состоянии. Он передает энергию другим органам растения, которые участвуют в следующей стадии фотосинтеза. Второй этап процесса протекает без участия света и состоит в химической реакции с участием воды, получаемой из почвы, и углекислого газа, получаемого из воздуха. На этой стадии синтезируются углеводы, которые крайне необходимы для жизни любого организма. В данном случае они не только питают само растение, но и передаются животным, которые его съедают. Люди также получают эти вещества, употребив продукты растительного или животного происхождения.

Фазы процесса

Будучи довольно сложным процессом, фотосинтез делится на две фазы: световую и темновую. Как можно понять из названия, для первой фазы обязательно наличие солнечного излучения, а для второй - нет. Во время световой фазы хлорофилл поглощает квант света, образуя молекулы АТФ и НАДН, без которых невозможен фотосинтез. Что такое АТФ и НАДН?

АТФ (аденозитрифосфат) - нуклеиновый кофермент, которые содержит высокоэнергетические связи и служит источником энергии в любом органическом превращении. Соединение часто называют энергетической волютой.

НАДН (никотинамидадениндинуклеотид) - источник водорода, который используется для синтеза углеводов с участием углекислого газа во второй фазе такого процесса, как фотосинтез.

Световая фаза

Хлоропласты содержат много молекул хлорофилла, каждая из которых поглощает свет. Его поглощают и другие пигменты, но они не способны к фотосинтезу. Процесс проходит лишь в части молекул хлорофилла. Остальные молекулы образуют антенные и светособирающие комплексы (ССК). Они накапливают кванты светового излучения и передают их в реакционные центры, которые также называют ловушками. Реакционные центры располагаются в фотосистемах, которых у фотосинтезирующего растения две. Первая содержит молекулу хлорофилла, способную поглощать свет с длиной волны 700 нм, а вторая - 680 нм.

Итак, два типа молекул хлорофилла поглощают свет и возбуждаются, что способствует переходу электронов на более высокий энергетический уровень. Возбужденные электроны, обладающие большим количеством энергии, отрываются и поступают в цепь переносчиков, расположенную в мембранах тилакоидов (внутренние структуры хлоропластов).

Переход электронов

Электрон из первой фотосистемы переходит от хлорофилла Р680 к пластохинону, а электрон из второй системы - к ферредоксину. При этом на месте отрыва электронов в молекуле хлорофилла образуется свободное место.

Для восполнения недостачи молекула хлорофилла Р680 принимает электроны из воды, образуя ионы водорода. А вторая молекула хлорофилла восполняет недостачу через систему переносчиков от первой фотосистемы.

Так протекает световая фаза фотосинтеза, суть которой состоит в переносе электронов. Параллельно электронному транспорту проходит перемещение ионов водорода через мембрану. Это приводит к их накоплению внутри тилакоида. Накапливаясь в большом количестве, они высвобождаются наружу с помощью сопрягающего фактора. Результатом транспорта электронов является образование соединения НАДН. А перенос иона водорода приводит к образованию энергетической валюты АТФ.

По окончании световой фазы в атмосферу поступает кислород, а внутри лепестка образуются АТФ и НАДН. Затем начинается темновая фаза фотосинтеза.

Темновая фаза

Для этой фазы фотосинтеза необходим углекислый газ. Растение постоянно поглощает его из воздуха. С этой целью на поверхности листка есть устьица - специальные структуры, которые при открывании всасывают углекислый газ. Поступая вовнутрь листка, он растворяется в воде и участвует в процессах световой фазы.

Во время световой фазы в большинстве растений углекислый газ связывается с органическим соединением, которое содержит 5 атомов углерода. В результате образуется пара молекул трехуглеродного соединения под названием 3-фосфоглицериновая кислота. Именно из-за того, что первичным результатом процесса является данное соединение, растения с таким типом фотосинтеза называют С 3- растениями.

Дальнейшие процессы, проходящие в хлоропластах, весьма сложны для неискушенных обывателей. В конечном итоге получается шестиуглеродное соединение, синтезирующее простые или сложные углеводы. Именно в виде углеводов растение скапливает энергию. Небольшая часть веществ остается в листе и выполняет его нужды. Остальные углеводы циркулируют по всему растению и поступают в те места, где они больше всего нужны.

Фотосинтез зимой

Многие хотя бы раз в жизни задавались вопросом о том, откуда берется кислород в холодное время года. Во-первых, кислород вырабатывается не только лиственными растениями, но и хвойными, а также морскими растениями. И если лиственные растения зимой замирают, то хвойные продолжают дышать, хотя и менее интенсивно. Во-вторых, содержание кислорода в атмосфере не зависит от того, скинули ли деревья свои листья. Кислород занимает 21 % атмосферы, в любой точки нашей планеты в любое время года. Эта величина не меняется, так как воздушные массы перемещаются очень быстро, а зима наступает не одновременно во всех странах. Ну и, в-третьих, зимой в нижних слоях воздуха, которые мы вдыхаем, содержание кислорода даже больше, чем летом. Причина этого явления - низкая температура, из-за которой кислород становится плотнее.

Заключение

Сегодня мы вспомнили, что такое фотосинтез, что такое хлорофил, и как растения выделяют кислород, поглощая углекислый газ. Безусловно, фотосинтез является важнейшим процессом в нашей жизни. Он напоминает нам о необходимости бережного отношения к природе.

Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Задачи: Сформировать знания о реакциях пластического и энергетического обменов и их взаимосвязи; вспомнить особенности строения хлоропластов. Дать характеристику световой и темновой фазы фотосинтеза. Показать значение фотосинтеза как процесса, обеспечивающего синтез органических веществ, поглощение углекислого газа и выделение кислорода в атмосферу.

Тип урока: лекция.

Оборудование:

  1. Средства наглядности: таблицы по общей биологии;
  2. ТСО: компьютер; мультимедиапроектор.

План лекции:

  1. История изучения процесса.
  2. Эксперименты по фотосинтезу.
  3. Фотосинтез, как анаболический процесс.
  4. Хлорофилл и его свойства.
  5. Фотосистемы.
  6. Световая фаза фотосинтеза.
  7. Темновая фаза фотосинтеза.
  8. Лимитирующие факторы фотосинтеза.

Ход лекции

История изучения фотосинтеза

1630 год начало изучения фотосинтеза. Ван Гельмонт доказал, что растения образуют органические вещества, а не получают их из почвы. Взвешивая горшок с землей и ивой, и отдельно само дерево, он показал, что через 5 лет масса дерева увеличилась на 74 кг, тогда как почва потеряла только 57 г. Он решил, что пищу дерево получает из воды. В настоящее время мы знаем, что используется углекислый газ.

В 1804 году Соссюр установил, что в процессе фотосинтеза велико значение воды.

В 1887 году открыты хемосинтезирующие бактерии.

В 1905 году Блэкман установил, что фотосинтез состоит из двух фаз: быстрой – световой и ряда последовательных медленных реакций темновой фазы.

Эксперименты по фотосинтезу

1 опыт доказывает значение солнечного света (рис. 1.) 2 опыт доказывает значение углекислого газа для фотосинтеза (рис. 2.)

3 опыт доказывает значение фотосинтеза (рис.3.)

Фотосинтез, как анаболический процесс

  1. Ежегодно в результате фотосинтеза образуется 150 млрд. тонн органического вещества и 200 млрд. тонн свободного кислорода.
  2. Круговорот кислорода, углерода и других элементов, вовлекаемых в фотосинтез. Поддерживает современный состав атмосферы, необходимый для существования современных форм жизни.
  3. Фотосинтез препятствует увеличению концентрации углекислого газа, предотвращая перегрев Земли вследствие парникового эффекта.
  4. Фотосинтез – основа всех цепей питания на Земле.
  5. Запасенная в продуктах энергия – основной источник энергии для человечества.

Сущность фотосинтеза заключается в превращении световой энергии солнечного луча в химическую энергию в виде АТФ и НАДФ·Н 2 .

Суммарное уравнение фотосинтеза:

6СО 2 + 6Н 2 О С 6 Н 12 О 6 + 6О 2

Существует два главных типа фотосинтеза:

Хлорофилл и его свойства

Виды хлорофилла

Хлорофилл имеет модификации а, в, с, d. Отличаются они структурным строением и спектром поглощения света. Например: хлорофилл в содержит на один атом кислорода больше и на два атома водорода меньше, чем хлорофилл а.

Все растения и оксифотобактерии имеют как основной пигмент желто-зеленый хлорофилл а, а как дополнительный хлорофилл в.

Другие пигменты растений

Некоторые другие пигменты способны поглощать солнечную энергию и передавать ее в хлорофилл, вовлекая ее тем самым в фотосинтез.

У большинства растений есть темно оранжевый пигмент – каротин , который в животном организме превращается в витамин А и желтый пигмент – ксантофилл .

Фикоцианин и фикоэритрин – содержат красные и сине-зеленые водоросли. У красных водорослей эти пигменты принимают более активное участие в процессе фотосинтеза, чем хлорофилл.

Хлорофилл минимально поглощает свет в сине-зеленой части спектра. Хлорофилл а, в- в фиолетовой области спектра, где длина волны 440 нм. Уникальная функция хлорофилла состоит в том, что он интенсивно поглощает солнечную энергию и передает ее другим молекулам.

Пигменты поглощают определенную длину волны, не поглощенные участки солнечного спектра отражаются, что обеспечивает окраску пигмента. Зеленый свет не поглощается, поэтому хлорофилл зеленый.

Пигменты – это химические соединения, которые поглощают видимый свет, что приводит электроны в возбужденное состояние. Чем меньше длина волны, тем больше энергия света и больше его способность переводить электроны в возбужденное состояние. Это состояние неустойчиво и вскоре вся молекула возвращается в свое обычное низкоэнергетическое состояние теряя при этом энергию возбуждения. Эта энергия может быть использована на флуоресценцию.

Фотосистемы

Пигменты растений участвующие в фотосинтезе «упакованы» в тилакоиды хлоропластов в виде функциональных фотосинтетических единиц – фотосинтетических систем: фотосистемы I и фотосистемы II.

Каждая система состоит из набора вспомогательных пигментов (от 250 до 400 молекул), передающих энергию на одну молекулу главного пигмента и она называется реакционным центром . В нем энергия Солнца используется для фотохимических реакций.

Световая фаза идет обязательно с участием света, темновая фаза и на свету и в темноте. Световой процесс происходит в тилакоидах хлоропластов, темновой – в строме, т.е. эти процессы пространственно разобщены.

Световая фаза фотосинтеза

В 1958 году Арнон и его сотрудники изучили световую фазу фотосинтеза. Они установили, что источником энергии при фотосинтезе является свет, а так как на свету в хлорофилле происходит синтез из АДФ+Ф.к. → АТФ, то этот процесс называется фосфорилированием. Оно сопряжено с переносом электронов в мембранах.

Роль световых реакций: 1. Синтез АТФ – фосфорилирование. 2. Синтез НАДФ.Н 2 .

Путь переноса электронов называется Z-схемой.

Z-схема. Нециклическое и циклическое фотофосфорилирование (рис. 6.)

В ходе циклического транспорта электронов не происходит образования НАДФ.Н 2 и фоторазложения Н 2 О, следовательно и выделение О 2 . Этот путь используется тогда, когда в клетке избыток НАДФ.Н 2 , но требуется дополнительная АТФ.

Все эти процессы относятся к световой фазе фотосинтеза. В дальнейшем энергия АТФ и НАДФ.Н 2 используется для синтеза глюкозы. Для этого процесса свет не нужен. Это реакции темновой фазы фотосинтеза.

Темновая фаза фотосинтеза или цикл Кальвина

Синтез глюкозы происходит в ходе циклического процесса, который получил название по имени ученого Мельвина Кальвина, открывшего его, и награжденного Нобелевской премией.

Рис. 8. Цикл Кальвина

Каждая реакция цикла Кальвина осуществляется своим ферментом. Для образования глюкозы используются: СО 2 , протоны и электроны от НАДФ.Н 2 , энергия АТФ и НАДФ.Н 2 . Происходит процесс в строме хлоропласта. Исходным и конечным соединением цикла Кальвина, к которому с помощью фермента рибулозодифосфаткарбоксилазы присоединяется СО2, является пятиуглеродный сахар – рибулозобифосфат , содержащий две фосфатные группы. В результате образуется шестиуглеродное соединение, сразу же распадающееся на две трехуглеродные молекулы фосфоглицериновой кислоты , которые затем восстанавливаются до фосфоглицеринового альдегида . При этом, часть образовавшегося фосфоглицеринового альдегида используется для регенерации рибулозобифосфата, и, таким образом, цикл возобновляется снова (5С 3 → 3С 5), а часть используется для синтеза глюкозы и других органических соединений (2С 3 → С 6 → С 6 Н 12 О 6).

Для образования одной молекулы глюкозы необходимо 6 оборотов цикла и требуется 12НАДФ.Н 2 и 18 АТФ. Из суммарного уравнения реакции получается:

6СО 2 + 6Н 2 О → С 6 Н 12 О 6 + 6О 2

Из приведенного уравнения видно, что атомы С и О вошли в глюкозу из СО 2 , а атомы водорода из Н 2 О. Глюкоза в дальнейшем может быть использована как на синтез сложных углеводов (целлюлозы, крахмала), так и на образование белков и липидов.

(С 4 – фотосинтез. В 1965 году было доказано, что у сахарного тростника – первыми продуктами фотосинтеза, являются кислоты, содержащие четыре атома углерода (яблочная, щавелевоуксусная, аспарагиновая). К С 4 растениям принадлежат кукуруза, сорго, просо).

Лимитирующие факторы фотосинтеза

Скорость фотосинтеза – наиболее важный фактор влияющий на урожайность с/х культур. Так, для темновых фаз фотосинтеза нужны НАДФ.Н 2 и АТФ, и поэтому скорость темновых реакций зависит от световых реакций. При слабой освещенности скорость образования органических веществ будет мала. Поэтому свет – лимитирующий фактор.

Из всех факторов одновременно влияющих на процесс фотосинтеза лимитирующим будет тот, который ближе к минимальному уровню. Это установил Блэкман в 1905 году . Разные факторы могут быть лимитными, но один из них главный.

Космическая роль растений (описана К. А. Тимирязевым ) заключается в том, что растения – единственные организмы, усваивающие солнечную энергию и аккумулирующие ее в виде потенциальной химической энергии органических соединений . Выделяющийся О 2 поддерживает жизнедеятельность всех аэробных организмов. Из кислорода образуется озон, который защищает все живое от ультрафиолетовых лучей. Растения использовали из атмосферы громадное количество СО 2 , избыток которого создавал «парниковый эффект», и температура планеты понизилась до нынешних значений.

Фотосинтез – процесс довольно сложный и включает две фазы: световую, которая всегда происходит исключительно на свету, и темновую. Все процессы происходят внутри хлоропластов на особых маленьких органах - тилакоидах. В ходе световой фазы хлорофиллом поглощается квант света, в результате чего образуются молекулы АТФ и НАДФН. Вода при этом распадается, образуя ионы водорода и выделяя молекулу кислорода. Возникает вопрос, что это за непонятные загадочные вещества: АТФ и НАДН?

АТФ – это особые органические молекулы, которые имеются у всех живых организмов, их часто называют «энергетической» валютой. Именно эти молекулы содержат высокоэнергетические связи и являются источником энергии при любых органических синтезах и химических процессах в организме. Ну, а НАДФН – это собственно источник водорода, используется непосредственно при синтезе высокомолекулярных органических веществ - углеводов, который происходит во второй, темновой фазе фотосинтеза с использованием углекислого газа. Но давайте по порядку.

Cветовая фаза фотосинтеза

В хлоропластах содержится очень много молекул хлорофилла, и все они поглощают солнечный свет. Одновременно свет поглощается и другими пигментами, но они не умеют осуществлять фотосинтез. Сам процесс происходит лишь только в некоторых молекулах хлорофилла, которых совсем немного. Другие же молекулы хлорофилла, каротиноидов и других веществ образуют особые антенные, а также светособирающие комплексы (ССК). Они, как антенны, поглощают кванты света и передают возбуждение в особые реакционные центры или ловушки. Эти центры находятся в фотосистемах, которых у растений две: фотосистема II и фотосистема I. В них имеются особые молекулы хлорофилла: соответственно в фотосистеме II - P680, а в фотосистеме I - P700. Они поглощают свет именно такой длины волны(680 и 700 нм).

По схеме более понятно, как все выглядит и происходит во время световой фазы фотосинтеза.

На рисунке мы видим две фотосистемы с хлорофиллами Р680 и Р700. Также на рисунке показаны переносчики, по которым происходит транспорт электронов.

Итак: обе молекулы хлорофилла двух фотосистем поглощают квант света и возбуждаются. Электрон е- (на рисунке красный) у них переходит на более высокий энергетический уровень.

Возбужденные электроны обладает очень высокой энергией, они отрываются и поступают в особую цепь переносчиков, которая находится в мембранах тилакоидов – внутренних структур хлоропластов. По рисунку видно, что из фотосистемы II от хлорофилла Р680 электрон переходит к пластохинону, а из фотосистемы I от хлорофилла Р700 – к ферредоксину. В самих молекулах хлорофилла на месте электронов после их отрыва образуются синие дырки с положительным зарядом. Что делать?

Чтобы восполнить недостачу электрона молекула хлорофилла Р680 фотосистемы II принимает электроны от воды, при этом образуются ионы водорода. Кроме того, именно за счет распада воды образуется выделяющийся в атмосферу кислород. А молекула хлорофилла Р700, как видно из рисунка, восполняет недостачу электронов через систему переносчиков от фотосистемы II.

В общем, как бы ни было сложно, именно так протекает световая фаза фотосинтеза, ее главная суть заключается в переносе электронов. Также по рисунку можно заметить, что параллельно транспорту электронов происходит перемещение ионов водорода Н+ через мембрану, и они накапливаются внутри тилакоида. Так как их там становится очень много, они перемещаются наружу с помощью особого сопрягающего фактора, который на рисунке оранжевого цвета, изображен справа и похож на гриб.

В завершении мы видим конечный этап транспорта электрона, результатом которого является образование вышеупомянутого соединения НАДН. А за счет переноса ионов Н+ синтезируется энергетическая валюта – АТФ (на рисунке видно справа).

Итак, световая фаза фотосинтеза завершена, в атмосферу выделился кислород, образовались АТФ и НАДН. А что же дальше? Где обещанная органика? А дальше наступает темновая стадия, которая заключается, главным образом, в химических процессах.

Темновая фаза фотосинтеза

Для темновой фазы фотосинтеза обязательным компонентом является углекислый газ – СО2. Поэтому растение должно постоянно его поглощать из атмосферы. Для этой цели на поверхности листа имеются специальные структуры – устьица. Когда они открываются, СО2 поступает именно внутрь листа, растворяется в воде и вступает в реакцию световой фазы фотосинтеза.

В ходе световой фазы у большинства растений СО2 связывается с пятиуглеродным органическим соединением (которое представляет собой цепочку из пяти молекул углерода), в результате чего образуются две молекулы трехуглеродного соединения (3-фосфоглицериновая кислота). Т.к. первичным результатом являются именно эти трехуглеродные соединения, растения с таким типом фотосинтеза получили название С3-растений.

Дальнейший синтез, происходящий в хлоропластах, довольно сложен. В конечном итоге образуется шестиуглеродное соединение, из которого потом могут синтезироваться глюкоза, сахароза или крахмал. Именно в виде этих органических веществ растение накапливает энергию. Только небольшая их часть остается в листе и используется для его нужд. Остальные же углеводы путешествуют по всему растению и поступают именно туда, где больше всего нужна энергия, например, в точки роста.