Меню
Бесплатно
Главная  /  Внутренняя отделка  /  Материалы для каркасов звуковых катушек. Способ изготовления звуковой катушки

Материалы для каркасов звуковых катушек. Способ изготовления звуковой катушки


Величину зазора магнитной системы измеряют при помощи иглы подходящего диаметра. Для этого в зазор вставляют иглу и отмечают глубину её погружения с помощью маркера. Причём, выбирают то место, где зазор минимальный. Окончательный замер производят штангенциркулем или микрометром в районе метки.


  1. Катушка.
  2. Гильза.
  3. Прокладка.
  4. Шаблон.
  5. Условное положение фланца.

Картинка иллюстрирует зависимость размеров «А» и «Б» от толщины прокладки. При увеличении толщины прокладки, зазор «А» увеличится, а зазор «Б» уменьшится.


Пример расчёта толщины прокладки.

Диаметр керна – 25,1мм.

Диаметр шаблона – 25мм.

Магнитный зазор – 1,2мм.

Диаметр провода с изоляцией – 0,19мм.

Толщина материала гильзы – 0,1мм.


Рассчитываем величину зазора с внутренней стороны гильзы.


(1,2 – 0,19 – 0,19 – 0,1) : 2 = 0,36 (мм)


Выбираем внутренний зазор 0,3мм в пользу внешнего зазора катушки.

Теперь рассчитаем толщину прокладки.

Диаметр шаблона оказался меньше на 0,1мм диаметра керна, поэтому прибавляем к расчётному внутреннему зазору ещё:


0,1: 2 = 0,05 (мм).


Итого, толщина прокладки должна быть:


0,3 + 0,05 = 0,35 (мм).


Выбираем для прокладки элетрокартон толщиной 0,07мм.


0,35: 0,07 = 5 (витков)



Прежде чем начинать намотку прокладки на шаблон, на боковой поверхности последнего следует поставить метку. Эта метка пригодится при подсчёте количества целых витков прокладки и поможет при удалении гильзы с шаблона, когда на гильзе уже будет намотана катушка.


Чтобы предотвратить проворачивание прокладки во время намотки катушки, наносим каплю клея «88Н» на шаблон со стороны его хвостовика как раз в том месте, где нанесена метка.


Теперь очень плотно наматываем прокладку из электрокартона на оправку, не допуская перехлёста краёв. (Разверните плеер не весь экран, чтобы увидеть видео в оригинальном разрешении).


В качестве прокладки можно использовать любую плотную бумагу подходящей толщины. Не подойдёт только дешёвая рыхлая бумага, которая может деформироваться при намотке катушки.

Если измерять сразу по десять слоёв бумаги, то можно повысить точность измерения штангенциркуля до точности микрометра.

Повысить точность при подборе толщины прокладки можно, если использовать дробное количество витков. Так, например, чтобы получить зазор 0,25 мм при использовании бумаги толщиной 0,1мм, можно намотать 2,5 слоя. Но, при этом нужно иметь в виду, что чем тоньше используется бумага для прокладки с дробным количеством витков, тем меньше будет отклонение катушки от правильной цилиндрической формы.


В большинстве случаев, при перемотке динамиков, длину гильзы и положение катушки на гильзе можно определить по остаткам старой гильзы.

Если определить длину катушки и гильзы нельзя, например, в случае, когда картонная гильза полностью выгорела, но провод всё же сохранился, то длину намотки можно рассчитать по формуле:


L = R * d³ / (14 * 10 -5 * D)


L – длина катушки в мм.

R – сопротивление динамика в Ом.

d – диаметр медного провода круглого сечения в мм.

D – диаметр гильзы в мм.


Эта же формула для алюминиевого провода:


L = R * d³ / (22 * 10 -5 * D)


Пример расчёта.

Исходные данные.

Сопротивление динамика – 3,6 Ом.

Диаметр медного провода – 0,27мм.

Диаметр гильзы – 25мм.


L = 3,6 * 0,27³ / (14 * 10-5 * 25) ≈ 20 (мм).


Если вычисления делать лень, то можно просто намотать тестовую катушку, подогнав её под необходимое сопротивление, и измерить её длину.

Зная длину намотки катушки можно вычислить её положение относительно края диффузора. Для этого диффузор укладывают в корзину и замеряют расстояние между нижним краем диффузора и верхним краем фланца.

Этот замер можно снять, если вставить бумажное кольцо в зазор магнитной системы и сделать метку на уровне верхнего края фланца.


Положение катушки и соответствующую длину гильзы рассчитывают так, чтобы катушка была расположена симметрично относительно тела верхнего фланца.


Измерить толщину верхнего фланца можно вот так.


Если конструкция динамика не позволяет с внешней стороны определить толщину верхнего фланца, тогда, этот размер можно снять при помощи отрезка проволоки, загнутой на конце, вроде той, что используется для удаления металлических опилок.

Для промера, достаточно вставить крючок в щель магнитного зазора и потянуть вверх, зацепившись за нижний край верхнего фланца. Если теперь сделать метку на уровне верхнего края фланца… Дальше должно быть понятно.


Когда внутренний диаметр и длина гильзы определены, можно вырезать заготовку и закрепить её поверх прокладки.


Страница 1 из 2

Ремонт динамической головки (динамика) - трудоемкий процесс, особенно, если он связан с необходимостью в перемотке катушки электромагнитной системы, так как эта операция требует практически полной разборки динамика с извлечением его диффузора. Подобный сложный ремонт целесообразно выполнять при достаточно высокой цене на новую динамическую головку, наличии необходимых инструментов и материалов, а так же начальных познаний в области электроники.

В статье рассмотрен относительно простой случай восстановления катушки динамика: без необходимости изготовления новой основы для катушки (алюминиевая основа хорошо сохранилась); по причине немалой мощности динамика, применяется эмальпровод внушительного сечения, который легко укладывать.

Для перемотки катушки динамика нам понадобятся следующие основные инструменты и средства:

  1. Цилиндрическая, цельнометаллическая оправка (болванка), для установки внутрь каркаса катушки в процессе намотки.
  2. Клей «БФ-2». Клей «Момент». Ацетон. Этиловый спирт.
  3. Эмалированный провод (эмальпровод) определенной длины и сечения, для изготовления новой обмотки катушки.
  4. Намоточный станочек.
  5. Штангенциркуль.
  6. Электропаяльник.


Флакон 100 мл с клеем БФ-2.
На одну перемотку катушки расходуется не более 10 мл.


Алюминиевая (неразрезная) оправка.
Внешний диаметр составляет 49,5 +/-0,05 мм. Диаметр внутреннего отверстия равен 8 мм. Длина - около 60 мм.


Катушка ИЭК КУ 09-18 (24В) как источник намоточного провода.
Перед намоткой, провод необходимо хорошенько распрямить и перемотать на другую накопительную катушку, имеющую круглую форму.

Разборка динамика.

Большинство динамических головок не предназначено для их разборки и является как бы одноразовыми (неразборными, малопригодными к ремонту) компонентами акустических систем. На практике, удачно разобрать динамик типовой конструкции и собрать его заново удается часто. Основная задача заключается в размягчении клея, с помощью которого скрепляется множество составных частей динамика, и отделении их друг от друга без травмирования и деформации.



Крепежные винты динамика имеют шестигранный шлиц (фото слева) .
Сабвуфер без динамика (фото справа).


Динамик сабвуфера (до ремонта).


На динамике присутствует маркировка "10P32", наверное, указывающая на диаметр 10 дюймов и сопротивление 3,2 Ома.

Последовательность операций следующая.

Во-первых, отпаиваем гибкие плетеные проводники (тоководы) от панельки на корзине динамика.

Во-вторых, снимаем пылезащитный колпачок. Для этого, пропитываем клеевой шов ацетоном (например, шприцом с иголкой), кончиком ножа отделяем колпачок от диффузора. По результатам данной операции следует сделать вывод о качестве размягчении клея ацетоном, и необходимости в применении какого-либо другого растворителя.



Снятие пылезащитного колпачка.

В-третьих, отсоединяем верхний подвес диффузора от корзины, пропитав клеевой шов растворителем. В случае ремонта сабвуферного динамика, имеющий прочный резиновый подвес, задача существенно упрощается.


В-четвертых, очень аккуратно отделяем центрирующую шайбу нижнего подвеса диффузора от корзины динамика. Для этого, обильно пропитываем клеевой шов растворителем, ждем несколько минут, и неспешно, с помощью небольшой плоской отвертки, отделаем шайбу от корзины.


Теперь диффузор должен свободно извлечься из корзины. Отклеивать центрирующую шайбу от диффузора нет необходимости.



Диффузор имеет маркировку "YC-246A".

Оцениваем состояние электромагнитной системы динамика: катушки, постоянного магнита. В нашем случае, родная катушка SVEN-овского динамика, намотанная медным эмальпроводом круглого сечения, имела плачевный вид: почерневшая от чрезмерного нагрева эмаль, несколько отклеившихся крайних витков, катушка легко разматывается (клей полностью выгорел). Вероятнее всего, это явилось следствием выхода из строя . Вывод очевиден - необходима полная замена провода катушки.



Состояние старой звуковой катушки. Алюминиевый каркас не пострадал.

Выбор провода для намотки.

Простой способ с достаточной точностью определить необходимую длину нового провода - посчитать длину одного витка (зная его радиус), умножить на число витков в слое и на число слоев. Динамик сабвуфера SVEN имеет четырехслойную катушку с 34-мя витками в каждом слое. По измерениям, внешний диаметр сгоревшей катушки равен 53 мм, следовательно, длина одного витка (в максимуме, на поверхности катушки) равняется: 53 x 3,14 = 166,42 мм. Умножаем эту длину на общее число витков в катушке: 166,42 x 34 x 4 = 22633,12 мм. Таким образом, округлив в большую сторону (добавив небольшой запас), для перемотки катушки нам необходимо не менее 23 метров эмалированного провода.


Внешний и внутренний диаметры сгоревшей катушки равняются 53 и 50 мм соответственно (измерения примерные по причине наличия деформаций обмотки).

Диаметр провода определяется с помощью микрометра или штангенциркуля. Площадь круглого сечения вычисляется по общеизвестной формуле: S = Pi x R 2 , где R - радиус провода. Необходимо измерить диаметр провода как по меди (со снятой лаковой изоляцией), так и по изоляции (для нас важен и внешний диаметр будущей катушки). Для удаления изоляционного лака с провода, при измерении диаметра по меди, необходимо нагреть кончик провода до красна (сжечь лак) и удалить продукты сгорания растворителем. По результатам измерений, сгоревшая катушка сабвуферного динамика была намотана проводом диаметром 0,38 мм по меди (сечение 0,113 кв.мм) и 0,44 мм по лаку. Теперь предстоит весьма непростая задача - отыскать такой же, или очень близкий, провод. Если не удается купить нужный провод, можно смотать его с какого-либо электронного устройства. Например, в качестве доноров эмальпровода, хорошо зарекомендовали себя катушки . В зависимости от напряжения и типа контактора, в их катушках применяется провод разных сечений и длин.


Диаметр провода сгоревшей катушки.
По меди - 0,38 мм (фото слева); по лаку - 0,44 мм (фото справа).


Диаметр провода для новой обмотки.
По меди - 0,35 мм (фото слева); по лаку - 0,40 мм (фото справа).

Если в результате долгих поисков не удалось найти оригинальный провод, то можно использовать провод другого сечения, с пересчетом числа витков, слоев и сопротивления катушки. Нужно помнить, что меняя сечение провода, меняются и характеристики динамической головки, а так же магнитный зазор и высота намотки. Перед принятием решения о применении в намотке катушки «чужеродного» провода, нужно точно рассчитать геометрические и электрические параметры будущей катушки, спрогнозировать работу динамической головки с новыми параметрами в акустической системе.

Для перемотки катушки динамика от сабвуфера SVEN, удалось отыскать близкий по параметрам провод (диаметром 0,35 мм по меди, 0,40 - по лаку) в катушке КУ 09-18 (24В) контактора ИЭК. Длина провода в катушке контактора почти в два раза превысила необходимое значение.

Обмоточные данные (диметр провода по меди и число витков) в катушках пускателей серий ПМЕ и ПАЕ для частоты тока 50 Гц.

ПМЕ-100.
Напряжение, В 36 127 220 380 500
Диаметр провода, мм 0,38 0,2 0,15 0,11 0,1
Число витков 660 2400 4150 7170 9430
ПМЕ-200.
Напряжение, В 36 36 110 110 127 127 220 220 380 380 500
Диаметр провода, мм 0,57 0,67 0,33 0,38 0,31 0,35 0,23 0,27 0,18 0,20 0,18
Число витков 442 426 1350 1300 1560 1500 2700 2600 4660 4500 5900
Марка провода ПЭТВ ПЭВ-2 ПЭТВ ПЭВ-2 ПЭТВ ПЭВ-2 ПЭТВ ПЭВ-2 ПЭТВ ПЭВ-2 ПЭВ-2
ПАЕ величин III и IV.
Напряжение, В 36 36 110 110 127 127 220 220 380 380 500 500
Диаметр провода, мм 0,62 0,90 0,38 0,47 0,35 0,47 0,27 0,35 0,2 0,27 0,17 0,23
Число витков 350 260 1070 800 1230 920 2130 1600 3680 2760 4850 3640
Величина пускателя III IV III IV III IV III IV III IV III IV
ПАЕ величин V и VI.
Напряжение, В 36 36 110 110 127 127 220 220 380 380 500 500
Диаметр провода, мм 1,2 1,56 0,69 0,83 0,64 0,83 0,49 0,62 0,35 0,47 0,31 0,41
Число витков 198 147 605 445 700 516 1200 890 2070 1540 2730 2020
Величина пускателя V VI V VI V VI V VI V VI V VI

Изготовление намоточного станочка.

Станочек представляет собой П-образною конструкцию, имеющую ось вращения оправки (болванки) катушки динамика и ось вращения катушки с запасом намоточного провода. Для осей необходимо предусмотреть возможность регулировки усилий вращения, то есть какой-либо тормоз, для предотвращения саморазматывания провода. Так же, конструкция станочка должна иметь места для креплений обезжиривающего и клеенаносящего валиков, через которые будет проходить провод перед тем, как попадет катушку динамика. Если же ремонт динамиков не является частым занятием, то достаточно изготовить на скорую руку, показанную на рисунке ниже, конструкцию из обрезков плиты МДФ.

В нашем многосерийном макросправочнике — базе знаний, связанных с аппаратурой High End, — мы основательно погрузились в раздел «Акустические системы» и добрались до самых глубин: узлов и деталей громкоговорителя. Потихоньку разбираясь с конструкциями, материалами и технологиями, существенными для высококачественного громкоговорителя, нам пришлось обратить особое внимание на концептуальные задачи, которые стоят перед разработчиками акустических систем высокого класса.

ПОЭТАПНО

На каждом этапе преобразования звукового сигнала система воспроизведения High End ставит задачу обеспечения максимальной линейности. В громкоговорителе сигнал поступает на вход в виде (физическая форма) напряжения от усилителя, а на выходе подвижная система взаимодействует с окружающей средой, порождая распределение звукового давления в ней (вторичное звуковое поле, первичное было в процессе записи).

Задача линейности выполнена, если изменение звукового давления точно следует за изменениями входного электрического сигнала. Мы узнали, что магнитная цепь с мощным и однородным магнитным полем в воздушном зазоре, в котором размещена звуковая катушка, — это необходимое (и дорогостоящее) условие линейности преобразования. Переходя к подвижной системе, мы обозначили условием линейности ее упругий подвес, обеспечивающий ровное осевое движение звуковой катушки и излучателя без крутильных колебаний и перекосов.

Однако заметим, что наша подвижная система, очевидно, не захочет строго следовать за изменениями тока в катушке. Упругий подвес явно будет иметь пределы растяжимости и перестанет линейно увеличивать смещение диффузора-излучателя в соответствии с приложенным напряжением (представьте себе пружину и прилагаемую к ней силу: точка равновесия не за горами). Протекание тока по обмотке звуковой катушки вызывает ее нагрев, а значит, изменяет ее сопротивление, что, в свою очередь, приводит к уменьшению силы тока в катушке, ориентированной в магнитном поле, и, следовательно, к потере линейности между приложенным напряжением от усилителя и движением катушки и всей подвижной системы... И так далее (а мы даже не рассматриваем пока громкоговоритель в корпусе, который нагружен на воздушную пружину в нем, имеющую собственные нелинейности).

Иначе говоря, высококачественный динамик обязан отвечать набору сложных и противоречивых требований. Требования к частностям (катушке, магниту, диффузору, подвесу) должны складываться в требования к целому — всей системе.

ЗВУКОВАЯ КАТУШКА КАК ТАКОВАЯ

Мы узнали, что самой дорогостоящей частью динамика за явным преимуществом является магнит. Без мощного магнита можно забыть о неискаженном воспроизведении музыки на необходимых уровнях звукового давления. Но насколько велика роль звуковой катушки?

КПД электродинамического громкоговорителя крайне мал: от 1 до примерно 5%. Иначе говоря, большая часть закачиваемой усилителем электрической мощности утрачивается на пути к акустическому выходу в виде звукового давления. И основной канал потерь — это тепло. А основной «спиралью» нагревательного элемента является именно обмотка звуковой катушки. При температурах под 180 °С все ее элементы подвергаются жестоким испытаниям. Существует немалая опасность, что перестанет держать клей, с каркаса сползут витки, сам он подгорит или подплавится, исказится его форма, в результате чего обмотка станет цеплять стенки зазора.

МАТЕРИАЛИЗМ

Теперь давайте быстренько оглядим современные материалы, которые позволяют инженерам сохранить функции звуковой катушки в условиях высоких температур.

Наглядно-механически звуковая катушка, например, НЧ-громкоговорителя состоит из следующих частей:
— каркаса;
— витков намотки;
— дополнительного слоя другого материала поверх каркаса — его удобно приклеивать к мембране (диффузору), то есть излучающей поверхности.

Когда-то давно основным материалом каркаса катушки была кабельная бумага (бумага с повышенной электропроводностью). Ее пористая структура отлично усваивала клей, что гарантировало надежность крепления витков при намотке. Для недорогих и не очень мощных динамиков бумажный каркас — единственный конструктивный вариант. Но его недостатки очевидны. При температуре выше 100 °С бумага становится очень хрупкой — это раз. Повышенная влажность делает ее непрочной и тяжелой — это два.

Заманчиво было бы иметь металлическим каркас: это даст и хороший теплоотвод, и достаточную теплостойкость. Алюминиевые каркасы в общем-то и находят применение — но в случаях, когда мощность важнее качества, поскольку в алюминиевой (дюралюминиевой) или медной ленте с малым электрическим сопротивлением отлично разгоняются вихревые токи (токи Фуко), являющиеся источником значительных искажении полезного сигнала. К тому же металлическая лента тяжелее бумажной или пластиковой, что нехорошо вследствие приближения механического резонанса к звуковому диапазону и из-за падения КПД. Каркасы из стекловолокна прочны и легки, но к ним непросто подобрать надежный клей.

Так что королем материалов ныне является синтетика. А точнее, термоустойчивая полиимидная пленка. Химический концерн DuPont выпускает самую популярную (и дорогую) ее разновидность — каптон. Есть и другие: номекс, апикаль и масса неназванных пленок китайского производства, которые выглядят очень похоже на каптон.

Провод, которым мотают витки (медный, алюминиевый омедненный и пресловутый серебряный), необходимо покрывать лаковой изоляцией, иначе витки закоротит. Металл и покрывающие его современные лаки хорошо выдерживают нагрев, поэтому к материалам провода нет особых требований. Инженерам может потребоваться разве что более высокая плотность намотки для повышения КПД. С этой целью применяют так называемый плоский провод (получаемый раскатыванием круглого) или шестигранный.

В любом случае на каркас мотается несколько слоев провода: обычно их два, но бывает и больше, особенно в звуковых катушках динамиков для сабвуфера.

Кроме повышения теплостойкости материалов существуют, конечно, и другие способы облегчить тепловой режим звуковой катушки. Надежнее иметь катушку более крупного диаметра (но не слишком, иначе теряется связь катушки с центром излучающей мембраны) и располагать ее в зазоре по принципу underhang, то есть когда высота намотки меньше высоты зазора. Можно залить в зазор специальную суспензию-невыливайку, так называемую магнитную жидкость, которая радикально улучшает теплоотвод от провода, особенно в узких зазорах, характерных для ВЧ-динамиков.

СУХАЯ И МОКРАЯ НАМОТКА

На завод каркасы звуковой катушки и моточный провод приходят обычно в подготовленном виде. Каркасы представляют собой, например, рулоны каптоновой ленты, которые покрыты с одной стороны тонким слоем клея, подсушенного при относительно низкой температуре и еще не полимеризованного. Провод также уже покрыт термопластичным клеем.

Для массового производства катушек применяется «сухая» намотка, общепринятая на азиатских фабриках. Моточный станок специальным растворителем размачивает клей на проводе, а тот в свою очередь размягчает клей на каркасе. После намотки катушка отправляется в термостат для запекания клея. Или по ней пропускается ток — термопластичный клей схватывается, и катушка готова.

Преимущество такого производства — скорость. Но есть и недостаток: при высокой температуре клей может размягчиться снова, и витки катушки сползут с каркаса.

В Европе принят метод, когда провод перед намоткой проезжает через ванночку с жидким клеем или через горлышко дозатора клея. Чтобы зафиксировать толщину клеящего слоя (иначе катушка намотается вкривь и вкось), провод пускают еще и через экструзионную фильеру (или через фетровую подушечку, пропитанную клеем). Такой способ надежнее, но требует от оператора стайка более высокой квалификации.

Толщина ленты для каркаса звуковой катушки стандартизована и обычно выбирается из ряда 0,08, 0,1 и 0,13 мм. Толщина клеевого слоя заказывается у производителя отдельно. Если вы заказали у DuPont кантон (а он выпускается аж с конца 1970-х), то получите коричневую легкую ленту: обыкновенную (HN) или с улучшенной адгезией (HPP-ST). Такая лента сохраняет свои свойства примерно до 240 °С.

Если же нужна более высокая теплопроводность, то на этот случай существует черный каптон МТБ, который обеспечивает еще и демпфирование резонансов катушки.

Понятно, что каптон — удовольствие недешевое. Отсюда упомянутые выше варианты: апикаль (Kaneka Texas), упилекс (Ube Industries), китайские полиимидные пленки. Все они имеют схожие свойства, но менее термоустойчивы.
Номекс — другой материал, выпускаемый DuPont, — часто идет на изготовление каркасов звуковых катушек. Он представляет собой специальную арамидную пленку, нечто вроде значительно усиленного нейлона. Номекс дает хорошее демпфирование внутренних резонансов и поэтому используется даже как материал диффузора. Есть мнение, что номекс «звучит» лучше других синтетических материалов, но он не любит запекания клеев и склонен к внезапным искривлениям, поэтому чаще применяется для катушек небольшого диаметра (ВЧ).

Арамидоволоконная нетканая пленка, похожая на номекс, выпускается также другими производителями, например Teijin (японский конекс) или Bondex Inc. (бондекс). Процесс ее производства представляет собой захватывающее разум гидроплетение волокна с помощью водометов высокого давления...

Для удобства приклеивания катушки к диффузору над витками поверх выводов наклеивают полоску материала. Это повышает прочность каркаса выше витков провода и позволяет аккуратно расположить выводы начала и конца обмотки. В случае алюминиевого каркаса дополнительный слой также поможет защитить место склейки и диффузор от перегрева.

Напомним, что приклеить, скажем, каптон (каркас) к полипропилену (диффузор) вовсе непросто, и прокладка пористого материала дает возможность укрепить соединение.

Итак, попятно: инженеру, проектирующему новый динамик класса High End, есть с чем работать. И снова повторим: пока материалы, конструкция и технологии каждого узла не сыграли на конечный результат, на сумму частей, они бесполезны, и не будет никакой разницы между серебряным и алюминиевым проводом, каркасом из каптона или просто из бумаги...

По материалам издания АудиоМагазин
текст Сергей Таранов

Давайте будем разбираться, как влияют материалы, из которых изготовлена катушка, на ее конкретные качества. Для начала мы определим «идеал», попробуем охарактеризовать наилучшее состояние, а затем посмотрим, что имеем в современной практике.

1. Итак, идеальный каркас катушки должен...

… быть прочным, чтобы без труда переносить огромные нагрузки.

… быть выполнен точно, чтобы помещаться в самых плотных зазорах.

… быть максимально легким, чтобы обеспечивать максимальную эффективность.

… обладать максимальной магнитной проницаемостью, чтобы не мешать работе полей.

… обладать максимальной магнитной проницаемостью, чтобы влиять на форму полей.

… быстро отводить неограниченное количество тепла, чтобы не дать намотке возможность резко нагреваться.

… быстро и эффективно рассеивать максимум тепла, чтобы охлаждать намотку при длительной работе.

… иметь достойную адгезию.

… стоить дешево, по понятным причинам.

Как видим, в этой простоте все очень сложно, многие требования к каркасу противоречивы, многие вообще невозможно достичь, не «убив» все остальное. Вот почему существует множество различных материалов, из которых каркасы изготавливают сегодня.

Самый распространенный материал для производства каркасов –алюминий. Достаточно прочен и легок, технологии точного литья существуют и дешевы, обеспечивает эффективный теплоотвод, с магнитной проницаемостью все хуже.


Все еще хуже с адгезией, потому, для упрощения и повышения качества сборки, для улучшения многих других свойств, на алюминий наносят различные покрытия – от анодирования и NOMEX до углеродных волокон, что на порядок увеличивает конечную стоимость.

Медь так же применяется в производстве каркасов. Медный каркас очень эффективно отводит тепло и обладает лучшей (в сравнении с алюминием) адгезией, приемлемой ценой. Из за проблем с весом и низкой магнитной проницаемостью, медные каркасы практически не применяют.

Титан – одни из самых эффективных каркасов производятся из этого металла. Такие каркасы прочные и легкие, умеренно хорошо отводят тепло, обладают высокой магнитной проницаемостью. Как в случае с другими металлами, требуется дополнительная модификация каркаса. Вместе с чем, широкому распространению мешает высокая сложность обработки и крайне высокая итоговая цена.

Сталь – своеобразный антипод титана. Дешево, но почти все параметры средние или ниже среднего.

Текстолит – еще один дешевый материал, обладающий целым комплексом достоинств, и недостатков так же. Магнитная проницаемость пластиков очень высока, ввиду чего, эффективность динамиков с такими каркасами очень высока. Средний вес, средняя прочность, высокая адгезия. Однако, проблемы с теплоотводом существенно ограничивают возможности применения таких каркасов, потому, они с успехом применяются для маломощных изделий.

Каптон – сравнительно новый материал, его стоимость выше текстолита, а вес – ниже. Он приобрел все достоинства стеклотектолитовых каркасов, но не избавился от их недостатков.

Композитные каркасы – наиболее актуальное направление в промышленном производстве каркасов для катушек. Производители используют разные материалы в разных сочетаниях, чтобы добиваться высоких, компромиссных, характеристик. Различают простые композиты, например, алюминий+бакелитовая бумага, и сложные композиты, в состав которых входит множество элементов. С увеличением сложности каркасов, увеличивается и стоимость изготовления, и, к сожалению, реальные положительные качества каркасов растут не пропорционально цене.

Нано-материалы и нано-технологии – об этом невозможно не упомянуть. Мы стоим на пороге изобретений иного, гораздо более высокого уровня. Вероятно, в ближайшем будущем появится материал, который будет способен заменить все вышеперечисленные.

2. Идеальная намотка звуковой катушки отвечает следующим требованиям...

Минимальный вес.

Максимальная и стабильная токопроводность.

Максимальная термостойкость.

Максимальная способность рассеивать тепло.

Стойкая изоляция.

В качестве основы для изготовления проводников широко распространены два материала – медь и алюминий. Споры по этому поводу не утихают до сих пор, так давайте раз и навсегда поставим точку в этом вопросе.

Раунд 1. Вес. Рассудим, опираясь на плотность - 8,93 г\кв.см у меди против 2,7 у алюминия. Разница в 3.3 раза в пользу алюминия.

Раунд 2. Электрическая проводимость. 58,1млн См\м у меди против 27,0млн у алюминия. Разница в 2,2 раза в пользу меди.

Раунд 3. Теплоотвод. 401 Вт\(м*К) у меди против 220 у алюминия. Разница в 1,8 раза в пользу меди.

В финале у нас нет победителя, результаты по сумме достоинств практически равные, но они не равны ввиду разного объема, который займут проводники при равном весе. Так катушки с большой высотой намотки выйдут эффективнее из алюминия, а с малой – из меди. Тут кроется основное «Но», определяющее выбор. Как известно, увеличение хода без потерь не происходит бесплатно, потребуется увеличивать и постоянный магнит, как обычно, несоразмерно. Ввиду этого фактора, будет различаться и характер использования конечных динамиков – качество или громкость.

Финальный раунд сыгран в ничью, но это только один бой, который не определяет исход войны. Исход войны определит изоляционный лак, которым покрыт проводник, и соединительный лак, который помогает намотке надежно держаться на каркасе.

Электро-изоляционные лаки образуют пленку на проводнике и отличаются стойкостью на пробой и термостойкостью – от этого зависит и вес проводника, и его характеристики. Керамика – самый надежный изолятор, но существенно увеличивает вес и цену намотки. Акриловые лаки проще, но теряют свойства даже при сравнительно небольшом нагреве. Так изоляционный лак выбирают в качестве некоего среднего варианта, чтобы обеспечить умеренный вес и достаточно надежную изоляцию, но требуемая термостойкость влияет на цену, так или иначе.

Клеящий лак отличается термостойкостью, он должен не просто надежно держать обмотку, но и не должен терять своих свойств с нагревом. У разных производителей он может быть разным, но разница в цене, как и в случае с изоляционным лаком, в основном, заключается в дороговизне обработки. Так, лаки воздушного отверждения требуют только нанесения и времени на сушку, а термоотверждаемые лаки требуют значительного и длительного нагрева. Чем выше термостойкость требуется, тем выше нагрев для отверждения лака, тем выше конечная стоимость изделия. Цвет лака, в зависимости от нагрева для отверждения или его отсутствия, изменяется от однородного светлого с применением воздушноотверждаемых лаков, и до темно-черных неоднородных тонов намотки, подвергнутой серьезному нагреву для отверждения высококачественного лака и имеющей максимальную термостойкость.

Таким образом, именно качество лака определяет реальную разницу между различными вариантами намотки. Ввиду использования разных по качеству и методу отверждения лаков, стоимость намотки может отличаться в несколько раз, как будут отличаться и качества звуковой катушки. К сожалению, как нигде в природе, вы и тут не увидите роста качества изделия, соразмерного росту цены.

Подведем итоги второй части. Как обычно, итоги простые и краткие. В зависимости от материалов, применяемых для изготовления звуковой катушки, можно судить о "характере" динамика. Еще один важный урок, который следует усвоить в очередной раз - тут нет чудес, «бесплатным сыр бывает только в мышеловке». Обо всем этом вы и так всегда догадывались, но теперь имеете лишь чуть больше знаний.