Меню
Бесплатно
Главная  /  Устройства  /  Порядок расчета топочных камер. Топочная камера котла

Порядок расчета топочных камер. Топочная камера котла

Расчет топочной камеры может быть выполненным поверочным или конструктивным методом.

При поверочном расчете должны быть известны конструктивные данные топки. При этом расчет сводится к определению температуры газов на выходе из топки θ” Т. Если в результате расчета θ” Т окажется значительно выше или ниже допустимой, то её необходимо изменить до рекомендуемой за счет уменьшения или увеличения лучевоспринимающих поверхностей нагрева топки Н Л.

При конструкторском расчете топки используется рекомендуемая температура θ”, исключающая шлакование последующих поверхностей нагрева. При этом определяется необходимая лучевоспринимающая поверхность нагрева топки Н Л, а так же площадь стен F СТ, на которых должны быть возмещены экраны и горелки.

Для выполнения теплового расчета топки составляет её эскиз. Объём топочной камеры V Т; поверхность стен, ограничивающих объём F СТ; площадь колосниковой решетки R; эффективную лучевоспринимающую поверхность нагрева Н Л; степень экранирования Х определяют в соответствии со схемами рис.1. Границами активного

топочного объема V Т являются стены топочной камеры, а при наличии экранов – осевые плоскости экранных труб. В выходном сечении её объем ограничивается поверхностью, проходящей через оси первого котельного пучка или фестона. Границей объема нижней части топки являются пол. При наличии холодной воронки за нижнюю границу объёма топки условно принимается горизонтальная плоскость, отделяющая половину высоты холодной воронки.

Полная поверхность стен топки F ст вычисляется суммированием всех боковых поверхностей, ограничивающих объем топочной камеры и камеры сгорания.

Площадь колосниковой решетки R определяется по чертежам или по типоразмерам соответствующих топочных устройств.

Задаемся

t΄ вых =1000°C.

Рисунок 1. Эскиз топки

Площадь каждой стенки топки, м 2

Полная поверхность стен топки F ст, м 2

Лучевоспринимающая поверхность нагрева топки Н л, м 2 , рассчитыва­ется по формуле

где F пл X - лучевоспринимающая поверхность экранов стены, м 2 ; F пл =bl - площадь стены, занятой экранами. Определяется как произведение рас­стояния между осями крайних труб данного экрана b , м, на освещенную длину экранных труб l , м. Величина l определяется в соответствии со схемами рис.1 .

X - угловой коэффициент облучения экрана, зависящий от относительного шага экранных труб S/d и расстояния от оси экранных труб до стенки топки (номограмма 1 ).

Принимаем Х=0,86 при S/d=80/60=1,33

Степень экранирования камерной топки

Эффективная толщина излучающего слоя топки, м

Передача тепла в топки от продуктов сгорания к рабочему телу происходит в основном за счет излучения газов. Целью расчета теплообмена в топке является определение температуры газов на выходе из топки υ” т по номограмме. При этом необходимо предварительно определить следующие величины:

М, а Ф, В Р ×Q Т /F СТ, θ теор, Ψ

Параметр М зависит от относительного положения максимальной температуры пламени по высоте топки Х Т.

Для камерных топок при горизонтальном расположении осей горелок и верхнем отводе газов из топки:

Х Т =h Г /h Т =1/3

где h Г – высота расположения осей горелок от пола топки или от середины холодной воронки; h Т - общая высота топки от пола или середины холодной воронки до середины выходного окна топки или ширм при полном заполнении ими верхней части топки.

При сжигании мазута:

М=0.54-0.2Х Т =0,54-0,2·1/3=0,5

Эффективная степень черноты факела а Ф зависит от рода топлива и условий его сжигания.

При сжигании жидкого топлива эффективная степень черноты факела:

a Ф =m×а св +(1-m)×а г =0,55·0,64+(1-0,55)·0,27=0,473

где m=0,55 – коэффициент усреднения, зависящий от теплового напряжения топочного объёма; q V – удельное тепловыделение на единицу объёма топочной камеры.

В промежуточных значениях q V величина m определяется линейной интерполяцией.

а г, а св – степень черноты, какой обладал бы факел при заполнении всей топки соответственно только светящимся пламенем или только несветящимися трехатомными газами. Величины а св и а г определяются по формулам

а св =1-е -(Кг× Rn +Кс)Р S =1-е -(0.4·0.282+0.25)·1·2,8 =0.64

а г =1-е -Кг× Rn ×Р S =1-е -0,4·0,282·1·2,8 =0,27

где е – основание натуральных логарифмов; к r – коэффициент ослабления лучей трёхатомными газами, определяется по номограмме с учетом температуры на выходе из топки, способа размола и вида сжигания; r n =r RO 2 +r H 2 O – суммарная объёмная доля трёхатомных газов (определяется по табл.1.2).

Коэффициент ослабления лучей трехатомными газами:

К r =0.45(по номограмме 3)

Коэффициент ослабления лучей сажистыми частицами, 1/м 2 ×кгс/см 2:

0,03·(2-1,1)(1,6·1050/1000-0,5)·83/10,4=0,25

где а т – коэффициент избытка воздуха на выходе из топки;

С Р и Н Р – содержание углерода и водорода в рабочем топливе,%.

Для природного газа С Р /Н Р =0.12∑m×C m ×H n /n.

Р – давление в топке, кгс/см 2 ; для котлов без наддува Р=1;

S – эффективная толщина излучающего слоя, м.

При сжигании твердых топлив степень черноты факела а Ф находят по номограмме, определив суммарную оптическую величину К×Р×S,

где Р – абсолютное давление (в топках с уравновешенной тягой Р=1 кгс/см 2); S – толщина излучающего слоя топки, м.

Тепловыделение в топки на 1 м 2 ограждающих ее поверхностей нагрева, ккал/м 2 ч:

q v =

Полезное тепловыделение в топке на 1 кг сжигаемого топлива, нм 3:

где Q в – тепло, вносимое воздухом в топку (при наличии воздухоподогревателя) , ккал/кг:

Q B =(a т -∆a т -∆a пп)×I 0 в +(∆a т +∆a пп)×I 0 хв =

=(1,1-0,1)·770+0,1·150=785

где ∆а т – величина присоса в топке;

а пп – величина присоса в пылеприготовительной системе (выбирают по таблице). ∆а пп = 0, т.к. мазут.

Энтальпии теоретически необходимого количества воздуха Ј 0 г.в =848,3 ккал/кг при температуре за воздухоподогревателем (предварительно принятой) и холодного воздуха Ј 0 х.в. принимают по таблице 1.3.

Температура горячего воздуха на выходе из воздухоподогревателя выбирается для мазута – по таблице 3, t гор. в-ха =250 ○ С.

Теоретическую температуру горения υ теор =1970°C определяют по таблице 1.3 по найденному значению Q т.

Коэффициент тепловой эффективности экранов:

где Х – степень экранирования топки (определена в конструктивных характеристиках); ζ – условный коэффициент загрязнения экранов.

Условный коэффициент загрязнения экранов ζ для мазута равен 0,55 с открытыми гладкотрубными экранами.

Определив М, а Ф, В Р ×Q T /F CT ,υ теор, Ψ, находят температуру газов на выходе из топки υ˝ т по номограмме 6.

При расхождениях в значениях υ” т менее чем на 50 0 С определенную по номограмме температуру газов на выходе из топки принимают как окончательную. С учетом сокращений в вычислениях принимаем υ" т =1000°C.

Тепло, переданное в топке излучением, ккал/кг:

где φ – коэффициент сохранения тепла (из теплового баланса).

Энтальпию газов на выходе из топки Ј” Т находят по таблице 1.3 при а т и υ” т видимое тепловое напряжение топочного объёма, ккал/м 3 ч.

Изобретение относится к конструкции топочных камер котлов при сжигании жидкого и газообразного топлива. Конструкция состоит из внешнего ограждения, установленных внутри топочного объема уголковых или плоских стабилизаторов пламени. Внутри зон стабилизации устанавливаются трубы подвода вторичного/третичного воздуха. Вдоль внешнего ограждения установлены отражатели. Таким образом в процесс организации сжигания топлива вовлечены дополнительные поверхности нагрева, устанавливаемые внутри топки. Они используются не только в качестве поверхностей охлаждения, но и в качестве элементов, организующих сам процесс горения. Изобретение позволяет уменьшить габариты топочной камеры. 3 з.п. ф-лы, 3 ил.

Изобретение относится к конструкции топочных камер котлов при сжигании жидкого и газообразного топлива. Известны конструкции топочных камер котлов, выполненных из ограждающих и ширмовых поверхностей нагрева (2). Ширмовые или двухсветные экраны вводятся в объем топочной камеры, увеличивая теплоотвод на единицу длины или высоты топочной камеры, то есть указанные поверхности нагрева выполняют одну функцию - отвод тепла. Как известно, топочная камера современного котла выполняет две основные функции: сжигание топлива и охлаждение газов до определенной температуры на выходе из топки. Задачей изобретения является снижение объема и уменьшение габаритов топочной камеры путем вовлечения в процесс организации сжигания топлива устанавливаемых внутри топки дополнительных поверхностей нагрева, т.е. использование их не только в качестве поверхностей охлаждения, но и в качестве элементов, организующих сам процесс горения, т. е. выполняющих не одну, а несколько функций. Указанная задача достигается тем, что у топочной камеры для сжигания жидкого и газообразного топлива, состоящей из ограждающих и ширмовых (двухсветных) поверхностей нагрева и горелочного устройства, ширмовые поверхности нагрева располагают в виде уголковых или плоских стабилизаторов пламени, часть плоских стабилизаторов устанавливают под углом к потоку, в зоне стабилизаторов пламени устанавливают воздуховоды. Внутренняя поверхность стабилизаторов утеплена путем, например, набивки торкрета на шипы. Применение уголковых и плоских стабилизаторов пламени широко применяется в камерах сгорания газотурбинных двигателей (1). Конструкция упомянутых стабилизаторов выполняет функцию организации процесса горения, но не участвует в теплоотводе от газов. На фиг. 1 показан поперечный разрез в плане топочной камеры, на фиг. 2 - сечение А-А на фиг. 1, на фиг. 3 - узел Б на фиг. 1. Конструкция состоит из внешнего ограждения 1, установленных внутри топочного объема уголковых 2 или плоских 3 стабилизаторов пламени. Внутри зон стабилизации устанавливаются трубы подвода вторичного (третичного) воздуха 4. Вдоль внешнего ограждения 1 установлены отражатели потока 5. Работает конструкция следующим образом. Топливо на входе в камеру предварительно смешивается с первичным воздухом при избытке последнего меньше 1. Вторичный и третичный воздух для дожигания бедной смеси подводят далее по ходу газа непосредственно в зоны стабилизации пламени, доводя избыток воздуха до расчетного по условиям минимума химического и механического недожога. Сжигание топлива осуществляется по тракту с интенсивным отводом тепла поверхностями нагрева, которыми являются и сами стабилизаторы. Отвод тепла при сжигании эквивалентен, по эффекту снижения температуры горения, осуществлению рециркуляции охлажденного газа в ядро факела, что, как известно, способствует уменьшению образования окислов азота. По ходу движения горящей смеси при одновременном отводе тепла температура потока снижается, уменьшается при этом и объем газа. Для поддержания характера стабилизации на прежнем уровне угол раскрытия уголков целесообразно увеличивать 2 > 1 ; в пределе уголковый стабилизатор выраждается (при малых скоростях потока) в поперечно установленную пластину 3. На выходе потока пластины целесообразно ориентировать по повороту газа. Для отражения газа, двигающегося вдоль стен ограждения, установлены отражатели 5. Все вышесказанное позволяет организовать процесс сгорания топлива и его охлаждения в единый, что позволяет уменьшить габариты топочной камеры, особенно в длину.

Формула изобретения

1. Топочная камера котла для сжигания жидкого и газообразного топлива, состоящая из ограждающих и ширмовых поверхностей нагрева и горелочного устройства, отличающаяся тем, что ширмовые поверхности нагрева располагают в виде уголковых или плоских стабилизаторов пламени. 2. Камера по п. 1, отличающаяся тем, что часть плоских стабилизаторов устанавливают под углом к потолку. 3. Камера по п.1, отличающаяся тем, что в зоне стабилизаторов пламени устанавливают воздуховоды. 4. Камера по п.1, отличающаяся тем, что внутренняя поверхность стабилизаторов утеплена путем, например, набивки торкрета на шипы.

Классификация

Технологии сжигания органических топлив

По способу сжигания топлива:

  • слоевые;
  • камерные.

Слоевые топки в свою очередь классифицируют:

  • По расположению относительно обмуровки котла:
    • внутренние;
    • выносные.
  • По расположению колосниковых решеток:
    • с горизонтальными решетками;
    • с наклонными решетками.
  • По способу подачи топлива и организации обслуживания:
    • ручные;
    • полумеханические;
    • механизированные.
  • По характеру организации слоя топлива на решетке:
    • с неподвижной колосниковой решеткой топлива ;
    • с неподвижной колосниковой решеткой и перемещающимся по ней слоем топлива;
    • с движущейся колосниковой решеткой, перемещающей лежащий на ней слой топлива (перемещение слоя топлива вместе с колосниковой решеткой).

Камерные топки разделяют:

  • По способу удаления шлака:
    • с твердым шлакоудалением;
    • с жидким шлакоудалением:
      • однокамерные;
      • двухкамерные.

Слоевая топка

Слоевая топка

Топки, в которых производится слоевое сжигание кускового твердого топлива , называются слоевыми. Эта топка состоит из колосниковой решетки , поддерживающей слой кускового топлива, и топочного пространства, в котором сгорают горючие летучие вещества. Каждая топка предназначена для сжигания определенного вида топлива . Конструкции топок разнообразны, и каждая из них соответствует определенному способу сжигания. От размеров и конструкции топки зависят производительность и экономичность котельной установки .

Слоевые топки по характеру организации слоя топлива на решетке разделяются на три класса:

  • С неподвижной колосниковой решеткой и неподвижно лежащим на ней слоем топлива ;
  • С неподвижной колосниковой решеткой и перемещающимся по ней слоем топлива;
  • С движущейся колосниковой решеткой, перемещающей лежащий на ней слой топлива (перемещение слоя топлива вместе с колосниковой решеткой).

В зависимости от степени механизации подачи топлива и удаления шлака слоевые топки разделяются на:

  • топки с ручным обслуживанием (ручные топки);
  • полумеханические;
  • полностью механизированные;

Камерная топка

Камерная топка

Камерные топки применяют для сжигания твердого, жидкого и газообразного топлива. При этом твердое топливо должно быть предварительно размолото в тонкий порошок в специальных пылеприготовительньгх установках - углеразмольных мельницах, а жидкое топливо - распылено на очень мелкие капли в мазутных форсунках. Газообразное топливо не требует предварительной подготовки.

Характеристика топки

Тепловые характеристики топки

Количество топлива, которое можно сжечь с минимальными потерями в данной топке для получения необходимого количества тепла, определяется размерами и типом топочного устройства, а также видом топлива и способом его сжигания. К качественным показателям работы топочного устройства относится величина потерь тепла вследствие химической неполноты сгорания и механического недожога . Численное значение этих потерь для различных топочных устройств различно; оно также зависит от вида топлива и способа его сжигания. Так, для камерных топок величина колеблется от 0,5 до 1,5%, для слоевых - от 2 до 5%(потери тепла); при камерном сжигании топлива составляет 1-6%, при слоевом 6-14%(недожог).

Конструктивные характеристики топки

Основными конструктивными показателями топки являются:

  • Объем топочной камеры (м 3);
  • Площадь стен топки (м 2);
  • Площадь, занимаемая лучевоспинимающей поверхностью (м 2);
  • Площадь променесприймальнои поверхности (м 2);
  • Степень экранирования стен топки;
  • Коэффициент тепловой эффективности топки.

Теплообмен в топке

В топке одновременно происходят горение топлива и сложный радиационный и конвективный теплообмен между заполняющей ее средой и поверхностями нагрева .

Источниками излучения в топках при слоевом сжигании топлива являются поверхность раскаленного слоя топлива, пламя горения летучих веществ, выделившихся из топлива, и трехатомные продукты сгорания С0 2 , S0 2 и Н 2 О.

При факельном сжигании пыли твердого топлива и мазута источниками излучения являются центры пламени, образующиеся вблизи поверхности частиц топлива от горения летучих, распределенных в факеле, раскаленные частицы кокса и золы, а также трехатомные продукты сгорания. При горении в факеле распыленного жидкого топлива излучение частиц топлива незначительно.

При сжигании газа источниками излучения являются объем его горящего факела и трехатомные продукты сгорания. При этом интенсивность излучения факела зависит от состава газа и условий протекания процесса горения.

Наиболее интенсивно излучает теплоту пламя горящих летучих веществ, выделяющихся при горении твердого и жидкого топлива. Менее интенсивно излучение горящего кокса и раскаленных частиц золы, наиболее слабым оказывается излучение трехатомных газов. Двухатомные газы практически не излучают теплоты. По интенсивности излучения в видимой области спектра различают:

  • светящийся
  • полусветящийся
  • несветящийся факелы.

Излучение светящегося и полусветящегося факела определяется наличием твердых частиц-коксовых, сажистых и золовых в потоке продуктов сгорания . Излучение не-светящегося факела - излучением трехатомных газов. Интенсивность излучения твердых частиц зависит от их размера и концентрации в топочном объеме. По удельной интенсивности излучения коксовые частицы приближаются к абсолютно черному телу, но при сжигании пыли твердого топлива их концентрация в факеле мала (примерно 0,1 кг/м 3) и поэтому излучение коксовых частиц на экраны топки составляет 25-30 % суммарного излучения топочной среды. Золовые частицы заполняют весь топочный объем, концентрация их зависит от зольности топлива. Тепловое излучение золовых частиц в факельных топках составляет 40-60 % суммарного излучения топочной среды. Сажистые частицы образуются при сжигании мазута и природного газа. В ядре факела они имеют высокую концентрацию и обладают большой излучательной способностью. Излу-чение трехатомных газов, заполняющих объем топочной камеры, определяется их концентрацией и толщиной объ¬ема излучения.

Доля излучения трехатомных газов составляет 20-30 % суммарного излучения. В газомазутных топках условно разделяют длину факела на две части:

  • светящуюся
  • несветящуюся

Интенсивность излучения ядра факела мазута в 2-3 раза выше, чем ядра факела при сжигании пыли твердого топлива. Тепловосприятие экранов топки определяется интенсивностью излучения топочной среды и тепловой эффективностью экранов. Увеличение интенсивности излучения среды топки повышает падающий на экраны тепловой поток. Снижение тепловой эффективности экранов уменьшает их тепловосприятие.

Литература

  • Киселев Н.А. Котельные установки. - Москва: Высшая школа, 1979. - 270 с.
  • Сидельковский Л.Н., Юренев В.Н. Котельные установки промышленнх предприятий. - Москва: Энергия, Энергоотомиздат, 1988. - 528 с. - 35000 экз. -

При проектировании и эксплуатации котельных установок чаще всего выполняется порядок расчета топочных камер. Конструктивный порядок расчета топочных камер производится только при разработке новых агрегатов конструкторскими бюро заводов-изготовителей или при реконструкции топочных камер существующих котлоагрегатов.

При выполнении поверочного расчета топки известны: объем топочной камеры, степень ее экранирования и площадь лучевоспринимающих поверхностей нагрева, а также конструктивные характеристики труб экранных и конвективных поверхностей нагрева (диаметр труб, расстояние между осями труб S 1 и между рядами S 2).

Порядок расчета топочных камер определяет: температуру продуктов сгорания на выходе из топочной камеры, удельные нагрузки колосниковой решетки и топочного объема. Полученные значения сравниваются с допустимыми, рекомендуемыми в «Нормативном методе».

Если температура продуктов сгорания на выходе из топочной камеры окажется выше допустимой по условиям шлакования конвективных поверхностей нагрева, то необходимо увеличить площадь экранных поверхностей нагрева, что может быть осуществлено только реконструкцией топки. Если удельные нагрузки колосниковой решетки или топочного объема окажутся выше допустимых, это приведет к увеличению потерь теплоты от химической и механической неполноты сгорания по сравне-нию с потерями, приведенными в «Нормативном методе».

Поверочный порядок расчета топочных камер однокамерных топок производится в следующем порядке расчета топочных камер (п. 1 -14).

1.По чертежу котельного агрегата составляется эскиз топки, определяется объем топочной камеры и площадь поверхности стен топки. Объем топочной камеры складывается из объема верхней, средней (призматической) и нижней частей топки. Для определения активного объема топки ее следует разбить на ряд элементарных геометрических фигур в соответствии со схемами, показанными на рис. 5-41.

Верхняя часть объема топки ограничивается потолочным перекрытием и выходным окном, перекрытым фестоном или первым рядом труб конвективной поверхности. При определении объема верхней части топки за его границы принимают потолочное перекрытие и плоскость, проходящую через оси первого ряда труб фестона или ось конвективной поверхности нагрева в выходном окне топки. Границами средней (призматической) части объема топки являются осевые плоскости экранных труб или стен топочной камеры.

Нижняя часть камерных топок ограничивается подом или холодной воронкой, а слоевых - колосниковой решеткой со слоем топлива. За границы нижней части объема камерных топок принимается под или условная горизонтальная плоскость, проходящая посередине высоты холодной воронки. За границы объема слоевых топок с механическими забрасывателями принимаются плоскость колосниковой решетки и вертикальная плоскость, проходящая через концы колосников, скребки шлакоснимателя. В топках с цепными механическими решетками из этого объема исключается объем слоя топлива и шлака, находящийся на решетке. Средняя толщина слоя топлива и шлака принимается равной для каменных углей 150-200 мм, для бурых углей - 300 мм, для древесной щепы - 500 мм.

Полная поверхность стен топки (F ст) вычисляется по размерам поверхностей, ограничивающих объем топочной камеры, как показано штриховкой в одну линию на рис. 5-41. Для этого все поверхности, ограничивающие объем топки, разбиваются на элементарные геометрически фигуры.

2. Предварительно задаются температурой продуктов сгорания на выходе из топочной камеры. Для промышленных и водогрейных котлов температура продуктов сгорания на выходе из топочной камеры ориентировочно принимается для твердого топлива на 60 °С меньшей температуры начала деформации золы, для жидкого топлива - равной 950-1000 °С, для природного газа 950-1050 °С.

3. Для принятой в п. 2 температуры определяется энталь-пия продуктов сгорания на выходе из топки по табл. 3-7.

4. Подсчитывается полезное тепловыделение в топке, кДж/кг
(кДж/м3):

Теплота воздуха (Q в) складывается из теплоты горячего воздуха и холодного, присосанного в топку, кДж/кг или кДж/м 3:

Коэффициент избытка воздуха в топке (α т) принимается по табл. 5-1 - 5-4 в зависимости от вида топлива и способа его сжи-гания. Присосы воздуха в топку принимаются по табл. 3-5, а в систему пылеприготовления - по табл. 5-9. Энтальпия теоретически необходимого горячего воздуха (Iог. в) и присосанного холодного воздуха (I ох. в) определяется по табл. 3-7 соответственно при температуре горячего воздуха после воздухоподогревателя и холодного воздуха при t в = 30°С. Теплота, внесенная в котлоагрегат с воздухом, при подогреве его вне агрегата подсчитывается по формуле (4-16). Потери теплоты q 3 , и q 4 и G 6 определяются из составленного ранее теплового баланса (см. §4-4).

Определяется коэффициент тепловой эффективности экранов

5.Угловым коэффициентом (х) называется отношение количества энергии, посылаемой на облучаемую поверхность, ко всему полусферическому излучению излучающей поверхности. Угловой коэффициент показывает, какая часть полусферического лучистого потока, испускаемого одной поверхностью, па-дает на другую поверхность. Угловой коэффициент излучения зависит от формы и взаимного расположения тел, находящихся в лучистом теплообмене друг с другом. Значение углового коэффициента определяется из рис. 5-42.

Коэффициент £ учитывает снижение тепловосприятия экранных поверхностей нагрева вследствие их загрязнения наружными отложениями или закрытия огнеупорной массой. Коэффициент загрязнения принимается по табл. 5-10. Если стены топки покрыты экранами с разными угловыми коэффициентами или частично покрыты огнеупорной массой (огнеупорным кирпичом), то определяется среднее значение коэффициента тепловой эффективности. При этом для неэкранированных участков топки коэффициент тепловой эффективности ф принимается равным нулю. При определении среднего коэффициента тепловой эффективности суммирование распространяется на все участки топочных стен. Для этого стены топочной камеры должны быть разбиты на отдельные участки, в которых угло-вой коэффициент и коэффициент загрязнения неизменны.

Определяется эффективная толщина излучающего слоя, м:

где V т, F ст - объем и площадь поверхности стен топочной камеры.

6. Определяется коэффициент ослабления лучей. При сжигании жидкого и газообразного топлива коэффициент ослабления лучей зависит от коэффициентов ослабления лучей трехатомными газами (k r) и сажистыми частицами (k c):

где rn - суммарная объемная доля трехатомных газов, берется из табл. 3-6.

Коэффициент ослабления лучей трехатомными газами (kr) определяется по номограмме (рис. 5-43) или по формуле

где p n = rn р - парциальное давление трехатомных газов, МПа; р - давление в топочной камере котлоагрегата (для агрегатов, работающих без наддува, принимается р = 0,1 МПа); r н2о - объемная доля водяных паров, берется из табл. 3-6; Т т " абсолютная температура на выходе из топочной камеры, К (равна принятой по предварительной оценке).

Коэффициент ослабления лучей сажистыми частицами 1/(м*МПа),

где С р, Н р - содержание углерода и жидкого топлива.

При сжигании природного газа водорода в рабочей массе где С m Н n - процентное содержание входящих в состав природного газа углеводородных соединений.

При сжигании твердого топлива коэффициент ослабления лучей зависит от коэффициентов ослабления лучей трехатомными газами, золовыми и коксовыми частицами и подсчитывается в 1/(м*МПа) по формуле

Коэффициент ослабления лучей частицами летучей золы (k эл) определяется по графику (рис. 5-44). Средняя массовая концентрация золы берется из расчетной табл. 3-6. Коэффициент ослабления лучей частицами кокса (k к) принимается: для топлив с малым выходом летучих (антрациты, полуантрациты, тощие угли) при сжигании в камерных топках к=1, а при сжигании в слоевых k к = 0,3; для высокореакционных топлив (каменный и бурый угли, торф) при сжигании в камерных топках k к = 0,5, а в слоевых k к = 0,15.

8. При сжигании твердого топлива определяется суммарная оптическая толщина среды kps. Коэффициент ослабления лучей k подсчитывается в зависимости от вида и способа сжигания топлива по формуле (5-22).

9. Подсчитывается степень черноты факела (α ф). Для твердого топлива она равна степени черноты среды, заполняющей топку (α). Эта величина определяется по графику (рис. 5-45)

или подсчитывается по формуле

где е - основание натуральных логарифмов Для жидкого и газообразного топлива степень черноты факела

где m - коэффициент, характеризующий долю топочного объема, заполненного светящейся частью факела, принимается из табл. 5-11; а св, а r - степень черноты светящейся части факела и несветящихся трехатомных газов, какой обладал бы факел при заполнении всей топки соответственно только светящимся пламенем или только несветящимися трехатомными газами; значения а св и а r определяются по формулам

здесь k r и k c - коэффициенты ослабления лучей трехатомными газами и сажистыми частицами (см. п. 7).

10.Определяется степень черноты топки:

для слоевых топок

где R - площадь зеркала горения слоя топлива, расположенного на колосниковой решетке, м 2 ;

для камерных топок при сжигании твердого топлива

для камерных топок при сжигании жидкого топлива и газа

11.Определяется параметр М в зависимости от относительного положения максимума температуры пламени по высоте толки (х т):

при сжигании мазута и газа

при камерном сжигании высокореакционных топлив и слоевом сжигании всех топлив

при камерном сжигании малореакционных твердых топлив (антрацит и тощий уголь), а также каменных углей с повышенной зольностью (типа экибастузского)

Максимальное значение М, рассчитанное по формулам (5-30) - (5-32), для камерных топок принимается не большим 0,5.

Относительное положение максимума температуры для большинства топлив определяется как отношение высоты размещения горелок к общей высоте топки

где h r подсчитывается как расстояние от пода топки или от середины холодной воронки до оси горелок, а H т - как рас-стояние от пода топки или от середины холодной воронки до середины выходного окна топки.

Для слоевых топок при сжигании топлива в тонком слое (топки с пневмомеханическими забрасывателями) и скоростных топок системы В. В. Померанцева принимается х т = 0; при сжигании топлива в толстом слое х т = 0,14.

12.Порядок расчета топочных камер определяет среднюю суммарнюю теплоемкость продуктов сгорания на 1 кг сжигаемого твердого и жидкого топлива или на 1 м 3 газа при нормальных условиях, кДж/(кг*К) или кДж/(м 3 *К):

где Т a - теоретическая (адиабатная) температура горения, К, определяемая из табл. 3-7 по Q T , равному энтальпии продуктов сгорания а; Т т " - температура на выходе из топки, принятая по предварительной оценке, К; I т "- энтальпия продуктов сгорания, берется из табл. 3-7 при принятой на выходе из топки температуре; Q T - полезное тепловыделение в топке (см. п. 4).

13.Определяется действительная температура на выходе из топки, °С, по номограмме (рис. 5-46) или формуле

Полученная температура на выходе из топки сравнивается с температурой, принятой ранее, в п. 2. Если расхождение между полученной температурой (Ɵ т ") и ранее принятой на выходе из топки не превысит ±100 °С, то расчет считается оконченным. В противном случае задаются новым, уточненным, значением температуры на выходе из топки и весь расчет повторяется.

Определяются удельные нагрузки колосниковой решетки и топочного объема по формулам (5-2), (5-4) и сравни-ваются с допустимыми значениями, приведенными для различных топок в табл. 5-1 - 5-4.

KОТЕЛЬНЫЕ УСТАНОВКИ
3.1 Классификация котлов
Часть котла, где происходит горение топлива, называется топкой. При горении топлива в топк котла высвобождается тепло, которое передается от продуктов сгорания (газов горения) через металлтческие поверхности нагрева воде. Топки разделяются на камерные и слоевые.
В камерных топках сжигают газообразные, жидкие и твердые (пелеты или гранулы) топлива. Горение проходит в объеме топки. Тесно связана с камерной топкой горелка. Наиболее простая классификация горелок по виду сжигаемого топлива: газовые, горелки жидкого топлива, горелки твердого топлива (для пелет или гранул).

Рис.3.1 Газовая горелка . 1- корпус горелки, 2 – привод горелки и вентлятор, 3 – запальник, 4 – контролирующая автоматика горелки, 5 – головка горелки, 6- регалятор подачи воздуха, 7 – установочные фланцы.
Малые котлы, работающие на твердом топливе, в большинстве имеют слоевые или с колосниковой решеткой топки.

Котлы со слоевыми топками можно разделить на следующие основные типы:


- котлы с верхним горением (рис. 3-3а)

Котлы с нижним горением (рис. 3- 3в)

Котлы с поворотным пламенем и т.д.

Рис. 3.2 Мазутная горелка жидкого топлива . 1 – корпус горелки, 2 – регулятор воздуха, 3 – вентилятор горелки, 4 – привод горелки, 5 – топливный насос, 6 – головка горелки, 7 – установочный стержень для сопел, 8 – сопла, 9 – контрольная автоматика горелки, 10 – запальник.


Рис. 3.3 а – котел с верхним горением, в – котел с нижним горением (1 – первичный воздух, 2 – вторичный воздух, 3 – газы горения)
Топка котла с верхним горением – традиционная, предназначенная для сжигания топлив с низким содержанием летучих . Термическое разложение топлива и горение образовавшихся летучих и кокса происходит в самом объеме камерной топки. Большая часть выделяющегося тепла передается стенам топки излучением. При сжигании топлива с высоким содержанием летучих (древесина, торф) в объеме топки оставляют место, достаточное для горения летучих, куда подается вторичный воздух.

Котел с нижним горением имеет шахту для топлива, откуда постоянно подается на решетку топливо взамен сгоревшего. Двигаясь в шахте, толиво сушится и подогревается. В горенни участвует определенная часть топлива, бОльшая часть топлива, находящегося на решетке термически не обрабатывается и сохраняет первоначальное содержание летучих. Непосредственно вблизи решетки топливо газифицируется, образовавшиеся летучие догорают в отдельно расположенной камере сгорания, куда и подается вторичный воздух, чтобы обеспечить достаточновысокую температуру горения. Одна из стенок камеры догорания обычно делается керамической.
При усовершенствовании котла с поворотным пламенем и нижним горением разработан котел с поворотным горением (рис.3.4а ), в котором используется стабилизирующая процесс горения керамическая решетка. Вследствие очень хороших услових горения у этого котла камера догорания имеет меньший объем по сравнению с котлом с нижним горением.
Отдельным типом котла можно считать котел с двумя раздельными камерами сгорания (топками ) – котел-универсал (рис. 3.4 b ). В меняющихся условиях топливоснабжения и цен на топливо такой котел очень удобен, поскольку в нём можно сжигать как жидкие топлива, дрова, древесные отходы, торф, брикетированный торф, древесные пелеты (гранулы), так и каменный уголь и т.д.. В котле, как уже сказано, две независимые друг от друга топки: топка с верхнним горением твердого топлива и топка для сжигания жидкого топлива, на фронт которой устанавливается горелка жидкого топлива. Котел расчитан на одновременное использование двух видов топлива. Сжигая твердое топливо, следует топливо добавлять чаще, чем, например, в случае топки с нижним горением, которая снабжена шахтой топлива. Горелка жидкого топлива включается автоматически в случае, если твердое топливо сгорело и температура воды в котле опустилась ниже допустимого.

Обычно у этих котлов теплообменник горячей воды из спиралевидных труб и есть возможность установки электрических нагревателей. Таким образом , котел может быть электрическим, его можно топить твердым и жидким топливом и с этим котлом нет необходимости в отдельном бойлере горячего водоснабжения.


Рис. 3.4 а – котел с поворотным пламенем, b – котел-универсал с двумя топчными камерами (1 – первичный воздух, 2 –вторичный воздух, 3 – газы горения).

3.2 Показатели эффективности топок
Топка – часть котельной установки, где происходит горение топлива.

Тепло, высвобождающееся при горении топлива, продуктами горения передается воде через поверхности нагрева . Поверхности нагрева производят обычно металлическими или чугунными. Теплообмен между внутренней и внешней средами, разделенными поверхностью нагрева, происходит путем излучения, конвекции, теплопроводности. Тепло продуктов горения передается на внешнюю поверхность излучением и конвекцией. В топках доля излучения составляет более 90%. Через материал поверхности нагрева (металл), а также отложения на внешней поверхности нагрева и накипи на внутренней поверхности нагрева передается тепло теплопроводностью.


Для характеристики работы топок пользуются различными показателями:

Тепловая мощность топки – количество теплоты, которое выделяется при горении топлива в единицу времени, kW

B – расход топлива, kg/s

Q a t – низшая теплота сгорания kJ/kg
Форсирование топки – количество теплоты, которое выделяется за единицу времени на единицу поверхности поперечного сечения топки, kW/m 2

где А – площадь поперечного сечения топки, m 2 .
Удельная объемная мощность топки – количество теплоты, которое выделяется на единицу объема топки в единицу времени, kW/m 3 .

где V – объем топки, m 3 .
Удельная тепловая мощность решетки (слоевой) топки – количество теплоты, которое выделяется с поверхности решетки в единицу времени.

R – площадь поверхности решетки, m 2

V – объем топочной камеры, m 3

К.п.д. котла по прямому балансу находится отношением полезно используемого тепла Q kas к количеству тепла, поданного в в топку:


где G – расход воды через котел ,

h 1 – энтальпия воды на входе в котел

h 2 – энтальпия воды на выходе из котла
К.п.д. котла (брутто- к.п.д. не учитывает расход энергии на собственные нужды) по косвенному балансу :

где q 2 – потери тепла с уходящими газами;

q 3 – потери тепла от хим. недожега;

q 4 – потери тепла от мех. недожега;

q 5 – потери тепла от выстывания котла;

q 6 – потери тепла с физическим иеплом шлака.
Для того, чтобы найти нетто-к.п.д. котла нужно cнять расход количества теплоты q s ot и электрической энергии q e ot на собственные нужды:

Обычно расход на собственные нужды (на работу воздуходувки, насосы и т.д.) для газовых и на жидком топливе котлов составляет не более 0,3... 1%. Чем мощнее котел, тем меньше процент.
К.п.д. котла на номинальной нагрузке отличается от к.п.д. кола на частичной нагрузке. При уменьшении нагрузки котла ниже номинальной в определенном количестве снижаются потери тепла с уходящими газами и от хим. недожега. Потери от выстывания остаются прежними и их процентная доля значительно возрастает. И это является причиной, почему при снижении нагрузки котла уменьшается и к.п.д. котла.
Отдельным вопросом являются потери котла при периодической работе , которые в общем случае вызваны следующими причинами:

Потери от наружного выстывания;

Q k.f. – физическая теплота топлива;

Q p – теплота пара, который используется для расспыления топлива в топке или подается под топочную решетку;

Q k a – теплота сгорания газового топлива.
При сжигании сланца используемое тепло топлива вычисляется по формуле:

Где ΔQ ka означает теплоту эндотермического эффекта, обусловленного неполным разложением карбонатов:

При полном разложении k CO 2 = 1 и ΔQ ka = 0
Тепло Q t k , подаваемое в в котельную установку, разделяется на полезно используемое Q 1 и тепловые потери :
Q 2 – с уходящими газами;

Q 3 – от химического недожега;

Q 4 – от механического недожега;

Q 5 – от выстывания котла;

Q 6 – с физическим теплом шлака.
Приравняв между собой используемое тепло топлива Q t k c затратами тепла, получим:

Это выражение называется уравнением теплового баланса котельной установки.
Уравнение теплового баланса в процентном выражении:

где


3.4 Тепловые потери котла
3.4.1 Теплове потери с уходящими из котла газами

где H v . g . – энтальпия уходящего газа из котла в kJ/kg или kJ/m 3 (сжигаемого топлива 1 kg или 1 m 3)

α v . g – коэффициент избытка воздуха

H 0 k . õ – энтальпия воздуха, необходимого для сжигания 1 kg или 1 m 3 топлива (до воздухоподогревателя) в kJ/kg или kJ/m 3 .


где V i объемы компонентов (V RO 2 , V N2 , V O2 ,V H2O) уходящих газов на единицу массы или объема топлива m 3 / kg , m 3 / m 3

c’ i – изобарная объемная теплоемкость соответствующего газового компонента kJ/m 3 ∙К

θ v.g - температура уходящих из котла газов.
На величину теплопотери q 2 значительное влияние оказывает как температура уходящих газов θ v.g , так и коэффициент избытка воздуха α v . g .

Температура уходящих газов увеличивается из-за загрязнения поверхностей нагрева, коэффициент избытка воздуха работающего под разряжением котла –

из-за увеличения неплотностей. Обычно теплопотеря q 2 составляет 3...10 %, но вследствие выше перечисленных факторов может увеличиться.
Для практического определения q 2 при теплотехнических испытаниях котла следует определить температуру уходящих газов и коэффициент избытка воздуха. Для определения коэффициента избытка воздуха необходимо измерить процентное содержание RO 2 , O 2 , СО в уходящих газах.



      1. Тепловые потери от химически неполного сгорания топлива (хим.недожега)

Потери с хим.недожегом обусловлены тем , что часть горючего вещества топлива остается в топке неиспользованным и выходит из котла в виде газовых компонентов (СО, Н 2 , СН 4 , СН...). Полное сгорание этих горючих газов практически невозможно из-за низких температур за топкой. Основные причины хим.недожега следующие:

Недостаточное количество воздуха, полаваемого в топку,

Плохое смешивание воздуха с топливом,

Малый объем топки, что определяет время нахождения топлива в топке, которого не хватает для полного сгорания топлива,

Низкая температура в топке, которая снижает скорость горения;

Слишком высокая температура в топке, которая может привести к диссоциации продуктов горения.
При правильном объеме воздуха и хорошем смешивании q 3 зависит удельной объемной мощности топки. Оптимальная объемная мощность топки, где q 3 минимальная зависит от сжигаемого топлива, технологии сжигания и конструкции топки. Теплопотеря от хим.недожега составляет 0...2% при удельной объемной мощности q v = 0,1 ... 0,3 MW / m 3 . В топках, где происходит интенсивное горение топлива q v = 3... 10 MW / m 3 , теплопотеря от хим.недожега отсутствует.


      1. Потери тепла от механического неполного сгорания (от мех.недожега)

Теплопотери от мех.недожега q 4 обусловлены содержанием горючего вещества топлива в выходящих из котла твердых остатках горения. Часть твердого горючего вещества, которая содержит углерод, водород и серу, уходит вместе с уходящими газами в верхней части топки в виде 1. летучей золы , часть твердых горючих остатков удаляются с решетки или из-под решетки вместе 2. со шлаком ; может иметь место частичное 3. проваливание топлива через ячеки решетки.

При сжигании жидкого и газового топлива потери от мех.недожега отсутствуют, за исключением тех случаев, когда образуется сажа, которая выносится из котла вместе с уходящими газами горения.
Потери от мех.недожега можно вычислить по формуле:

где α r , α v , α lt - удельные количества твердого горючего остатка, который удален с решетки (α r), или из-под решетки как провалившегося сквозь неё (α v), или ушедшего из котла вместе с горючими газами в виде летучей золы (α lt).


Р r , Р v , Р lt – процентное % содержание горючего вещества в трех горючих остатках.
Q t k – используемое тепло kJ/kg;

      1. Тепловые потери от внешнего выстывания котла

Тепловые потери от внешнего выстывания котла обусловлены проникновением тепла через обмуровку и тепловую изоляцию. Тепловые потери q 5 зависят от толщины обмуровки и толщины тепловой изоляции деталей котельной установки. В случае больших (мощных) котлов поверхность котла в сравнении с объемом меньше и q 5 не превышают 2 %.

Для котлов мощностью менее 1 МW потери от выстывния определяют опытным путем. Для этого наружную поверхность котла разделяют на части меньшей площадью F i , по середине которой измеряется тепловой поток q i W / m 2 .


Рис. 13.5. Зависимость внешнего выстывания поверхности котла от паропроизводительности котла.
При отсутствии тепломера по середине каждой части поверхности котла замеряют температуру поверхности и теплопотери вычисляют по формуле:

где α – средний коэффициент теплоотдачи от внешней поверхности котла в окружающую среду (воздух) W / m 2 ∙К
Δ t = t F – t õ – средний перепад температур между поверхностью котла и средней температурой воздуха.

А – площадь внешней поверхности котла, состоящая из n частей площадью F i m 2 .


      1. Теплопотери с физическим теплом шлака

где α r – относительное количество удаляемого шлака из топки котла

t r – температура шлака 0 С

c r – удельная теплоемкость шлака kJ/ kg∙K


    1. Горелки твердого топлива

Во многих странах проводят испытания оборудования котлов на твердом топливе с целью автоматицации его работы. Если в качестве топлива используют древесную крошку, то наиболее распростаненная горелка для такого топлива – стокер-горелка.

Рис. 3.6 STOKER – горелка.

Для сжигания гранулированного топлива (пелет) используют специальную горелку EcoTec.

Рис.3.7 Гоерелка EcoTec для сжигания пелет.
Существуют два основных типа пеллетных котлов, первое это котлы со специальными пеллетными горелками (как внешними, так и внутренними) и второе - более простые модели, переделанные, как правило, из опилочно-щепочных котлов, в которых горелка так предмет отсутствует , а сжигание пеллет происходит в топочной арматуре. Первый тип пеллетных котлов, в свою очередь, можно разделить на две подгруппы: встроенные пеллетные горелки и пеллетные горелки, которые можно демонтировать и перевести котёл на другой вид топлива (уголь, дрова).

Итак, сначала давайте проясним, о чём идёт речь.


К первой группе относятся следующие решения на российском рынке котёл Junkers + горелка EcoTec, и прочее. Конструктивно данное решение представляет из себя твердотопливный котёл с установленной в него пеллетной горелкой.

Ко второй группе относятся Фачи и его восточно европейские клоны, Бенеков, и др

Итак, большая разница, как мы видим, в наличии специализированной горелки и некоторая минорная в системе подачи пеллет. Конкретней это выглядит следующим образом:

Чем отличается пеллетная горелка от топочной арматуры

Во-первых, пеллеты на пеллетной горелке горят лучше, чем на топочной арматуре, всё дело в том, что на специализированной пеллетной горелке установлены датчики, влияющие на сжигание пеллет (например, датчик температуры, оптический датчик пламени) и дополнительные активные механизмы (ворошитель золы, система автоподжига) . Усложнение горелки ведёт с одной стороны к более высокому КПД котла в целом , однако, с другой стороны, расплата за это - более сложная (а следовательно и дорогая) система управления.

Во-вторых, подача воздуха в специализированной горелке осуществляет направлено и, как правило, зонально, т.е. существует область подачи первичного воздуха, есть область подачи вторичного воздуха. В обычной топочной арматуре этого нет.

Система подачи пеллет

У пеллетных горелок система подачи пеллет «разбита» на две независимые части, каждый со своим отдельным электромотором – внешний шнек и внутренний шнек , соединённые как правило легкоплавным шлангом , что является дополнительной защитой (помимо основных) от обратного огня.
У котлов переделанных из опилочных пеллеты на топочную арматуру подаётся жестким шнеком.

Из разницы в системе подачи вытекают прочие отличия:


Бункер – в горелках с жестким шнеком размеры бункера ограничен. хотя возможна надстройка существующего бункера. В сисемах с пеллтнными горелками возможно конструирование бункера любого размера.



Образцом пеллетной горелуки объёмного горения может являтся пеллетная горелка шведской фирмы EcoTec.


1.

труба шнека, опускаемая в бункер

7.

стенки котла с теплоносителем

2.

электромотор внешнего шнека

8.

воздуховод

3.

легкоплавкий шланг*

9.

шнек подачи пеллет в зону горения

4.

шнек внутреннего бункера

10.

нагнетатель воздуха

5.

внутренний бункер горелки (дозатор)

11.

зона горения пеллет

6.

лепестковый клапан*

Запуск «холодной» пеллетной горелки


фото 1. Вентилятор


При «холодном» запуске котла, при информации с датчика уровня о наличии пеллет во внутреннем шнеке, и соответственно, в зоне горения, включается система автоподжига. Затем, при фиксации датчиком пламени открытого огня включается максимальная подача воздуха для дальнейшего розжига. После некоторого времени котёл переходит в режим нормальной работы. При неудачном запуске , в зависимости от алгоритма работы горелки, возможны: дополнительная подача пеллет, продувка воздухом и повторное включение системы автоподжига. Существуют модели включающие насос теплоносителя только при достижении заданной температуры и останавливающий его при ее понижении.

При «холодном» запуске котла, при информации с датчика уровня о наличии пеллет во внутреннем шнеке, и соответственно, в зоне горения, включается система автоподжига. Затем, при фиксации датчиком пламени открытого огня включается максимальная подача воздуха для дальнейшего розжига. После некоторого времени котёл переходит в режим нормальной работы. При неудачном запуске, в зависимости от алгоритма работы горелки, возможны: дополнительная подача пеллет, продувка воздухом и повторное включение системы автоподжига. Существуют модели включающие насос теплоносителя только при достижении заданной температуры и останавливающий его при ее понижении.

Режим нормальной работы пеллетной горелки

После розжига, горелка переходит в режим нормальной работы. Предварительно установив требуюмую мощность горелки (например, Вы приобрели горелку мощностью 25 кВт для отопления 150 кв. метров, в этом случае оптимальным будет уменьшение мощности горелки до 10-15 кВт) устанавливается температурный диапазон работы горелки, например, нижняя граница 70 С, а верхняя 85 С. Алгоритм следующий – при достижении температуры теплоносителя верхней границы котел останавливается и переходит в режим stand-by, после чего температура начинает опускаться, затем, при переходе нижней границы, котёл автоматически запускается. Информация об изменении температуры поступает с внешнего датчика температуры, установленного в систему отопления (батареи) или внутреннего датчика котла. Соответственно, чем больше это диапазон, тем более длительные перерывы могу быть между включением/выключение пеллетного котла.

Запуск из режим stand-by

Запуск из режима stand-by происходит при пересечении нижней установленной температурной границы. Основное отличие от процедуры холодного запуска котла, заключается в том , что в этом случае первоначально включается вентилятор, который разжигает тлеющие пеллеты. В отдельных случая возможно включение внутреннего шнека, с целью подачи новых пеллет взамен прогоревших. Система автоподжига может включаться после нескольких попыток неудачного запуска (хотя это говорит пожалуй о том, что со времени остановки котла прошёл значительный период времени и запуск может считаться «холодным»).

Динамическое изменение мощности работы горелки

Под динамическим изменением мощности мы подразумеваем следующую ситуацию, допустим, как в примере выше, Ваша горелка работает в режиме 75% от возможной мощности, т.е. этого достаточно для нормального функционирования системы отопления и обеспечения требуемого комфорта. В случае, например, зимой, понижения температуры окружающей среды, горелка будет длительней достигать верхней границы и быстрей опускаться до нижней, однако настроенной мощности будет хватать для отопления Вашего дома.

Теперь представьте ситуацию, у Вас установлен бойлер для горячей воды, и Вы решили в самую холодную ночь года принять душ одновременно все , в этом случае, падение температуры теплоносителя может быть достаточно резким, и через некоторое время Вы может почувствовать на собственной коже, что Ваш котёл не «вытягивает» нагрузку, несмотря на то, что трудится в пиковом режиме. Вот именно для подобных случаев и применяется система динамического изменения мощности горелки. В этом случае, горелка автоматически увеличит рабочую мощность до 100%, а при достижении требуемой температуры вернётся обратно.

Остановка горелки в штатном режиме

После поступления команды от пульта управления или внешнего выключателя (например GSM modem) отключается внешняя система подачи пеллет, а внутренний шнек подает оставшиеся пеллеты в зону горения, одновременно вентилятор начинает подавать воздум с максимальной скоростью, для скорейшего прогорания оставшихся пеллет. После прохождения заданного периода времени и поступления сигнала об отсутствие пламени пульт управления отключает горелку. Стоит отметить, что при выключении горелки возможно продолжение мониторинга (температуры и пламени для предотвращения возникновения обратного огня) в течение некоторого времени.

Тонкая настройка пеллетной горелки

При наличии дополнительных датчиков пеллетной горелки возможна тонкая настройка её работы.
В качестве регулируемых параметров изменяется скорость подачи пеллет и объём подоваемого воздуха.
В качестве индикаторов используются температурные датчики, лямбда зонд, датчики температуры дымовых газов , датчики давления и т.д.
Оптимальные параметры работы пеллетной горелки определяются исходя из требований клиентов, но, как правило, это наименьший расход топлива.