Меню
Бесплатно
Главная  /  Декор и дизайн  /  Сухие растворные смеси. Строительные растворы: общие технические условия, состав, применение, гост

Сухие растворные смеси. Строительные растворы: общие технические условия, состав, применение, гост

И в зависимости от применения ячеистые бетоны делят на три вида:

Теплоизоляционные объемным весом 500 кг/м 3 и менее;

Конструктивно-теплоизоляционные объемным весом от 500 до 900 кг/м 3 ;

Конструктивные объемным весом от 900 до 1200 кг/м 3 .

Марка ячеистых бетонов зависит от объемного веса: при объемном весе бетона 500, 600, 700, 900, 1000 и 1200 марка соответственно равна 25, 35, 50, 75, 100 и 150.

НЕДОСТАТКАИ: Ячеистые бетоны по сравнению с обычными бетонами обладают повышенной усадкой, и для ее уменьшения в состав бетона вводят некоторое количество легких пористых заполнителей, природный немолотый, мелкий песок. К недостаткам ячеистых бетонов следует также отнести их большую влагоемкость и плохую отдачу влаги при сушке. Несмотря на высокое (до 30%) водопоглощение, ячеистые бетоны обладают сравнительно хорошей морозостойкостью - выдерживают 15-25 и более циклов попеременного замораживания и оттаивания. Водопоглощение может быть понижено путем введения добавок или нанесением на поверхность изделий гидрофобных покрытий.

Прочность и атмосферостойкость ячеистых бетонов могут быть повышены получением более мелких и однородных по размеру пор. Это достигается применением вяжущих повышенной активности, более тонким помолом компонентов.

Для получения ячеистых бетонов автоклавного твердения применяется преимущественно молотая негашеная известь, или портландцемент, пуццолановый портландцемент и шлакопортландцемент марок 300 и 400.

Для ячеистых бетонов, твердеющих в условиях естественного и тепловлажностного режима (в камерах пропаривания), при атмосферном давлении применяют преимущественно клинкерные цементы высоких марок 400 и 500 с введением в ячеистую массу гипса и ускорителей твердения.

    Строительные растворные смеси: состав, свойства. Сухие растворные смеси.

Раствором называется правильно подобранная смесь вяжущего, заполнителя, воды, специальных добавок, затвердевающая до прочности природного камня.

Классификация

По плотности : тяжелые (1500 кг/м 3 и более); легкие (менее 1500 кг/м 3).

По скорости схватывания : быстросхватывающиеся; медленносхватывающиеся.

По количеству вяжущего : жирные; тощие.

По виду вяжущего : глиняные; известковые; гипсовые; известково-гипсовые; цементные; цементно-известковые. В зависимости от среды твердения : воздушные растворы; гидравлические.

В зависимости от вяжущих : простые; сложные (смешанные).

По назначению : кладочные; отделочные (штукатурные); монтажные; инъекционные; специальные.

Свойства растворных смесей

Удобоукладываемость - это свойство растворнойсмеси легко распределяться плотным и тонким слоем наосновании, равномерно заполняя все его неровности ишероховатости.Удобоукладываемость зависит от пластичности и водоудерживающей способности смеси.

Подвижность - это способность растворнойсмеси растекаться под действиемсобственной массы или приложенных к нейвнешних сил.Водоудерживающая способность - это свойство растворной смеси удерживать воду при наличии ее поглощения пористым основанием.

Расслаиваемость - разделение растворной смеси на твердую и жидкую фракции при ее перевозке или хранении. Наибольшая крупность зерен заполнителя должна быть, мм, не более: кладочные (кроме бутовой кладки) 2,5; бутовая кладка5,0; штукатурные (кроме накрывочного слоя) 2,5; штукатурные накрывочного слоя 1,25; облицовочные 1,25.

Прочность раствора характеризуется его маркой, которая определяется пределом прочности при сжатии стандартных образцов - кубов с ребрами 7,07 см. По пределу прочности на сжатие (кгс/см 2) для строительных растворов установлены следующие марки: М 4, 10, 25, 50, 75, 150, 200.

Водонепроницаемость - это свойство раствора непропускать через себя воду. Степень водонепроницаемости зависит в основном от пористости раствора.Водонепроницаемость раствора повышают введением внего жидкого стекла или полимерных смол.

Морозостойкость - это свойство раствора выдерживать многократноечисло циклов попеременного замораживания и оттаиваниябез видимых признаков разрушения и значительногоснижения прочности и массы (F 10, 15, 25, 35, 50, 100, 150, 200).

Условное обозначение строительного раствора должно состоять из сокращенного обозначения с указанием степени готовности, назначения, вида применяемого вяжущего, марок по прочности и подвижности, средней плотности и обозначения настоящего стандарта.

Пример условного обозначения тяжелого раствора, готового к употреблению, кладочного, на известково-гипсовом вяжущем, марки по прочности М100, по подвижности - Пк2: Раствор кладочный , известково - гипсовый , М 100, Пк 2, ГОСТ 28013-98.

Для сухой растворной смеси, легкой, штукатурной, на цементном вяжущем, марки по прочности М50 и по подвижности - Пк3, средней плотности D900: Смесь сухая растворная штукатурная , цементная , М 50, Пк 3, D900, ГОСТ 28013-98 . Применяют портландцемент, шлакопортландцемент. Пески применяют природные - кварцевые, полевошпатные, а также искусственные - дробленные из плотных горных пород и пористых пород. Пластифицирующие добавки. Неорганические дисперсные добавки (известь, глина, зола ТЭС, диатомит, молотый доменный шлак и т.п.). Органические поверхностно-активные пластифицирующие добавки. Строительные сухие смеси - это композиции заводского изготовления на основе минеральных вяжущих веществ, включающие заполнители и добавки. В качестве вяжущего используют порошкообразные минеральные вяжущие: портландцемент, строительный гипс, воздушную известь. В качестве заполнителя применяется песок для строительных работ.

Большую роль в технологии сухих смесей играют добавки. Применяются неорганические и органические пластифицирующие добавки: глина, воздушная известь, зола, суперпластификатор С-З. Вода для затворения сухих смесей не должна содержать вредных примесей.

Технология производства сухих смесей: поступаемый с карьера песок подвергается тепловой обработке в сушильных агрегатах, затем производят рассев на ситах до нужных фракций. Просеянный песок направляется в смеситель. В этот же смеситель загружают и другие компоненты в необходимом количестве. Дозированные материалы перемешивают до получения однородной массы. Полученную смесь затаривают в емкости, необходимые для реализации и подают на склад готовой продукции.

    Определение битума. Химический и групповой составы, структура битумов .

Битумы природные - полезные ископаемые органического происхождения с первичной углеводородной основой, залегающие в недрах в твёрдом, вязком и вязко-пластичном состояниях. С генетической точки зрения к битумам природным относят нефть, горючие, а также естественные производные нефти (мальты, асфальты и др.)образовались из нефти в верхних слоях земной коры.

Природные битумы отличаются высокой атмосферостойкостыо и хорошим прилипанием к поверхности каменных материалов, но из-за дефицитности и высокой стоимости в строительстве применяют ограниченно. Нефтяные битумы представляют собой твердые, вязко-пластичные или жидкие продукты переработки нефти.

По химическому составу битумы - сложные смеси высокомолекулярных углеводородов и их неметаллических производных азота, кислорода и серы, полностью растворимые в сероуглероде.

Элементарный химический состав всех битумов достаточно близок. В них 70... ...87 % углерода, до 15 % водорода, до 10 % кислорода, до 1,5 % серы, небольшое количество азота. Химический состав битумов позволяет судить только о материальном балансе элементов, из которых построены компоненты битумов, и не дает представления о химических соединениях, об их влиянии на структуру и свойства битумов.

Для исследования битумов их разделяют на основные группы углеводородов - масла, смолы, асфальтены, асфальтогеновые кислоты.

Масла - жидкая при обычной температуре группа углеводородов, плотностью менее единицы и молекулярной массой 100..500. Повышенное содержание масел в битуме придает им подвижность и текучесть.

Смолы - вязко-пластичные вещества, твердые или полутвердые при обыкновеной температуре с плотностью около 1 и молекулярной массой до 1000. При длительном воздействии некоторых факторов (кислорода воздуха или другой окислительной среды) могут произойти необратимые изменения фазового состава битума, свидетельствующие о его химическом старении. Смолы придают битумам вяжущие свойства и пластичность.

Асфальтены - твердые неплавкие высокополициклические соединения с плотностью более единицы и молекулярной массой 1000...5000. Асфальтены придают битуму твердость и теплоустойчивость. При длительном нагревании битума в присутствии воздуха масла и смолы переходят в асфальтены. Чрезмерно большое количество асфальтенов в битуме может образоваться также под действием солнечной радиации, что вызывает постепенное разрушение - «старение» битума.

Асфальтогеновые кислоты принадлежат к группе полинафтеновых кислот; их консистенция может быть твердой или высоковязкой. Являясь поверхностно-активной частью битума, они способствуют повышению прочности сцепления битума с каменными и другими материалами.

    Основные типы битумов, применяемых в строительстве и их технические свойства.

Битум – это вещество, которое изготовляется промышленным методом в результате преобразования и смешивания смол, нефтепродуктов и других органических веществ.

Битумы нерастворимы в воде и водных растворах кислот, щелочей и солей. Плотная, непористая структура делает битумы водонепроницаемыми и морозостойкими. Эти качества широко используются в строительстве, при проведении кровельных и гидроизоляционных работ.

Качество битумов определяется, исходя из таких характеристик: температуры размягчения, хрупкости, растяжимости (дуктильность), вязкости (пенетрации). О характеристиках битумов свидетельствует маркировка: БН 90/10 , (битум нефтяной), строительный, первая цифра указывает на температуру размягчения, а вторая говорит о глубине пенетрации.

Плотность от 0,8-1,3 г/см 3 , теплопроводность 0,5-0,6Вт/(м* 0 С), теплоемкость 1,8-2 кДж/кг* 0 С. Существуют различные виды битума.

Строительные битумы являются горючими веществами с температурой вспышки от 220 до 240 градусов, и температурой самовоспламенения в 368 градусов по Цельсию. Их производят методом окисления продуктов перегонки нефти, а также их соединения с экстрактами масляного производства и асфальтами. Битум строительный нашел свое применение при производстве гидроизоляционных работ по защите от влаги построек, зданий и сооружений.

Дорожные битумы бывают двух видов: вязкие и жидкие.И те и другиепредставляют собой горючие вещества, имеющие температуру вспышки от 65 до 120 градусов тепла (для жидких битумов), или выше 220 градусов тепла (для вязких битумов). Вязкие дорожные битумы самовоспламеняются при температуре 368 градусов, а жидкие – не ниже 300 градусов тепла.

Битум дорожный вязкий применяется для проведения ремонта и прокладки дорог в теплое время года. А жидкий дорожный битум может использоваться и в холодную погоду, при минусовых температурах воздуха.

Жидкий битум изготавливают путем добавления в вязкий битум растворителей.

Битум дорожный жидкий предназначен для устройства оснований облегченных и капитальных автодорог, а также для их строительства. Дорожный битум вязкий применяется как вяжущий материал при строительстве и ремонте аэродромных и дорожных покрытий, производство асфальтобетонных смесей.

Кровельные битумы являются горючими веществами, которые вспыхивают при температуре в 240 градусов и самовоспламеняются при 300 градусах по Цельсию. Метод их получения такой же, как и у строительных битумов. Кровельные битумы используются в производстве кровельных материалов, а также для пропитки и получения покровных слоев.

    Рулонные кровельные и гидроизоляционные материалы на основе битумов.

Рулонные кровельные материалы на картонной основе подразделяют на два вида - беспокровные и покровные. Первые получаются путем пропитки кровельного картона битумом, вторые - путем пропитки основы с последующим нанесением с одной или двух сторон более тугоплавкого органического вяжущего с минеральным наполнителем.

Пергамин - рулонный кровельный и пароизоляционный материал, изготовленный из кровельного картона, пропитанного мягким нефтяным битумом. Пергамин применяют как подкладочный материал при устройстве многослойных кровельных покрытий, а также для пароизоляции.

Рубероид - рулонный кровельный и изоляционный материал, изготовленный путем пропитки кровельного картона мягким нефтяным битумом с последующим покрытием его с обеих сторон тугоплавким нефтебитумом и нанесением на лицевую поверхность тонкого слоя минеральной посыпки.

В зависимости от назначения рубероид подразделяется на: кровельный (для устройства верхнего слоя кровельного ковра), подкладочный (для устройства нижнего слоя кровельного ковра и гидроизоляции).

Производство рубероида: размотка картона, пропитка полотна картона в пропиточной ванне, протягивание пропитанного картона через другую ванну для нанесения покровного слоя, нанесение досыпки, охлаждение полотна рубероида и намотка его в рулоны. Для приклеивания кровельного ковра применяют горячие и холодные мастики.

Гидроизол - беспокровный биостойкий гидроизоляционный рулонный материал, получаемый путем пропитки асбестовой бумаги нефтяными битумами.

Стеклорубероид - рулонный кровельный и гидроизоляционный материал, получаемый путем нанесения с двух сторон битумного вяжущего на стекловолокнистый холст, причем битумное вяжущее, приготавливается путем смешения нефтяного битума с наполнителем, пластификатором и антисептиком.

Главное преимущество стеклорубероида перед обычным рубероидом - высокая прочность и долговечность его основы. Применяют для верхнего слоя кровельного ковра, для оклеечной гидроизоляции и нижнего слоя кровельного ковра.

Изол - безосновный рулонный гидроизоляционный материал, полулаемый путем каландирования в горячем состоянии смеси из резинобитумного вяжущего, наполнителя (25-30%), пластификатора, антисептика и полимерных добавок.

    Горячие и холодные битумные мастики, их составы и сравнительная характеристика.

Мастики представляют собой пластичные смеси органических вяжущих с порошкообразным, волокнистым или комбинированным наполнителем, а также добавками, улучшающими их свойства.

По роду применения мастики подразделяют на приклеивающие и гидроизоляционные. Приклеивающие мастики используют при устройстве многослойных кровельных и гидроизоляционных покрытий, а гидроизоляционные - мастичных кровель и в целях гидроизоляции без применения рулонных материалов.

По способу применения подразделяются на горячие и холодные. Горячие мастики используют с предварительным разогревом до 130-180 °С, холодные - без подогрева, при температуре не ниже +°С, а при более низких температурах - нагретые до 60-70 °С.

Горячие мастики предназначаются для приклеивания к основанию битумных или дегтевых рулонных материалов, склеивания из них многослойного гидроизоляционного или кровельного ковра. Горячие мастики должны быть однородными, без посторонних включений, твердыми при нормальной температуре и не должны содержать частиц наполнителя, не покрытых связующими веществами.

При нагревании до 100°С мастика не должна вспениваться и изменять однородность состава. Содержание воды в мастиках не допускается. Битумные мастики при нагревании до 160-180°С, должны легко растекаться по горизонтальной поверхности слоем толщиной до 2 мм.

Приклеивающие мастики должны обладать хорошими клеящими свойствами и прочно склеивать рулонные материалы: при расщеплении двух склеенных мастикой образцов пергамина или беспокровного толя расслоение должно происходить по основанию (картону) не менее, чем на половине площади склеенной поверхности.

Холодные мастики изготавливают с применением жидких органических вяжущих или битумных паст. В качестве разбавителей применяют жидкие органические вещества: керосин, лигроин, масла и др. Разбавителем для холодных асфальтовых мастик на битумных пастах является вода.

К холодным мастикам, изготовляемым на разжиженных вяжущих, относятся битумные и гудрокамовые мастики. Применяются они для приклеивания рулонных кровельных и гидроизоляционных материалов, устройства защитного слоя, а также обмазочной гидроизоляции.

Холодные асфальтовые мастики, изготовленные на битумных пастах, применяются для литой и штукатурной гидроизоляции, заполнения деформационных швов в сооружениях: Все виды холодных мастик при нормальной температуре должны быть однородными, подвижными и легко наноситься слоем толщиной около 1 мм.

Холодные мастики удобны в работе, особенно в сырое и холодное время года. В целом использование холодных мастик упрощает производство и снижает стоимость работ по устройству кровель и гидроизоляции.

    Жидкие битумы и битумные эмульсии: состав, применение в строительстве.

С целью более рационального использования положительных свойств битумов, уменьшения отрицательного влияния их недостатков и создания условий применения приготовляют эмульсии и пасты.

Битумные эмульсии и пасты представляют собой вяжущие материалы жидкой (эмульсии) или сметанообразной консистенции (пасты), которые приготовляют в основном из двух несмешивающихся между собой компонентов - битума и воды. Для объединения этих несмешивающихся веществ применяют третий компонент (эмульгатор), являющийся поверхностно-активным веществом, уменьшающим поверхностное натяжение на границе битум – вода, образующим вокруг частиц дисперсной фазы (частиц битума) оболочку, которая препятствует укрупнению и слиянию этих частиц, что способствует образованию весьма устойчивых эмульсий и паст.

В качестве эмульгаторов при изготовлении эмульсий применяют водорастворимые органические вещества, обычно представленную гидроксилом ОН, карбоксилом СООН, группами COONa(K).В качестве эмульгатора при изготовлении паст используют твердые минеральные порошки (глины, извести, трепелы). Содержание водорастворимых эмульгаторов в эмульсии не превышает 3 %, твердых порошков в пастах - 5-15 %, а битума - 40-60 %.

Эмульсии приготовляют в диспергаторах , обеспечивающих распыление подогретого битума в горячей воде с эмульгатором. Эмульсия, удовлетворяющая техническим требованиям, должна обладать малой вязкостью, допускающей ее розлив и нанесение на поверхность в холодном состоянии, однородностью, небольшой скоростью распада и достаточной устойчивостью, обеспечивающей хранение на складе и перевозку в нормированные сроки.

Хранят эмульсии в закрытых помещениях в металлической таре при температуре не ниже 0°С. Для снижения вязкости эмульсии и пасты перед применением разбавляют водой. Основными преимуществами эмульсий по сравнению с горячим битумом является возможность применения их в холодном виде (при положительных температурах воздуха практически в любую погоду), а также возможность сокращения до 30% расхода вяжущего за счет лучшего распределения эмульгированных вяжущих на поверхности зерен минеральных материалов.

Битумные эмульсии применяют в дорожном строительстве, для устройства защитных гидро-и пароизоляционных покрытий, грунтовки основания под гидроизоляцию, приклеивания рулонных материалов. Битумные пасты наиболее широко применяют в гидроизоляционных работах.

При работе с битумными материалами требуется строго соблюдать правила охраны труда и противопожарной техники.

Жидкие битумы находят применение в дорожном строительстве, производстве кровельных материалов, при кровельных и гидроизоляционных работах. Их применяют в холодном состоянии или разогретыми до температуры 40-90 град.

    Классификация и свойства теплоизоляционных материалов .

Теплоизоляционныминазывают строительные материалы и изделия, предназначенные для тепловой изоляции

конструкций зданий, сооружений и различных технических применений.

Основной особенностью теплоизоляционных материалов является их высокая пористость, малая средняя плотность и низкая теплопроводность. Применение теплоизоляционных материалов в строительстве позволяет снизить массу конструкций, уменьшить потребление конструкционных строительных материалов (бетон, кирпич, древесина), сокращение расхода энергии на отопление здания.

Теплоизоляционные материалы классифицируют по следующим признакам :

форме и внешнему виду : штучные (плиты, блоки, кирпичи, цилиндры, сегменты); рулонные и шнуровые (маты, шнуры, жгуты); рыхлые и сыпучие (вата, перлитовый песок);

структуре: волокнистые (минераловатные, стекловолокнистые); зернистые (перлитовые, вермикулитовые); ячеистые (изделия из ячеистых бетонов, пеностекло, пенопласты);

виду исходного сырья : неорганические, органические;

с редней плотности:

1. особо низкой плотности (15, 25, 35, 50, 75) минеральная вата марки менее 75; каолиновое волокно; пенопоропласты; ультра- и супертонкое стекловолокно; вспученный перлит;

2. низкой плотности (100, 125, 150, 175) минеральная вата марки более 75; стеклянная вата; полужесткие и жесткие минераловатные плиты;

3. средней плотности (200, 225, 250, 300, 350) совелитовые, вулканитовые, известково-кремнистые, перлитоцементные изделия, минераловатные плиты на битумном связующем;

4. плотные (400, 450, 500, 600) пенодиатомитовые, диатомитовые, трепельныеизделия из ячеистого бетона; монолитныйбитумо-перлит.

Жесткости :

Мягкие (М) - сжимаемость свыше 30 % при удельной нагрузке 0,002 МПа (минеральная и стеклянная вата, вата из супертонкого стекловолокна, маты и плиты из штапельного стекловолокна);

Полужесткие (П) - сжимаемость от 6 до 30 % при удельной нагрузке 0,002 МПа (плиты минераловатные и из штапельного стекловолокна на связующем);

Жесткие (Ж) - сжимаемость до 6 % при удельной нагрузке 0,002 МПа (плиты из минеральной ваты на синтетическом или битумном связующем);

Повышенной жесткости (ПЖ) - сжимаемость до 10 % при удельной нагрузке 0,04 МПа (плиты минераловатные повышенной жесткости на синтетическом связующем);

Твердые (Т) - сжимаемость до 10 % при удельной нагрузке 0,1 МПа.

Теплопроводности :

Класс А - низкой теплопроводности - до 0,06 Вт/(м К);

Класс Б - средней теплопроводности-от 0,06 до 0,115 Вт/(м К);

Класс В - повышенной теплопроводности - от 0,115 до 0,175 Вт/(м К);

Горючести : негорючие (НГ); слабогорючие (П); умеренногорючие (Г2); нормальногорючие (ГЗ); сильногорючие (Г4).

Органические теплоизоляционные материалы: на основе природного органического сырья: древесина, отходы деревообработки, торф, шерсть животных; на основе синтетических смол (пластмассы).

Теплоизоляционные материалы из органического сырья могут быть жесткими и гибкими.

К жестким относят древесностружечные, древесноволокнистые, фибролитовые, арболитовые, камышитовые и торфяные. К гибкимотносятся строительный войлок и гофрированный картон.

Древесноволокнистые плиты (на основе синтетического связующего) выпускают длиной 1200-2700, шириной 1200- 1700 и толщиной 8-25 мм.

По плотности их делят на изоляционные (150-250 кг/м3) и изоляционно-отделочные (250- 350 кг/м3). Теплопроводность изоляционных плит 0,047-0,07, а изоляционно-отделочных-0,07-0,08 Вт/(м·°С).

Предел прочности плит при изгибе составляет 0,4-2 МПа.

Древесноволокнистые плиты обладают высокими звукоизоляционными свойствами. Изоляционные и изоляционно - отделочные плиты применяют для тепло- и звукоизоляции стен, потолков, полов, перегородок и перекрытий зданий, акустической изоляции.

Арболит изготовляют из смеси цемента, органических заполнителей, химических добавок и воды. В качестве органических заполнителей используют дробленые отходы древесных пород, сечку камыша.

Сырьём для изготовления теплоизоляционных пластмасс служат термопластичные и термореактивные смолы, газообразующие и вспенивающие вещества, наполнители, пластификаторы, красители.

В качестве тепло- и звукоизоляционных материалов распространены пластмассы пористо-ячеистой структуры. В зависимости от структуры пластмассы разделяют на: пенопласты и поропласты.

Пенопласты – пластмассы с малой плотностью и наличием несообщающихся между собой полостей или ячеек, заполненных газами или воздухом.

Поропласты - пористые пластмассы, структура которых характеризуется сообщающимися между собой полостями.

К неорганическим теплоизоляционным материалам относят минеральную вату, стеклянное волокно, пеностекло, вспученные перлит, вермикулит, асбестосодержащие теплоизоляционные изделия, ячеистыебетоны. Минеральная вата волокнистый теплоизоляционный материал, получаемый из силикатных расплавов.

Сырьем для ее производства служат горные породы (известняки, мергели, диориты), доменные и топливные шлаки, бой глиняного и силикатного кирпича.

Производство минеральной ваты состоит из двух процессов: получение силикатного расплава и превращение этого расплава в тончайшие волокна. Расплав образуется в шахтных плавильных печах, в которые загружают минеральное сырье и топливо. Расплав с температурой 1300-1400°С непрерывно выпускают из нижней части печи. Полученные волокна осаждаются на движущуюся ленту транспортера.

Минеральная вата это рыхлый материал, состоящий из тончайших переплетенных минеральных волокон и небольшого количества стекловидных включений. В зависимости от плотности минеральная вата подразделяется на марки 75, 100, 125 и 150. Она огнестойка, не гниет, малогигроскопична и имеет низкую теплопроводность 0,04-0,05 Вт (м.°С).

Минеральная вата хрупка, и при ее укладке образуется много пыли, используют в качестве теплоизоляционной засыпки пустотелых стен и перекрытий. Сама минеральная вата является полуфабрикатом, из которого выполняют разнообразные минераловатные изделия: войлок, маты, полужесткие и жесткие плиты и др. Стеклянная вата состоит из беспорядочно расположенных стеклянных волокон, полученных из расплавленного сырья.

Сырьем для производства стекловаты служит кварцевый песок, кальцинированная сода и сульфат натрия или стекольный бой.

Стекловолокно из расплавленной массы получают методами вытягивания или дутьевым. Стекловолокно вытягивают подогревом стеклянных палочек до расплавления с последующим их вытягиванием в стекловолокно, наматываемое на вращающиеся барабаны или вытягиванием волокон из расплавленной стекломассы через небольшие отверстия-фильтры с последующей намоткой волокон на вращающиеся барабаны. При дутьевом способе расплавленная стекломасса распыляется под действием струи сжатого воздуха или пара.

Плотность стеклянной ваты 75-125 кг/м3, теплопроводность 0,04-0,052 Вт/(м/°С), предельная температура применения стеклянной ваты 450°С.

Пеностекло - теплоизоляционный материал ячеистой структуры.

Раствором называется правильно подобранная смесь вяжущего, заполнителя, воды, специальных добавок, затвердевающая до прочности природного камня.

Классификация

По плотности : тяжелые (1500 кг/м 3 и более); легкие (менее 1500 кг/м 3).

По скорости схватывания : быстросхватывающиеся; медленносхватывающиеся.

По количеству вяжущего : жирные; тощие.

По виду вяжущего : глиняные; известковые; гипсовые; известково-гипсовые; цементные; цементно-известковые. В зависимости от среды твердения : воздушные растворы; гидравлические.

В зависимости от вяжущих : простые; сложные (смешанные).

По назначению : кладочные; отделочные (штукатурные); монтажные; инъекционные; специальные.

Свойства растворных смесей

Удобоукладываемость - это свойство растворнойсмеси легко распределяться плотным и тонким слоем наосновании, равномерно заполняя все его неровности ишероховатости.Удобоукладываемость зависит от пластичности и водоудерживающей способности смеси.

Подвижность - это способность растворнойсмеси растекаться под действиемсобственной массы или приложенных к нейвнешних сил.Водоудерживающая способность - это свойство растворной смеси удерживать воду при наличии ее поглощения пористым основанием.

Расслаиваемость - разделение растворной смеси на твердую и жидкую фракции при ее перевозке или хранении. Наибольшая крупность зерен заполнителя должна быть, мм, не более: кладочные (кроме бутовой кладки) 2,5; бутовая кладка5,0; штукатурные (кроме накрывочного слоя) 2,5; штукатурные накрывочного слоя 1,25; облицовочные 1,25.

Прочность раствора характеризуется его маркой, которая определяется пределом прочности при сжатии стандартных образцов - кубов с ребрами 7,07 см. По пределу прочности на сжатие (кгс/см 2) для строительных растворов установлены следующие марки: М 4, 10, 25, 50, 75, 150, 200.

Водонепроницаемость - это свойство раствора непропускать через себя воду. Степень водонепроницаемости зависит в основном от пористости раствора.Водонепроницаемость раствора повышают введением внего жидкого стекла или полимерных смол.

Морозостойкость - это свойство раствора выдерживать многократноечисло циклов попеременного замораживания и оттаиваниябез видимых признаков разрушения и значительногоснижения прочности и массы (F 10, 15, 25, 35, 50, 100, 150, 200).

Условное обозначение строительного раствора должно состоять из сокращенного обозначения с указанием степени готовности, назначения, вида применяемого вяжущего, марок по прочности и подвижности, средней плотности и обозначения настоящего стандарта.

Пример условного обозначения тяжелого раствора, готового к употреблению, кладочного, на известково-гипсовом вяжущем, марки по прочности М100, по подвижности - Пк2: Раствор кладочный , известково - гипсовый , М 100, Пк 2, ГОСТ 28013-98.

Для сухой растворной смеси, легкой, штукатурной, на цементном вяжущем, марки по прочности М50 и по подвижности - Пк3, средней плотности D900: Смесь сухая растворная штукатурная , цементная , М 50, Пк 3, D900, ГОСТ 28013-98 . Применяют портландцемент, шлакопортландцемент. Пески применяют природные - кварцевые, полевошпатные, а также искусственные - дробленные из плотных горных пород и пористых пород. Пластифицирующие добавки. Неорганические дисперсные добавки (известь, глина, зола ТЭС, диатомит, молотый доменный шлак и т.п.). Органические поверхностно-активные пластифицирующие добавки. Строительные сухие смеси - это композиции заводского изготовления на основе минеральных вяжущих веществ, включающие заполнители и добавки. В качестве вяжущего используют порошкообразные минеральные вяжущие: портландцемент, строительный гипс, воздушную известь. В качестве заполнителя применяется песок для строительных работ.

Большую роль в технологии сухих смесей играют добавки. Применяются неорганические и органические пластифицирующие добавки: глина, воздушная известь, зола, суперпластификатор С-З. Вода для затворения сухих смесей не должна содержать вредных примесей.

Технология производства сухих смесей: поступаемый с карьера песок подвергается тепловой обработке в сушильных агрегатах, затем производят рассев на ситах до нужных фракций. Просеянный песок направляется в смеситель. В этот же смеситель загружают и другие компоненты в необходимом количестве. Дозированные материалы перемешивают до получения однородной массы. Полученную смесь затаривают в емкости, необходимые для реализации и подают на склад готовой продукции.

  • < Назад
  • Вперёд >

Т рудоёмкость работ, связанная с применением строительных растворов занимает приблизительно 35-40 процентов от всех затрат на строительство объектов. Поэтому учёные уделяют много времени для совершенствования этого вида работ. Большое внимание проектировщиков и сконцентрировано на внедрении новейших технологий, связанных с мокрыми процессами.

Д ля этого необходимо иметь в первую очередь стройматериалы высокого качества. Сегодня ни новое строительство, ни реконструкция и ремонт не мыслимы без применения сухих полимерных смесей. Они однозначно более высокого качества, чем традиционные составы.

О бычные растворные смеси приготовляют способом смешения минеральных вяжущих (известь, цемент и так далее), песка и воды в промышленных условиях или непосредственно на стройплощадках. При транспортировке, на раствор действуют множество факторов, что могут привести к снижению качества растворов, например расслаивание или снижение подвижности. На стройплощадках с целью повышения подвижности, а значит, удобства укладки вводят дополнительные порции воды. Но необоснованное изменение водоцементных пропорций может привести к резкому снижению прочности раствора. Кроме того повышается его усадка, понижается устойчивость к трещинам, увеличивается пористость, что в свою очередь приводит к снижению морозостойкости. Эти факторы в конечном итоге резко снижают долговечность строительного объёкта.

К роме того, перевозить готовые растворные смеси промышленного приготовления при температуре ниже нуля необходимо специальным транспортом. Если этого транспорта нет, в смесь нужно вносить противоморозные компоненты, что может с большой долей вероятности отразиться на надёжности и долговечности объёктов, созданных на этих растворах. Приготовление растворной смеси непосредственно на стройплощадке без помощи специальной лаборатории может привести к неправильным расчётам дозировки, что может отразиться на стабильности составов и соответственно качестве проделанной работы.

Т акой способ приготовления растворов не приспособлен к введению дополнительных химических компонентов, и не позволяет приготавливать высококачественные смеси широкого ассортимента.

В результате широкое распространение получили случаи, когда не соблюдаются проектные решения и происходит грубое нарушения технологии строительных работ. Все эти недостатки можно нейтрализовать, если начать использовать сухие модифицированные смеси промышленного производства.

В отличие от традиционных растворных смесей, сухие растворные смеси поступаю на объект в сухом виде, и доводятся до готовности водой только перед использованием. Таким образом, перед традиционными смесями полимерные составы имеют следующие преимущества:
– значительно повышается качество выполняемых строительных работ из-за того, что строительные составы стабильны;
– в зависимости от типа работы и степени механизации производительность труда может возрасти от полтора до трёх раз;
– материалоёмкость выполняемых работ снижается в три-четыре раза;
– операции по снабжению и складированию значительно упрощаются.

В кладке стен снаружи применяют растворные смеси как невысокой сложности (на цементе), так и высокой сложности (на цементе и извести, цементе и глине и тому подобное), отличающиеся повышенным коэффициентом пластичности, способностью сдерживать воду и экономностью. Способы приготовления безводных смесей дают возможность изготовлять составы с чётко улучшенными совокупностями наполняющих добавок и чётким отмериванием начальных составляющих. Только точное придерживание указаний по подготавливанию начальных компонентов, их отмеривание и старательное смешивание и есть те критерии, которые определяют характер безводных соединений. Из-за этого достигается постоянное немалое качество полученного продукта (раствор, бетон и тому подобное). И поэтому изменённые безводные смеси так распространены, даже учитывая их значительную изначальную цену.

В конце концов, безводные соединения и продукт, на них основанный, получаются более дешёвыми, чем продукт на основе привычных соединений, из-за обеспечения растущей трудовой производительности, низкой материалоемкости, высоким характеристикам использования и, что самое главное, значительно более долгому сроку использования. Как раз долгий срок использования и выступает как определяющий фактор при оценке экономической эффективности использования какого-либо сырья. Не секрет, что расходы по использованию возрастают пропорционально уменьшению промежутка между ремонтами. Как ни прискорбно, но при строительстве нередко доводится попадать в ситуацию, когда использование недорогих стройресурсов, например, смесей для раствора, приводит к немалым затратам на использование. Поэтому, чтобы оценить экономи-ческую эффективность использования сухих смесей, необходимо обращать внимание и на единоразовые затраты, и на затраты на использование, чтобы верно решить, насколько они окупаемы. К примеру, в практике строительства зафиксировано много случаев, когда использование растворов на цементе и извести для кладки из кирпича вызывает наличие на фасадах строений «высолов», бороться с которыми значит не только тратить много сил, но и средств. Опять-таки, из-за того, что ассортимент безводных соединений достаточно велик, существует возможность самое лучшее для определённых работ и уменьшить расходы на их исполнение.

Б езводные соединения, которые есть на рынке строительных материалов, разделяют по главным признакам, которых три:
- в зависимости от вяжущего;
- в зависимости от того, каков наполнитель по дисперсности;
- в зависимости от того, каково основное назначение.

П о разновидности вяжущего элемента безводные соединения можно делить на:
- на цементе (имеющие в составе цемент);
- не имеющие в составе цемент.

Д исперсность наполняющего безводные соединения делит на:
- с крупным зерном - крупность наполняющего до двух с половиной миллиметров;
- тонкодисперсные (с мелким зерном) - крупность наполняющего не больше, чем триста пятнадцать сотых миллиметра.

О сновное назначение сухие смеси подразделяет на:
- кладочные - кладка блоков ячеистой структуры, кирпича, камней;
- для монтажа - монтаж панелей большого размера и перегородок;
- на клею - облицовывание стройповерхностей;
- для затирки (фуги) - шовная затирка в промежутках облицовочных материалов;
- для изоляции от воды - устройство вертикальной и горизонтальной гидроизоляции цоколей, подвалов, фундамента и так далее;
- защитно-отделочные на штукатурке - устройство отделочного декора внутри и снаружи здания;
- уничтожающиеся сами по себе - устройство половых оснований и стяжек;
- для шпаклёвки-заделка раковин и неровностей на бетонно-штукатурных основаниях;
- - грунтовочные - для улучшения сцепления основания и выделенных слоев.

М одифицированные сухие смеси для кладки из кирпича и камня представляют собой смешанные между собой минеральные , минеральные наполнители, имеющие строго фиксированную дисперсность, полимерные соединяющие и изменяющие добавления.

Д обавки необходимы для сохранения удобства укладывания смесей для растворов при совмещении их с основанием, имеющим пористую структуру. Добавления-пластификаторы способны оказаться как органической, так и не органической структуры. Они увеличивают свойство смеси для раствора задерживать влагу. Этот вид сырья отличается тем, что строитель защищён от недочётов, которые могут быть при работе с привычными растворами. Производители безводных составов выбрали ресурсы и материалы высокого качества, разделили их точной дозировкой, строитель же должен лишь затворить водой подготовленное сырьё в необходимой пропорции. Кроме того, все безводные составы идут на водяном основании.

Д исперсная добавка неорганического характера состоит из микроскопических элементов, которые замечательно сдерживают влагу (известь, зола, молотый доменный шлак и т.п.). Поверхностно-активные и воздухововлекающие добавки органической природы улучшают удобоукладываемость растворных смесей, а также позволяют сберечь вяжущий элемент, увеличивают стойкость к морозу, уменьшают впитываемость влаги и растворную усадку.

С троительная практика часто использует заделывание швов кладки из кирпичейраствором разных цветов. Чтоб получить смеси для растворов разных цветов, к их составляющим добавляют красящие вещества. Это позволяет подобрать оттенок, который больше всего подходит под цвет кирпича или же составляет с ним контраст. Чтобы приготовить цветной раствор, нередко используют цемент белого цвета, используемый как вяжущее, а как заполнитель, возможно применение известняка или кварца. Такие растворы по прочности имеют от десяти до двадцати МПа. Безводные смеси и их составы в табл. 52 .

Д ля того, чтобы сделать лучше свойства адгезии, снижения водопотребности и увеличения пластичности в смеси добавляют ПВА. Чтобы уменьшить гидровпитываемость и увеличить стойкость к морозам штукатурки, применяют средства, стимулирующие сопротивление влаге, на основе органического кремния. Промежуток, за который растворы на основе гипса и перлита схватываются, корректируют добавлением в воду «тормоза» на основе клея и извести или же шлама из мелляса. Безводные смеси для кладки привозятся в мешках, масса которых, как правило, составляет четверть центнера, разводятся при помощи воды по месту строительства и смешиваются в миксере или дрелью с насадкой. Наилучший объём замеса на один раз равен одной упаковке. Но замесить нужный объём раствора несложно, если соблюдать водные пропорции и пропорции безводной смеси.

Таблица 52. Составы сухих смесей, % массы

Портланд цемент Гипс строительный Перлит марки 100 Рубленое стекловолокно Плотность смеси, кг/м3
75 - 23 3 360
70 - 25 5 350
65 - 30 5 340
60 - 33 7 330
- 80 15 5 340
- 75 20 5 330
- 70 23 1 325
- 65 25 5 315

М иксер помогает вручную смешивать безводные смеси с нужным объёмом воды до получения смеси однородной природы без уплотнений. Долговечность растворов имеет зависимость от составляющих компонентов и колеблется между двумя и четырьмя часами. Материал, успевший стать твёрдым, ни за что нельзя заново разводить водой, превращая его в якобы годный. Если раствор наносится механически, придерживание инструкции производителя необходимо для следования порядку технологии. Многие инструкции предписывают очень интенсивное и старательное смешивание раствора непосредственно в миг соединения смеси и воды. Огрехи смешивания способны довести до возникновения уплотнений или таких изъянов, как местное материальное незатвердевание или твердение дольше, чем следует, локальное появление пузырей и так далее. Как вариант, рассматривается:
–– растворное изготовление;
- бесперебойный миксер, наполняющийся непосредственно из тары;
- бесперебойный миксер с местом, где накапливается безводная смесь, или же резервуаром;
– бесперебойный миксер, укомплектованный открытой системой из способного подавать насоса.

Н еобходимо учитывать, что миксер с барабаном не всегда даёт необходимый состав однородной природы. В условиях дома позволительно воспользоваться мощной дрелью с низкими оборотами и насадкой для смешивания. Но насадка должна быть такой длинной, чтобы можно было старательно размешать сырьё на всей глубине, включая дно ёмкости, в которой производится смешивание. Наиболее распространенные безводные смеси для кладки из кирпича и камня приведены в табл. 53 .

Таблица. 53 Номенклатура смесей для каменной кладки

п/п Область применения Фирма изготовитель Наименование смеси
1 2 3 4
1 Кладка стен, заделка швов бетонных пане-лей, стяжка ОАО «БИРСО БИРСС 1, 2, 3
2 То же при отрицательных температурах ОАО «БИРСС» БИРСС 1М, 2М, ЗМ
3 Кладка стен из блоков газо- и пенобетона ОАО «БИРСС» БИРС ПОРО БЕТОН 26Я
4 Кладка стен из кирпи-ча и керамзитов.ых блоков ООО «Серголит» Цементные кладоч-ные растворы М50, М75, М100, М150
5 Кладка стен из кирпи-ча, газобетонных блоков ООО «Петромикс» ПЕТРОМИКС Б; ПЕТРОМИКС ПМД (противоморозная добавка)
6 Кладка стен из кирпи-ча, природного камня, бетонных блоков, газобетонных блоков Нпооо «Радекс» РСС (кладочная цементная)
7 Кладка стен из кирпи-ча, камня, блоков из легкого бетона Компания «Завод Novomix» NOVOMCC-M-100
8 Кладка стен из кера-мического и силикат-ного кирпича Компания «АжиоСтрой» РУНИТ; Монтажная смесь М20
9 Кладка: блоков из яче-истого бетона при производстве внут-ренних и наружных работ ООО «КОнсоЯит» CONCOLIT 210
10 Кирпичная кладка из кирпича, блоков Из ячеистого бетона и газобетона ООО«АТЛАС-Москва» Клей ATLAS, ATLAS INTER, ATLAS KB-15
11 Кладка стен из ячеис-того бетона ГК «ЮНИС» UNIS2000
12 Кладка блоков из яче-истого бетона Компания «Сибирская Клей для ячеистого бетона
13 Кладка блоков из газобетона и силикатного кирпича ооо «ФоРекс»(«СКАНМИКС») Клей SCANFIX EASY
14 Кладка печей и дьшо-ходов в помещениях _ SCANTERMSA
15 Кладка огнеупорного кирпича _ SCANTERM TK

В ыбирая безводную смесь, вдумчиво ознакомьтесь с руководством по эксплуатации от производителя и другими данными для потребителя, которые являются сопутствующими документами для товара. Обязательно нужно проверить пригодность смеси относительно сроков, так как просроченный продукт не позволит получить необходимое качество.

Подвижность растворной смеси - это её способность растекаться под действием собственной массы или приложенных к ней внешних сил (ГОСТ 5802- 86). Она характеризуется глубиной погружения стандартного конуса за определенный период.

Схема прибора для определения подвижности приведена на рис. 13; используется стальной стержень диаметром 12 мм, длиной 300 мм.

Эталонный конус прибора изготавливают из листовой стали или из пластмассы со стальным наконечником. Параметры эталонного конуса; масса со штангой - 300 ±2 г; высота - 145 мм; диаметр основания - 75 мм; угол при вершине - 30° ±30".

Для растворной смеси используется сосуд емкостью 3 л, диаметр его нижнего основания - 150 мм, диаметр верхнего основания - 250 мм, высота - 180 мм.

Прибор размещают на горизонтальной поверхности и проверяют скольжение штанги 6 в направляющих 5.

Растворной смесью заполняют сосуд 2, установленный на штативе. При этом уровень смеси должен быть на 10 мм ниже краев сосуда. Затем производят уплотнение растворной смеси штыкованием стальным стержнем 25 раз с последующим кратным легким постукиванием сосуда о стол. Подготовленная указанным способом растворная смесь готова к проведению испытаний.

Острие стандартного конуса 3 приводят в соприкосновение с поверхностно растворной смеси, находящейся в сосуде, закрепляют штангу стандартного конуса стопорным винтом 4 и производят первый отсчет по шкале. Затем отпускают стопорный винт. Через 1 мин после свободною погружения стаи дартного конуса делают второй отсчет по шкале с погрешностью до 1 мм.

Подвижность растворной смеси оценивается в сантиметрах как разноси, между первым и вторым отсчетом.

За результат принимают среднее арифметическое результатов двух йены таний на разных пробах растворной смеси одного замеса.

Расслаиваемость растворной смеси определяют (ГОСТ 5802-86), сопоставляя содержания массы заполнителя в нижней и верхней частях свежеотформованного уплотненного образца. Последовательность определения такова. В металлические формы с размерами 150х150x150 мм укладывают растворную смесь, затем заполненные формы устанавливают на лабораторную виброплощадку типа 435А и смесь подвергают вибрации в течение 1 мин. После завершения вибрирования из формы отбирают верхний слой растворной смеси высотой 7,5 ±0,5 мм и помещают его в противень, а нижний слой путем опрокидывания формы выгружают во второй противень. Верхний и нижний слои взвешивают с погрешностью до 2 г и осуществляют мокрый рассев на сите с диаметром отверстия 0,14 мм. Промывают струей чистой воды до полного удаления вяжущего (из сита вытекает чистая вода). Отмытый заполнитель верхней и нижней частей помещают на чистый противень, сушат при температуре 105-110 °С до постоянной массы и взвешивают с погрешностью до 2 г.


За результат испытания принимают среднее арифметическое результатов двух определений, отличающихся между собой не более чем на 20 % от меньшего значения.

Водоудерживающая способность оценивается по потере массы слоя растворной смеси толщиной 12 мм, уложенного на 10 листов промокательной бумаги (ГОСТ 5802-86). Схема прибора представлена на рис. 14.

Порядок испытания следующий . Взвешивают 10 листов промокательной бумаги размером 150х150 мм с погрешностью до 0,1 г, затем их укладывают на стекляную пластинку размером 150x150 мм, помещают сверху прокладку из марлевой ткани и сверху устанавливают металлическое кольцо с внутреиним диаметром 100 мм, высотой 12 мм и толщиной стенки 5 мм и снова взвешивают.

Растворную смесь, предварительно тщательно перемешанную, укладывают в металлическое кольцо вровень с краями и взвешивают. Через 10 мин кольцо с раствором и марлей осторожно снимают. Промокательную бумагу взвешивают с погрешностью до 0,1 г.

За результат испытаний принимают среднее арифметическое результатов двух определений, отличающихся между собой не более чем на 20 % от меньшего значения.

Плотность растворной смеси характеризуется отношением массы уплотненной растворной смеси к её объему. Определение плотности (ГОСТ 5802-86) проводят в такой последовательности. Предварительно взвешивают металлический сосуд объемом 1000 мл и заполняют его с избытком растворной смесью. Затем смесь уплотняют штыкованием стальным стержнем 25 раз и 5-6-кратным легким постукиванием о стол.

Избыток растворной смеси после уплотнения удаляют и поверхность с помощью металлической линейки выравнивают по уровню краев сосуда. Наружные стенки сосуда очищают от попавшего на них раствора. После этого сосуд с растворной смесью взвешивают с погрешностью до 2 г. Плотность уплотненной растворной смеси, кг/м3, вычисляют по формуле


За результат испытаний принимают среднее арифметическое результатов двух испытаний, отличающихся не более чем на 5 % от меньшего значения.

Сроки схватывания (ГОСТ 310.3-76) определяют с помощью прибора Вика. После затворения водой растворная смесь, утрачивая пластичность и подвижность, постепенно густеет, что соответствует началу схватывания, а иием превращается в камневидное тело - наступает конец схватывания.

Начало и конец схватывания растворной смеси определяют в следующем порядке. Свежеприготовленную растворную смесь укладывают в кольцо прибора Вика с размерами: нижний диаметр - 75 мм, верхний диаметр - 65 мм, высота - 40 мм. В стержень прибора устанавливают иглу диаметром 1,1 мм и иннной 50 мм.

Иглу прибора доводят до соприкосновения с поверхностью растворной смеси, и в этом положении закрепляют стержень зажимным винтом. Затем освобождают стержень, после чего игла свободно погружается в тесто. Иглу погружают в растворную смесь каждые 10 мин. После каждого погружения шла не должна попадать в прежнее место.

Начало схватывания характеризуется временем, прошедшим от начала затворения до того момента, когда игла не доходит до пластинки на 1-2 мм.

Конец схватывания оценивается временем от начала затворения до момента, когда игла опускается в растворную смесь не более чем на 1-2 мм.

Пригодность смеси следует проверить перед применением. Чашу вместимостью 200 см3, заполненную свежеприготовленной тщательно перемешанной растворной смесью, помещают в плотно закрывающуюся емкость и издерживают при температуре 20 ± 2 °С в течение времени, указанного в нормативном документе. После этого чашу с растворной смесью извлекают из емкости. Пригодная растворная смесь должна легко наноситься шпателем, не сворачиваясь под ним.

Стекание шпаклевки с вертикальной поверхности. Растворную смесь слоем 2-3 мм наносят на бетонную пластинку, устанавливают ее в вертикальное положение и выдерживают при температуре 20 ± 2 °С в течение 30 мин. Растворная смесь не должна стекать с вертикальной поверхности.

Условная вязкость растворных смесей (ГОСТ 8420-74) определяется на пискозиметре ВЗ-246 с диаметром сопла 4 мм вместимостью 100 ± 1 см3. Оптимальный диапазон времени истечения составляет от 20 до 200 с. Испытание проводят при температуре 20 ± 2 °С в такой последовательности. Вискозиметр с помощью уровня устанавливают в вертикальное положение, под сопло помещают сосуд емкостью 150 см3. Отверстие сопла вискозиметра закрывают пальцем, исследуемый материал медленно, для предотвращения образования пузырей, с избытком наливают в вискозиметр. Избыток материала удаляют при помощи стеклянной пластинки. Затем открывают отверстие сопла и одновременно с появлением материала из сопла включают секундомер, останавливая его в момент первого прерывания струи испытуемого материала. Отсчитывают время истечения.

За результат испытания принимают среднее арифметическое результатов не менее трех измерений. Допускаемые отклонения отдельных определений времени истечения от среднеарифметического значения не должны превышать ±5 %.

Жизнеспособность растворной смеси (ГОСТ 19270-73) характеризуется изменением подвижности смеси в течение заданного времени. Для ее определения каплю смеси переносят стеклянной палочкой на горизонтальную поверхность стеклянной пластины с размерами 300*250 мм. Пластину устанавливают в вертикальное положение и закрепляют. Затем замеряют металлической линейкой длину потека в сантиметрах. Пластинку со смесью помещают в эксикатор и хранят в течение времени, указанного в нормативном документе. После чего пластинку извлекают из эксикатора и производят измерение длины потека.

Укрывистость характеризует способность материала при нанесении на черно-белую подложку уменьшать контрастность до исчезновения различия между черной и белой поверхностями (ГОСТ 8784-75). Черно-белая подложка представляет собой квадраты, нанесенные черной тушью на чертежную белую бумагу в шахматном порядке. На листе бумаги 90x120 мм получают 12 черных и белых квадратов размером 30x30 мм. На указанную подложку кладут стеклянную пластину 90х 120 мм, предварительно взвешенную, а затем на пластину наносят краску слоями до тех пор, пока различие между черными и белыми квадратами полностью исчезнет. После полного укрытия окрашенную стеклянную пластинку взвешивают с погрешностью до 0,02 г.

Укрывистость, г/м2, вычисляют по формуле

За результат испытания принимают среднее арифметическое результатов двух определений.

Время высыхания краски до степени 3 (ГОСТ 19007-73). Степень высыхания характеризует состояние поверхности материала, нанесенного на пластину, при определенных времени и температуре сушки. Время высыхания - промежуток времени, в течение которого достигается заданная степень высыхания материала при определенной его толщине и условиях сушки. Для определения времени высыхания до степени 3 растворную смесь наносят на пластинки из бетона с размерами 50x50x25 мм. Поверхность пластинки обильно увлажняют водой. После исчезновения «водяного зеркала» растворную смесь наносят на поверхность пластинок кистью или валиком. Толщина слоя составляет 140-150 мкм. Температура испытания 20 ±2 °С, относительная влажность воздуха 65 + 5 %. Время высыхания указывается в нормативной документации. При испытании на окрашенную пластинку помещают пинцетом листок бумаги. На него накладывают резиновую пластинку, на середину которой устанавливают гирю массой 200 г. Оценку степени нмсыхания проводят через 30 с после снятия нагрузки.

Если бумага не прилипает к поверхности высохшего материала, фиксируется степень высыхания 3.

Открытое время выдержки клея определяют по времени, в течение которого можно приклеить плитку на уже нанесенный слой клея.

Поверхность бетонной плиты обильно смачивают водой. После исчезновения «водяного зеркала» на поверхность плиты наносят клей и разравнивания его шпателем, толщина слоя должна быть не менее 0,5 мм. На слой клея укладывают керамические плитки с интервалом 5 мин. Сразу же после укладки каждую плитку нагружают грузом массой 3 кг на 30 с. Через 40 мин все плитки снимают с бетонной плиты и переворачивают приклеиваемой стропой вверх. Степень заполнения клеем приклеиваемой поверхности плитки определяется в процентах. Открытым временем выдержки клея считается время в минутах, при котором 50 % клея или более остается на плитке.

Устойчивость плитки к смещению определяют по смещению плитки через 30 мин после снятия с нее нагрузки. Растворную смесь с помощью шпателя наносят на горизонтально расположенную бетонную плитку (основу) диаметром 200*350*5 мм слоем, указанным в нормативной документации. Через 10 мин на бетонную плитку с растворной смесью наклеивают две керамические плитки с размерами 150*150*5 мм, на середину которых помещают на 30 с гири массой 5 кг и четко отмечают положение керамических плиток относительно основы. Через 30 с гири убирают и бетонную плитку с поразцами устанавливают в вертикальное положение. По истечении 30 мин измеряют расстояние, на которое смещаются плитки.

За результат испытания принимают среднее арифметическое результатов двух испытаний с погрешностью до ±0,25 мм.

Растекаемость определяют по диаметру расплыва растворной смеси. Металлический цилиндр диаметром 50,8 мм, высотой 45 мм и толщиной стенки мм, помещённый в центр стеклянной пластинки с размерами 250*350*5 мм, выполняют растворной смесью, излишки которой срезают линейкой. Цилиндр и стекло предварительно протирают тканью. Через 45 с цилиндр очень быстро поднимают вертикально на 15-20 см и отводят в сторону.

Диаметр расплыва измеряют через 2 мин после поднятия цилиндра липецкой в двух перпендикулярных направлениях с погрешностью не более 5 мм н иычисляют среднее арифметическое результатов двух измерений.

Допустимое время коррекции положения плитки - это время, в течение мморого возможно изменение положения плитки, наклеенной на бетонное оиюнание. Для его определения на бетонную плиту наносят слой клея толщиной не менее 0,5 мм. На этот слой укладывают пять плиток. Гири массой 1 кг устанавливают на уложенные плитки и выдерживают их в течение 30 с. После 10 мин, а потом с интервалом 5 мин проводят коррекцию очередной плитки путем поворота её на 90° и обратно в исходное положение. Подготовленные образцы оставляют затвердевать в течение 28 сут при температуре 20 ± 2 °С. Через 28 сут определяют усилие отрыва плитки от бетонного основания.

Прочность сцепления плитки с бетонным основанием, составляющая не менее 0,5 МПа, соответствует допустимому времени коррекции, которое указывается в нормативной документации.

















Свойства коллоидных систем Коллоидные частицы настолько малы, что система кажется однородной. Но они достаточно велики, чтобы хорошо рассеивать свет. 1: Коллоидные системы обычно выглядят мутными, непрозрачными. 2: Эффект Тиндаля – рассеяние света, благодаря которому направленный световой луч виден сбоку при прохождении через коллоидную систему.








Перегонка нефти о С 12 –С 16 (реакт.самолеты) о о С 5 –С 11 Автомобильный о Авиационный о о С 8 –С о С 12 –С 20 (диз.топливо) Вазелин Парафин Смазочные масла Асфальт (>500 о) 500 о)"> 500 о)"> 500 о)" title="Перегонка нефти 180-270 о С 12 –С 16 (реакт.самолеты) 320-350 о 40-180 о С 5 –С 11 Автомобильный 100-120 о Авиационный 70-100 о 150-250 о С 8 –С 14 270-360 о С 12 –С 20 (диз.топливо) Вазелин Парафин Смазочные масла Асфальт (>500 о)"> title="Перегонка нефти 180-270 о С 12 –С 16 (реакт.самолеты) 320-350 о 40-180 о С 5 –С 11 Автомобильный 100-120 о Авиационный 70-100 о 150-250 о С 8 –С 14 270-360 о С 12 –С 20 (диз.топливо) Вазелин Парафин Смазочные масла Асфальт (>500 о)">




Перекристаллизация Способы: - с упариванием растворителя и без - с кристаллизацией при низкой Т или при высокой Пути загрязнения осадка - адсорбция маточного раствора на мелких кристаллах - окклюзия (захват крупными кристаллами маточного раствора в полости) - соосаждение изоморфных примесей


Изоморфизм Изоморфизм – свойство веществ, аналогичных по химическому составу, кристаллизоваться в одинаковых формах. Смешанный кристалл KCr(SO 4) 2 12H 2 O KAl(SO 4) 2 12H 2 O