Меню
Бесплатно
Главная  /  Гипсокартон  /  Устройствам паровых дкв и их обслуживание. Котлы паровые высокого давления ДКВр – конструкция, принцип работы, выбор, цена

Устройствам паровых дкв и их обслуживание. Котлы паровые высокого давления ДКВр – конструкция, принцип работы, выбор, цена

Для обеспечения технических нужд промышленных предприятий, выработки электричества, а также для возможности функционирования централизованных или автономных систем отопления и вентиляции используются паровые котлы высокого давления. В функцию оборудования входит генерация насыщенного пара в процессе сгорания того или иного типа топлива. На рынке присутствует достаточно много моделей агрегатов, отличающихся габаритами, мощностью и конструктивными особенностями. Паровые котлы ДКВр (или двухбарабанные котлы, вертикально-водотрубные, реконструированные) относятся к высокопроизводительному отопительному оборудованию, работающему на разных видах топлива.

Конструкция ДКВр

Устройство котлов высокого давления является достаточно сложным, что отражается на цене оборудования. Агрегаты состоят из двух барабанов:
  • нижнего – короткого;
  • верхнего – более длинного.

Оборудование имеет экранированный топочный отсек, камеру догорания (не везде), экранные и конвективные пучки труб. Для возможности их периодической или аварийной чистки днище корпуса оборудуется лазами, которые используются и при осмотре барабанов. Снаружи устанавливаются площадки, предназначенные для техобслуживания, и лестницы – для удобства подъема наверх. В конструкции котла присутствуют, также, питательные трубопроводы и перегородки, обдувочные установки и дымососы. Каждый базовый и дополнительный элемент выполняет свою функцию. Все они имеют определенное установочное место.

Естественная циркуляция в замкнутом контуре топливного водотрубного агрегата высокого давления происходит благодаря разной плотности перемещаемой пароводяной смеси в подъемных и воды в опускных трубах, согнутых определенным образом. Напор создается за счет неодинакового обогрева участков горячими газами. Вертикальными котлы называются потому, что трубы в конструкции размещаются под углом 25 градусов и более относительно горизонта. Подобные агрегаты имеют бо́льшее количество пучков и число труб в них, что отражается на увеличении общей площади нагрева. Такое конструкторское решение позволяет осуществлять выпуск котлов высокого давления без расширения объема барабанов.

Важной составляющей ряда парогенераторов высокого давления (производительностью до 10т/ч) является топочная камера, разделенная на два сегмента посредством кирпичной кладки:

  • топку;
  • камеру догорания, повышающую КПД.

В зависимости от модели, котлы комплектуются дополнительными элементами:

  • различными клапанами – предохраняющими, спускными, отборны́ми, питающими, и т.д.;
  • запорными вентилями;
  • продувочной арматурой;
  • штуцерами;
  • указателями уровня воды;
  • манометрами и другими измерительными приборами;
  • пароперегревателями.

В паровых котлах серии ДКВр имеется возможность работы в водогрейном режиме. Особенности их конструкции и технические характеристики позволяют поднимать давление в три раза – с 1,3 до 3,9МПа. В результате, температура перегретого пара может увеличиваться со 195 до 440 градусов по Цельсию. Оптимальная мощность выпускаемого оборудования находится в пределах 2,5…20т/ч. Цена ДКВр зависит от данного показателя и модели агрегата.

Эксплуатация паровых газовых котлов рассматриваемой модификации может осуществляться в разных климатических зонах, даже на Крайнем Севере.

Подробнее о некоторых комплектующих

Паровые котлы оборудуются:

  • защитной автоматикой – отсекает топливо при аварийных и внештатных ситуациях (отсутствие напряжения, угасание пламени, резкое отклонение от нормативного давления в любом из конструктивных узлов);
  • аварийной или предупредительной сигнализацией – световой и звуковой;
  • автоматической регулировкой уровня воды;
  • системой безопасного розжига – проверяет показатель герметичности клапанов;
  • контрольной автоматикой – следит за давлением пара и топлива;
  • автоматической настройкой соотношения топливо-воздух в топке.

Экранные и конвективные бесшовные трубы изготавливаются диаметром 51мм из стали. С котлом они соединяются посредством вальцованных соединений.

Специальные газо-мазутные горелки применяются в случаях раздельного использования топлива – либо газа, либо мазута. Они выпускаются в пяти типоразмерах, отличаясь мощностью и типом завихрителя – прямоточного или осевого. Каждая горелка комплектуется двумя форсунками – основной и сменной. Дополнительный элемент задействуется лишь в случае чистки или установки новой форсунки.

Твердотопливные агрегаты высокого давления оборудуются золоуловителями:

  • механическими циклонного типа – блочными или батарейными;
  • работающими на основе ионизации – электрофильтры притягивают заряженные частицы;
  • мокрыми – удаление производится посредством воды.

Центробежный дымосос предназначается для твердотопливных котлов. Он устанавливается как внутри помещений, так и под уличными навесами. Оборудование в одностороннем направлении отсасывает из топки угарные газы. В функцию другого элемента – вентилятора – входит обеспечение противоположного действия – он принудительно подает воздух в топку, что содействует более продуктивному сжиганию топлива.

Топка для твердотопливных котлов мощностью до 10т/ч оборудуется ленточными пневмомеханическими питателями топлива, благодаря которым может производиться непрерывная загрузка угля на уже горящий слой. Она, также, комплектуется неподвижными решетками с поворотными колосниками. Для их управления, в конструкции котла предусматриваются специальные приводы, также как и для воздушных заслонок.

Принцип работы

После поступления воды в верхний барабан по входным коллекторам, происходит ее смешивание с находящейся внутри котловой водой, часть которой, в свою очередь, по циркуляционным трубам частично попадает в нижний барабан. Прогреваясь, вода поднимается, вновь оказываясь в верхнем барабане, но уже с паровой составляющей. Процесс происходит циклично.

Образующийся пар проникает в сепарационные механизмы котла, где происходит «отбор» влаги. В результате получается сухой пар, готовый к использованию. Он либо сразу отправляется в технологическую сеть, либо доводится до более высоких температур в пароперегревателе.

Процесс естественной циркуляции подчиняется законам физики. Дело в том, что вода имеет бо́льшую плотность по сравнению с пароводяной смесью. В связи с этим, первая жидкость всегда будет опускаться, а второе соединение – подниматься. В определенный момент пар отделяется и устремляется вверх, тогда как вода, благодаря гравитации, возвращается в исходное технологическое положение. Следует отметить, что в разных моделях число контуров циркуляции бывает различным.

До недавнего времени ДКВр изготавливались практически для любых типов топлива – газа и мазута, угля, древесных опилок и торфа. Но сегодня некоторые их них заменили новыми, более современными моделями:

  • КЕ – предназначается для твердого топлива;
  • ДЕ – работает на газо-мазутном топливе.

Но на многих предприятиях в эксплуатации до сих пор находятся проверенные годами паровые агрегаты ДКВр. На вторичном рынке можно купить б/у котлы в хорошем состоянии и по доступной цене, которые наверняка прослужат еще достаточно длительный период.

Причины сбоя

Правильная эксплуатация котлов высокого давления серии ДКВр является гарантией его безопасной работы. Поверхность нагрева должна своевременно охлаждаться, так как она принимает на себя максимальное воздействие топочных газов. По этой причине процесс предусматривает постоянную и интенсивно равномерную циркуляцию теплоносителя внутри контура по опускным и подъемным трубам. В противном случае на металлических стенках со временем появятся свищи, а при увеличении давления – разрывы в трубопроводе.

Кроме того, к сбоям может привести:

  • неверное распределение теплоносителя по трубам, причиной чему служит накопление на внутренних стенках шлама;
  • неравномерный прогрев испаряющих стенок, происходящий в результате загрязнения отдельных участков;
  • неграмотная регулировка факела горения, приводящая к технологически неправильному заполнению пространства топочной камеры.

Преимущества ДКВр

Особенность конструкции и технические возможности отопительных агрегатов серии ДКВр позволяет выделить:

  • существенный диапазон регулируемой паропроизводительности оборудования;
  • поставку в разобранном виде – допускает выполнение установки котлов высокого давления без демонтажа ограждающих конструкций;
  • возможность выбора оборудования под определенный вид топлива;
  • высокий показатель КПД;
  • доступную цену обслуживания;
  • ремонтопригодность.

Выбор котлов

При покупке той или иной модели парогенератора высокого давления необходимо обратить внимание на следующие показатели:

  • производительность – бесперебойность технологического процесса и отсутствие простоев обеспечит оптимальное количество сгенерированного пара за единицу времени. В данном случае – т/час;
  • номинальную мощность (давление пара) – для ДКВр она составляет 1,3МПа;
  • габариты – определяются объемом помещения котельной;
  • цену – зависит от трех вышеперечисленных факторов и дополнительной комплектации;
  • тип используемого топлива.

Следует учитывать и массу парового газового или твердотопливного котла, так как она может доходить до 44 тонн.

Примерная цена

Стоимость паровых котлов зависит от их технических характеристик и набора дополнительных комплектующих. Базовая цена агрегатов российского производства, работающих на газо-мазутном топливе, приблизительно составляет – при производительности:

  • 2,5т/ч – 1400-1500тыс.руб.;
  • 4т/ч – 1700-1800тыс.руб.;
  • 6,5т/ч – 2300-2500тыс.руб.;
  • 10т/ч – 3300-3800тыс.руб.;
  • 20т/ч – 5500-6000тыс.руб.

Цена паровых котлов высокого давления на твердом топливе находится в пределах 1500-7200тыс.руб. Необходимо отметить, что в базовую стоимость оборудования не входят вентиляторы, дымососы и экономайзеры.

МАЗУТНАЯ ЗОЛА

СЕРНИСТЫЙ АНГИДРИД

ДВУОКИСЬ АЗОТА

ОКИСЬ УГЛЕРОДА

сентябрь

Расчетные данные: А р = 0.015 % , S р = 1.07 % , Q н = 9708 ккал/кг, W р = 1.41 % , O p = 0.2 % , C p = 83.8 % , N г = 0.31 % .

Тепловые потери: q 2 и q 5 (данные приводятся выше)

Расчеты массовых выбросов СО и БП не производились из - за отсутствия данных q 3 и q 4 (СО), а так же из - за нецелесообразности расчета массовых выбросов БП, ввиду ничтожно малых объемов его выброса и отсутствия необходимых данных для расчета.

Расчеты производятся для:

a). 3 котла ДКВР 10-13;

b). 1 котел ПТВМ - 30, согласно схеме подключения к одной дымовой трубе;

c). В целом по котельной.

Расчет выбросов в атмосферу частиц золы и недожога.

М тв = 0.01 ´ В ´ (а ун ´ А р + q 4 ´ Q н / 32680) =

a). 0.01 ´ 558.3 ´ 0.015 = 0.08 г/с;

b). 0.01 ´ 625 ´ 0.015 = 0.09375 г/с;

c). 0.01 ´ 29026 ´ 0.015 = 4.35 т/год, где:

А р - зольность топлива на рабочую массу, %;

А ун - доля золовых частиц и недожога, уносимых из котла = 1.00;

Q 4 - потери теплоты с уносом от механической неполноты сгорания топлива, %;

Q н - теплота сгорания топлива на рабочую массу, кДж / кг.

Количество окислов серы, поступающих в атмосферу с дымовыми газами в пересчете на SO 2 , г/с

Мso 2 = 0.02 ´ В ´ S p ´ (1 - h so 2) =

a). 0.02 ´ 558.3 ´ 1.07 ´ (1- 0.02) = 11.7 г/с;

b). 0.02 ´ 625 ´ 1.07 ´ (1 - 0.02) = 13.1 г/с;

c). 0.02 ´ 29026 ´ 1.07 ´ (1 - 0.02) = 608.733 т/год, где:

В - расход натурального топлива на парогенераторы, г/с;

H so 2 - доля окислов серы, связываемых летучей золой в газоходах парогенераторов, зависит от зольности топлива и содержания окиси кальция в летучей золе = 0.02 .

Количество окислов ванадия для котлов, сжигающих жидкое топливо, в пересчете на пятиокись ванадия (V 2 O 5), г/с.

Мv 2 o 5 = 10 -6 ´ Gv 2 o 5 ´ B ´ (1 - h ос) =

Gv 2 o 5 = 4000 ´ А р = 0.015 ´ 4000 = 60

a). 10 -6 ´ 60 ´ 558.3 ´ (1 - 0.05) = 0.03182 г/с;

b). 10 -6 ´ 60 ´ 625 ´ (1 - 0.05) = 0.03562 г/с;

c). 10 -6 ´ 60 ´ 29026 ´ (1 - 0.05) = 1.65 т/год, где:

В - расход натурального топлива на парогенераторы, г/с;

Gv 2 o 5 - содержание окислов ванадия в жидком топливе в пересчете на V 2 O 5 , г/т;

H ос - коэффициент оседания окислов ванадия на поверхностях парогенераторов = 0.05;

Количество окислов азота поступающих в атмосферу с дымовыми газами в пересчете на NO 2 , г/с

МNO 2 = 0.001 ´ В ´ Q н ´ КNO 2 ´ (1 - m) ´ (1 - 0.01 ´ q 4)

a). 0.001 ´ 558.3 ´ 40.6 ´ 0.08 = 1.8 г/с;

b). 0.001 ´ 625 ´ 40.6 ´ 0.08 = 2.03 г/с;

c). 0.001 ´ 29026 ´ 40.6 ´ 0.08 = 94.276, где:

Q н - теплота сгорания натурального топлива, МДж / кг;

КNO 2 - количество окислов азота, образующихся на 1 ГДж тепла, = 0.08 кг/ГДж;

M - коэффициент, учитывающий степень снижения выбросов азота в результате применения технических решений. В настоящее время для малых котлов = 1

Редукционная установка предназначена для снижения давления пара с 13 атм до 7 атм, для обеспечения паровой нагрузки бойлерной группы. РУ снабжается дистанционным регулятором давления.

Регулятором давления поддерживается давления редуцированного пара с точностью ± 0.2 атм.

Первая ступень снижения давления пара осуществляется в регулирующем клапане с помощью золотника, соединенного с кривошипом, который закреплен на валике выведенном наружу. На наружном конце валика закреплен рычаг, который при помощи штанги связан с КДУ регулятора, производит открытие и закрытие золотника. Вторая ступень снижения давления происходит в смесительной трубе. После смесительной трубы пар через расширяющийся конус попадает в трубопровод редуцированного пара, на котором расположено аварийно - импульсное устройство состоящее из импульсного и предохранительного клапанов, предназначенных для сброса излишков редуцированного пара выше 7 атм.

Аварийно - импульсное устройство действует следующим образом. При повышении давления редуцированного пара в трубопроводе выше 7 атм происходит подъем золотника грузового импульсного клапана и открывается доступ пара из трубопровода через импульсный клапан в надпоршневое пространство аварийного клапана. Т.к. площадь поршня этого клапана больше площади тарелки, то усилие, действующее на поршень сверху, преодолевает усилие от давления пара, действующее на тарелку этого клапана снизу, и клапан открывается. Когда давление пара в трубопроводе понизится, золотник импульсного клапана под действием груза опустится и закроет доступ пара в надпоршневое пространство аварийного клапана. Оставшийся в надпоршневом пространстве пар получит доступ в выхлопную трубу через импульсный клапан. Благодаря выходу пар из надпоршневого пространства поршень сверху окажется разгруженным, и тарелка аварийного клапана под действием пружины и давления пара со стороны трубопровода закроет выход пара из трубопровода в атмосферу.

Техническая характеристика РУ 13/7.

Производительность по редукционному пару - 60 т/ч

Давление первичного пара - 1.3 МПа (13 атм)

Температура - 194 0 С

Расчетное давление - 0.7 МПа (7 атм)

Краткая характеристика и описание работы деаэратора.

Термический деаэратор атмосферного типа работает под давлением 0.2 ¸ 0.4 кгс/см 2 (0.02 ¸ 0.04 МПа), с температурой воды 104 0 С. Емкость бака - 72 м 3 .

Согласно ПТЭ - 14 содержание кислорода в питательной воде после деаэратора не должно превышать 20 мкг/кг, свободная углекислота должна отсутствовать, показатель РН воды должен поддерживаться в пределах 9.1 ¸ 10.1.

Основным назначением деаэратора является полное удаление из воды коррозионно - активных газов, главным образом кислорода и активной углекислоты (свободной), путем подогрева питательной воды до температуры насыщения. Нагрев воды до температуры насыщения происходит за счет подачи в деаэратор пара через барботажное устройство с давлением 0.02 ¸ 0.04 МПа (0.2 ¸ 0.4 кгс/см 2) и конденсата после пиковых бойлеров и ПСВ. Выделившиеся из воды агрессивные газы через охладительный выпар удаляются в атмосферу.

Деаэратор снабжен водоуказательными стеклами, манометром избыточного давления, гидрозатвором.

Критерии и пределы безопасного состояния и режимов работы установки.

Запрещается эксплуатация деаэратора трубопроводов при выявлении дефектов, угрожающих безопасной работе оборудования.

Запрещается во время работы деаэратора проведение его ремонта и работ, связанных с ликвидацией неплотностей элементов, находящихся под давлением.

Подготовка деаэратора к пуску и пуск его производится по распоряжению старшего машиниста. На время подготовки деаэратора и установления номинального режима, питание работающего котла производить с трубопровода прямой сетевой воды. Произвести визуальный осмотр деаэратора (наличие трещин), а так же осмотр дефектов обмуровки, закрытие люков, целостность водомерных стекол, их подключение. Произвести визуальный осмотр гидрозатвора. Заполнить его водой. Подготовить к работе фильтры ХВО. Заполнить деаэратор химически очищенной водой. Следить за повышением уровня воды в деаэраторе, уровень установить 1.8 ¸ 2.0 м.

Подать пар на деаэратор (с ТЩУ открыть регулирующий клапан). При достижении нормативного качества питательной воды перейти на питание котла с деаэратора.

Во время дежурства персонал должен следить за:

Исправностью деаэратора и всего оборудования, строго соблюдая установленный режим работы деаэратора. Поддерживать уровень воды в деаэраторе необходимо порядка 1.5 ¸ 2.2 м. Поддерживать температуру питательной воды порядка 104 0 С;

Показаниями приборов установленных на ЩУ и непосредственно на месте деаэраторной установки;

Поддержанием давления в деаэраторе, которое должно быть в пределах 0.02 ¸ 0.04 МПа;

Исправностью гидрозатвора;

За выходом газов из выпара деаэратора, который при нормальной работе деаэратора должен выходить с небольшой примесью пара.

При неисправном состоянии регулятора уровня воды, перейти на ручное управление (регулирование). Малейшее отклонение параметров режима от нормальных влечет за собой резкое ухудшение качества деаэрированной воды.

Персонал при обслуживании оборудования должен:

Иметь спецодежду из плотной ткани, плотно закрывающую все части тела, без развевающихся частей, рабочую обувь и защитную каску;

Следить за состоянием теплоизоляции горячих поверхностей;

Следить чтобы не загромождались посторонними предметами лестницы, проходы;

Следить за наличием и состоянием противопожарных средств;

Следить за исправностью и достаточностью основного и аварийного освещения.

Бойлер используется в тепловой схеме котельной как пароводяной подогреватель. В бойлер поступает сетевая вода в трубную часть, в межтрубное пространство поступает пар от главного паропровода, который нагревает сетевую воду.

· Пропускная способность по воде - 100 м 3 /ч

· Количество ходов - 4

· Диаметр трубок 19 ´ 1

· Давление греющего пара - 7 кгс/см 2

· Нагрев воды - 40 0 С

· Рабочее давление воды - 12 кгс/см 2

· Поверхность нагрева - 43 м 2

· Количество трубок - 232 шт.

· Материал - Л-68 ГОСТ 494-52

Перед включением в работу установки необходимо произвести тщательный осмотр оборудования, обратив внимание на:

Исправность паропроводов и водоводов, на надежное крепление всех узлов фланцевых соединений и арматуры;

Исправность опор и изоляции трубопроводов;

Наличие всех КИП, их исправность и готовность к работе;

Наличие смазки всех механизмов.

После прогрева подключаемого бойлера произвести тщательный осмотр всех трубопроводов пара и воды, арматуры фланцевых соединений и опор. В случае возникновения гидравлических ударов подключение бойлера прекратить, устранить причины возникновения гидравлических ударов и произвести пуск установки с медленным прогревом трубопроводов.

Во время обслуживания бойлеров необходимо:

Поддерживать заданные параметры, температуры воды, давления воды и пара согласно графика;

Следить за работой насосов (проверять наличие масла в подшипниках;

Следить за поступлением воды на охлаждение подшипников;

Прослушивать работу э/двигателя и насоса;

Следить за температурой подшипников и э/двигателя; температура подшипников не должна превышать 65 0 С);

Следить за состоянием теплоизоляции бойлерной установки и температурой на ней, которая не должна быть выше 45 0 С при температуре окружающего воздуха 25 0 С;

Следить за исправностью КИП и арматуры.

В случае аварийных ситуаций или других нештатных ситуациях необходимо сначала включить резервный бойлер, после чего отключить основной.

Расшифровка марки:

· 200 - площадь теплообмена в м 2 ;

· 7 - давление греющего пара в атм;

· 15 - давление сетевой воды в атм.

· Корпус (трубная часть);

· Давление (избыточное), кгс/см 2 - 7 (15);

· Температура, 0 С - 400 (на входе 70; на выходе 150);

· Рабочая среда - пар (вода);

· Емкость, л - 4300 (1960);

Трубы для ПСВ выполнены из латуни. Исполнение U- образное. Развальцовываются в трубной доске. Водяная камера разделена перегородкой на две части, на входную и выходную. В процессе эксплуатации следует следить за уровнем дренажа. При повышении уровня дренажа снижается зона собственно теплообмена ПСВ, тем самым произойдет недогрев сетевой воды.

· 1-ая цифра - диаметр всасывающего патрубка, в мм, уменьшенная в 25 раз и округленная;

· МС - многоступенчатый;

· Г - для горячей воды;

· 10 - коэффициент удельной быстроходности, уменьшенный в 10 раз и округленный.

Питательные насосы 4 МСГ-10 предназначены для перекачки горячей воды с температурой 80 ¸ 105 0 С с напором не менее 10 м вод. ст. Подпор на всасывание не более 3 кгс/см 2 .

· Подача, м 3 /час - 60;

· Напор на одну ступень, м вод. ст. - 33;

· Скорость вращения, об/мин - 2950;

· к.п.д. - 65%;

· Подпор на всасе, м вод. ст. - 10;

· Рабочая область насоса при подаче, м 3 /час - 40 ¸ 85;

· по напору на ступень, м вод. ст. - 37 ¸ 27;

· Материал основных деталей - чугун.

Вращаясь, рабочее колесо сообщает круговое движение жидкости, находящейся между лопатками. Вследствие возникающей при этом центробежной силы, жидкость от центра колеса перемещается к внешнему выходу, а освобождающееся пространство вновь заполняется жидкостью, поступающей из всасывающей трубы под действием подпора.

Выйдя из рабочего колеса, жидкость поступает в каналы направляющего аппарата и затем во второе рабочее колесо с давлением созданным в первой ступени, оттуда жидкость поступает в третье колесо с увеличенным давлением созданным второй ступенью. Выйдя из последнего рабочего колеса жидкость переводится через направляющий аппарат при выдаче в крышку нагнетателя, откуда поступает в нагнетательный трубопровод. Благодаря тому, что корпус насоса состоит из отдельных секций имеется возможность не меняя подачи, менять напор путем установки нужного числа рабочих колес и направляющих аппаратов. Насос приводится во вращение от э/двигателя через упругую втулочно - пальцевую муфту. Для уравновешивания осевого усилия, возникающего в результате давления воды на неравные по площади боковые поверхности рабочих колес используется автоматическое разгрузочное устройство. Вышедшая из разгрузочной камеры вода по обводной системе поступает в полость образованную валом и расточкой в крышке всасывания и отводится наружу или возвращается во всасывающий трубопровод. Образовавшееся водяное кольцо предупреждает засасывание воздуха в насос. Кроме того, вода, проходя по валу через сальниковую набивку, охлаждает сальник. Поэтому не рекомендуется слишком затягивать сальник. Охлаждающая вода должна подаваться от постороннего источника с давлением не выше 3 атм.

Технические характеристики вентилятора ВД - 10 (вентилятор дутьевой):

· Подача при максимальном к.п.д. тыс. м 3 /час - 15;

· Полное давление при t 0 = 20 0 С, кг/м 2 - 153;

· Скорость вращения, об/мин - 1000 (э/ двигателя);

· Мощность э/ двигателя. кВт - 55;

· Угол разворота - 0 ¸ 270 0 .

Дутьевой вентилятор предназначен для принудительной подачи воздуха необходимого для горения топлива.

Данные для

· Производительность, тыс. м 3 /час - 18.4

· Напор, кгс/см 2 - 124

· Потребляемая мощность, кВт - 7.6

Данные для

1500 об/мин

· Производительность, тыс. м 3 /час - 27.65

· Напор, кгс/см 2 - 276

· Потребляемая мощность, кВт - 25.4

Описание дымососов и вентиляторов излагается вместе т.к. конструкции их схожи.

Дымососы предназначены для создания искусственной тяги, необходимой для постоянного подвода свежего воздуха в топку и удаления из котла продуктов сгорания. Дымососы устанавливают за котлом.

Вентиляторы и дымососы состоят из:

Рабочего колеса;

Направляющего аппарата;

Двигателя;

Рабочее колесо состоит из основного диска, 16 загнутых назад лопаток и литой ступицы. Корпус сварной из листового металла может быть установлен на раме с различными углами разворота нагнетательного патрубка в зависимости от местных условий (через 15 0). Сварной 8-ми лопастной направляющий аппарат устанавливается на входе газов в улитку и служит для регулирования производительности машины. Управление осевым направляющим аппаратом может осуществляется вручную, а так же от колонки дистанционного или автоматического управления. Машины поставляются в собранном виде с углом разворота напорного патрубка j = 255 0 . Привод осуществляется непосредственно от двигателя, на вал которого насажено рабочее колесо. Ступицы рабочих колес вентиляторов и дымососов снабжены шлицевыми пазами для охлаждения вала двигателя.

Тепловой баланс к/а ПТВМ – 30.

НАИМЕНОВАНИЕ ВЕЛИЧИНЫ

ОБОЗНАЧЕНИЕ

ЕДИНИЦЫ ИЗМЕРЕНИЯ

ФОРМУЛА ИЛИ ИСПЫТАНИЯ

ЧИСЛОВОЕ ЗНАЧЕНИЕ

G с.в. ´ (t вых - t вх.) ´ 10 -3

Расход сетевой воды через котел

по данным испытаний

Т-ра сетевой воды на входе в котел

по данным испытаний

Т-ра сетевой воды на выходе из котла

по данным испытаний

Давление в барабане котла

по данным испытаний

Температура уходящих газов

по данным испытаний

Т-ра хол. воздуха

по данным испытаний

К-т избытка воздуха в режимном сечении за конвективной частью

a ух = a + D a

Суммарные присосы воздуха в топочную камеру и конвективную часть

по данным ПТЭ

q 2 = (K ´ a ух + C) ´ (V ух - (a ух/ / a ух +в) ´ t х.в.) К а ´ А т ´ 10 -2

К.П.Д. брутто котла

Расход натурального топлива

Q к ´ 10 5 / h бр ´ Q p

по данным испытаний

На дутье

по данным испытаний

На перекачку топлива

по данным испытаний

N т +N д +N мэн

Удельный расход э/энергии:

На тягу, дутье

кВт ч/ Гкал

N т +N д / Q к

На перекачку топлива

кВт ч / тн. т

N мэн / В к

кВт ч / Гкал

к.п.д. нетто котла

h к - q тепл

Дымовые трубы.

Дымовые трубы предназначены для отвода дымовых газов в атмосферу.

На РК “ Свердловская “ расположены две дымовые трубы между котельными 1-ой и 2-ой очереди.

Трубы предназначены для обслуживания котлов ДКВР 10 - 13 № 1-3 и ПТВМ - 30 № 7 - 1-ая дымовая труба

ДКВР 10-13 № 4-6 и ПТВМ - 30 № 8 - 2-ая дымовая труба.

По своим характеристикам трубы одинаковы.

· Высота от уровня земли, м - 45

· Диаметр устья, м - 1.8

· Количество светофорных площадок - 1

· Материал - красный кирпич марки “100”

· Отметка светофорной площадки, м - 43.9

· Температура точки росы, 0 С - 75

· Количество молниеприемников - 2

· Количество молниеотводов - 1

· Просушка и прогрев трубы производились в процессе эксплуатации, дымовыми газами.

· Зольность, А р - 0.12 ¸ 0.14 г/м 3

В настоящее время минимальная высота дымовой трубы, при которой обеспечивается значение максимальной приземной концентрации вредного вещества С м, равное предельно допустимой концентрации (ПДК) для нескольких труб одинаковой высоты при наличии фоновой загрязненности С ф от других источников, рассчитывается по формуле 1

1). H= , где:

А - коэффициент, зависящий от температурной стратификации атмосферы для неблагоприятных метеорологических условий (НМУ), определяющий условия горизонтального и вертикального рассеивания вредных веществ в атмосферном воздухе, с 2/3 ´ мг ´ К 1/3 / г;

F - безразмерный коэффициент, учитывающий скорость оседания вредных веществ в атмосферном воздухе; значение безразмерного коэффициента F = 1 т.к. скорость упорядоченного оседания газообразных вредных веществ и мелкодисперсных аэрозолей практически равна нулю;

М - масса вредного вещества, выбрасываемого в атмосферу в единицу времени;

M и n - безразмерные коэффициенты, учитывающие условия выхода газов из дымовой трубы;

H - безразмерный коэффициент, учитывающий влияние рельефа местности; в случае ровной или слабопересеченной местности с перепадом высот, не превышающим 50 м на 1 км, h = 1;

N - число одинаковых дымовых труб;

V 1 - объем дымовых газов приходящийся на дымовые трубы, м 3 / с;

D Т = Т г - Т в - разность температур выбрасываемых дымовых газов Т г и окружающего атмосферного воздуха Т в, К. Т в - температура окружающего атмосферного воздуха равная средней максимальной температуре наружного воздуха наиболее жаркого месяца, для г. Иркутска = 27 0 С;

П д к - предельно допустимая концентрация вещества, лимитирующего чистоту воздушного бассейна, мг/м 3 . Так ПДКSO 2 = 0.5 мг/м 3 , а ПДКNO 2 = 0.085 мг/м 3 .

При выбросе сернистого ангидрида и двуокиси серы учитывается их совместное действие на атмосферу. В этом случае выброс приводится к выбросу по сернистому ангидриду по выражению: М = МSO 2 + 5.88 ´ МNO 2

и, таким образом формула 1), для определения высоты дымовой трубы, принимает следующий вид:

Для определения коэффициентов и значений, используемых в формуле 2), необходимо произвести расчет теоретически необходимого для полного сгорания топлива воздуха (V 0), теоретического объема азота (VN 2), объема трехатомных газов (VRO 2), теоретического объема водяных паров (VH 2 O) исходя из того, что к одной дымовой трубе подключены 3 котла ДКВР 10-13 и 1 котел ПТВМ - 30.

· V 0 = 0.0889 (С р + 0.375 ´ S p) + 0.265 ´ H p - 0.0333 ´ O p = 0.0889 ´ (83.8 + 0.375 ´ 1.07) + 0.265 ´ 11.2 - 0.0333 ´ 0.2 = 10.44 м 3 / кг

· VN 2 = 0.79 ´ V 0 + 0.8 ´ (N p / 100) = 0.79 ´ 10.44 + 0.8 ´ (0.31 / 100) = 8.25 м 3 / кг

· VRO 2 = 1.866 ´ ((C p + 0.375 ´ S p) / 100) = 1.866 ´ ((83.8 + 0.375 ´ 1.07) / 100) = 1.571 м 3 / кг

· VH 2 O = 0.111 ´ H p + 0.0124 W p + 0.0161 V 0 = 0.111 ´ 11.2 + 0.0124 ´ 1.41 + 0.0161 ´ 10.44 = 1.43 м 3 / кг

Расчет объема дымовых газов при a > 1 (т.к. у ДКВР 10 -13 a = 1.7, а у ПТВМ - 30 - a = 1.2) определяется по формуле:

· V г = VRO 2 + VN 2 + VH 2 O + (a - 1) ´ V 0 + 0.0161 (a - 1) ´ V 0 .

Для котлов ДКВР 10 - 13:

· V г = 1.571 + 8.25 + 1.43 + (1.7 -1) ´ 10.44 + 0.0161 ´ (1.7 - 1) ´ 10.44 = 18.7 м 3 / кг.

Для котлов ПТВМ - 30:

· V г = 1.571 + 8.25 + 1.43 + (1.2 -1) ´ 10.44 + 0.0161 ´ (1.2 - 1) ´ 10.44 = 13.5 м 3 / кг.

Расчет объема дымовых газов, выбрасываемых в атмосферу, определяется по формуле:

· V 1 = B ´ (1 - 0.01 ´ q 4) ´ V г ´ (Т г / 273) = В р ´ V г ´ (Т г / 273).

Для котлов ДКВР 10-13:

· V д = 0.5583 ´ 18.7 ´ (467 / 273) = 17.86 м 3 / кг.

Для котлов ПТВМ - 30:

· V п = 0.625 ´ 13.5 ´ (473 / 273) = 14.62 м 3 / кг.

· V 1 = V д + V п = 32.48 м 3 / кг.

По данным, полученным из предыдущей формулы, считается температура газов в устье дымовой трубы:

· Т г = (V д ´ T д + V п ´ Т п) / (V д + V п) = (17.86 ´ 467 + 14.62 ´ 473) / (17.86 + 14.62) = 469.7 К » 197 0 С;

Разность температур выбрасываемых дымовых газов Т г и окружающего атмосферного воздуха Т в, К.

· D Т = Т г - Т в = 197 - 27 = 170.

Т в - температура окружающего атмосферного воздуха равная средней максимальной температуре наружного воздуха наиболее жаркого месяца, для г. Иркутска = 27 0 С;

Средняя скорость дымовых газов в устье дымовой трубы, м/с;

· w 0 = (4 ´ (В р ´ V г + В р ´ V г) ´ Т г) / p ´ D 2 ´ 273 = (4 ´ (0.5583 ´ 18.7 + 0.625 ´ 13.5) ´ 470) / 3.14 ´ 1.8 2 ´ 273 = 12.8 м/с;

Безразмерные коэффициенты m и n определяются в зависимости от параметров f и n м:

· f = 1000 ´ ((w 2 ´ D) / (H 2 ´ D T)) = 1000 ´ ((12.8 2 ´ 1.8) / (45 2 ´ 170) = 0.8566, где:

W 2 - средняя скорость дымовых газов в устье дымовой трубы, м/с;

D - диаметр устья дымовой трубы, м.

· n м = 0.65 ´ = 0.65 ´ = 3.23 Þ n = 1

Коэффициент m определяется в зависимости от f по формуле:

· m = = 0.92 .

Коэффициент n в случае если n м ³ 2 , равен 1.

Т.о., подставляя найденные значения в формулу 2), получим следующие результаты:

· H= = 44.6 м

· Паропроизводительность, т/ч - 10

· Рабочее давление, МПа (кгс/см 2) - 1.27 (13)

· Площадь поверхности нагрева, м 2:

Экранов - 49.6;

Пучков - 202;

Общая - 251.6.

· Объем котла, м 3:

Водяной - 8.6;

Паровой - 2.7;

Питательный - 0.6.

· Количество горелок - 2

· Расположение - в один ярус

· Сопротивление газового тракта, кгс / см 2 - 32

· Температура мазута подводимого в котел, 0 С - 125

· Способ распыла мазута - механический

· Внутренний диаметр барабанов, мм - 1000

· Толщина стенок барабанов, мм - 13/20

· Длина цилиндрической части барабана, мм:

Верхнего - 6235

Нижнего - 3000

· Диаметр экранных и кипятильных труб, мм - 51 ´ 2.5

· Шаг труб боковых экранов, мм - 80

· Шаг труб фронтового и заднего экранов, мм - 130

· Продольный шаг труб конвективного пучка, мм - 100

· Поперечный шаг труб конвективного пучка, мм - 110

· Общее число труб конвективного пучка - 616

· Ширина котла в тяжелой обмуровке, мм - 3830

· Длина котла в тяжелой обмуровке, мм - 6860

· Высота до штуцера на верхнем барабане, мм - 6315

· Температура пара, 0 С - 92

· Поверхность нагрева экономайзера, м 2 - 330

· Топливо - мазут сернистый (АНХК) марки: М- 40 ; M-100.

· Характеристика топлива: S p = 1.07 % ; W p = 1.41 % ; A p = 0.015 % ; Q p = 9708 ккал / кг (40.6 МДж / кг).

Первое число после наименования котла обозначает паропроизводительность, т/ч.

Второе число - давление пара в барабане котла, кгс/см 2 ;

Котлы ДКВР состоят из следующих основных частей: двух барабанов (верхний и нижний); экранных труб; экранных коллекторов (камер).

Барабаны котлов на давление 13 кгс/см 2 имеют одинаковый внутренний диаметр (1000 мм) при толщине стенок 13 мм.

Для осмотра барабанов и расположенных в них устройств, а также для очистки труб шарошками на задних днищах имеются лазы; у котла ДКВР-10 с длинным барабаном имеется еще лаз на переднем днище верхнего барабана.

Для наблюдения за уровнем воды в верхнем барабане установлены два водоуказательных стекла и сигнализатор уровня. У котлов с длинным барабаном водоуказательные стекла присоединены к цилиндрической части барабана, а у котлов с коротким барабаном к переднему днищу. Из переднего днища верхнего барабана отведены импульсные трубки к регулятору питания. В водяном пространстве верхнего барабана находятся питательная труба, у котлов ДКВР 10-13 с длинным барабаном - труба для непрерывной продувки; в паровом объеме - сепарационные устройства. В нижнем барабане установлены перфорированная труба для периодической продувки, устройство для прогрева барабана при растопке и штуцер для спуска воды.

Боковые экранные коллекторы расположены под выступающей частью верхнего барабана, возле боковых стен обмуровки. Для создания циркуляционного контура в экранах передний конец каждого экранного коллектора соединен опускной необогреваемой трубой с верхним барабаном, а задний конец - перепускной трубой с нижним барабаном.

Вода поступает в боковые экраны одновременно из верхнего барабана по передним опускным трубам, а из нижнего барабана по перепускным. Такая схема питания боковых экранов повышает надежность работы при пониженном уровне воды в верхнем барабане, увеличивает кратность циркуляции.

Экранные трубы паровых котлов ДКВР изготовляют из стали 51 ´ 2.5 мм.

В котлах с длинным верхним барабаном экранные трубы приварены к экранным коллекторам, а в верхний барабан ввальцованы.

Шаг боковых экранов у всех котлов ДКВР 80 мм, шаг задних и фронтовых экранов - 80 ¸ 130 мм.

Пучки кипятильных труб выполнены из стальных бесшовных гнутых труб диаметром 51 ´ 2.5 мм.

Концы кипятильных труб паровых котлов типа ДКВР прикреплены к нижнему и верхнему барабану с помощью вальцовки.

Циркуляция в кипятильных трубах происходит за счет бурного испарения воды в передних рядах труб, т.к. они расположены ближе к топке и омываются более горячими газами, чем задние, вследствие чего в задних трубах, расположенных на выходе газов из котла вода идет не вверх, а вниз.

Топочная камера в целях предупреждения затягивания пламени в конвективный пучок и уменьшения потери с уносом (Q 4 - от механической неполноты сгорания топлива), разделена перегородкой на две части: топку и камеру сгорания. Перегородки котла выполнены таким образом, что дымовые газы омывают трубы поперечным током, что способствует теплоотдаче в конвективном пучке.

1. Растопка котла производится под руководством старшего машиниста или машиниста, а после выхода из капитального или среднего ремонта - под руководством начальника цеха или инженера.

2. Перед пуском котла из ремонта или длительного резерва (более 3-х суток) должны быть проверены исправность и готовность к включению основного оборудования, КИП и А, средств диспетчерского управления арматурой и механизмами, авторегуляторов, защит и средств оперативной связи. Выявленные при этом неисправности, действующие на останов котла, необходимо устранить. В случае неисправностей, пуск котла производить, естественно, запрещается.

3. Наружный осмотр котла перед растопкой необходимо производить в следующем порядке:

3.1. проверить исправность топки, обмуровки котла, газоходов.

3.2. после осмотра (через лазы газоходов котла) плотно закрыть все лазы, лючки и гляделки.

3.3. проверить путем закрытия и открытия легкость хода и исправность газовых и воздушных шиберов, соответствие надписей, указывающих их положение (открыто, закрыто), исправность дистанционных приводов.

3.4. проверить исправность предохранительных клапанов на барабане и исправность взрывных клапанов на котле и экономайзере. Предохранительные клапана должны быть оборудованы устройствами позволяющим возможность проверки исправности их действия в рабочем состоянии путем принудительного открытия клапана.

3.5. проверить исправность всех задвижек и вентилей котла. Штоки вентилей, задвижек должны быть очищены от накипи и ржавчины, болты сальников должны иметь запас для подтяжки. Убедится в исправности водоуказательных стекол, приборов, в хорошем их освещении. Проверить исправность водоуказательных колонок (КИП и А).

3.6. проверить отсутствие посторонних предметов и мусора на площадках, лестницах оборудования.

3.7. осмотреть готовность к пуску всего вспомогательного оборудования(дымососа, дутьевого вентилятора). Проверить уровень масла в масляных ваннах, на дымососе открыть охлаждение, проверить наличие видимого контура (заземления) э/двигателя.

3.8. проверить освещение котла и КИП и А (основное и аварийное).

3.9. открыть на верхнем барабане котла воздушник. Заполнить котел деаэрированной водой, до отметки нижнего уровня в водоуказательных стеклах. Время заполнения - 2-3 часа. Заполнение неостывшего барабана для проведения растопки разрешается при температуре металла верха опорожненного барабана не выше 160 0 С. Во время заполнения котла водой, необходимо проверить плотность фланцевых соединений и сальников арматуры. При появлении течи необходимо подтянуть их. Если течь не прекращается, прекратить заполнение, спустив нужное количество воды устранить дефекты. После заполнения котла водой проверить плотность питательных, продувочных и спускных вентилей. Понижение уровня воды в барабане котла указывает на неплотность закрытия питательных вентилей. Неисправности устранить.

3.10 Подготовить экономайзер. Открыть вентиль - воздушник. После того как через вентиль воздушник пойдет вода, закрыть его (в случае работающих котлов).

3.12. Собрать схему мазутопровода до форсунок. Убедится внешним осмотром в исправности мазутопровода. Давление мазута должно быть равно 20 кгс/см 2 , температура равна 120 ¸ 135 0 С.

3.13 Подготовить форсунки. Форсунки перед установкой на котле должны испытываться на водяном стенде с целью проверки их производительности, качества распыла и угла раскрытия факела.

3.14. Доложить старшему машинисту о готовности к работе.

1. Получив распоряжение от старшего машиниста, включить дымосос, вентилятор при закрытых шиберах газовоздушного тракта. Провентилировать топку не менее 10 мин. с расходом воздуха не менее 25% от номинального. Перед растопкой котлов из неостывшего состояния при сохранившемся избыточном давлении в пароводяном тракте вентиляция должна начинаться не ранее чем за 15 мин. до розжига горелок.

2. С момента растопки, установить контроль за уровнем воды в барабане котла. Сниженные указатели воды должны быть сверены с водоуказательными приборами в процессе растопки (с учетом поправки).

3. Установить форсунку. Отрегулировать подачу воздуха с помощью шибера на горелочном устройстве так, чтобы не сорвало факел. Ввести в растопочное отверстие факел, подать топливо на пламя растопочного факела.

4. Если мазут не загорается, необходимо немедленно прекратить подачу топлива на форсунки, убрать из топки растопочный факел

5. Снова провентилировать топку перед повторной растопкой в течении 10 мин.

6. Устранить причины незагорания мазута (низкая температура или низкое давление мазута перед форсункой, засорение форсунки, обводненный мазут).

7. Вновь разжечь форсунку согласно п.3

8. Разжигая форсунку не стоять против растопочных люков, чтобы избежать ожогов при возможном выбросе пламени.

9. Отрегулировать горение подачей воздуха. Следить за тем, чтобы факел не отрывался потоком воздуха от форсунки. Давление мазута установить 15 кгс/см 2 (1.5 МПа). Поставить котел на защиту.

10. Растопка котла должна производиться в течении 3-х часов, при этом растопка и прогрев котла до начал подъема давления должны вестись не менее 1.5 часа. Подъем давления в котле необходимо вести по следующему графику:

Через 1.5 часа (90 мин.) после растопки - 1 ата (0.1 МПа)

Через 2.5 часа (150 мин.) после растопки - 4 ¸ 5 ата (0.4 ¸ 0.5 МПа)

Через 3 часа (180 мин.) после растопки 13 ата (1.3 МПа)

11. Произвести продувку нижних коллекторов всех экранов с целью равномерного прогрева всей трубной системы при давлении в барабане котла 0.5 ¸ 1 кгс/см 2 (0.05 ¸ 0.1 МПа). Время продувки котла 1-2 мин. каждой точки. Произвести продувку водоуказательных стекол и убедится в правильности их работы. Продувку водоуказательных стекол производить в следующем порядке:

Открыть дренажный вентиль;

Закрыть нижний (водяной вентиль) ;

Продуть стекло паром в течении 8-10 сек. ;

Открыть верхний (паровой) вентиль;

Закрыть дренажный вентиль.

Во время продувки находится следует сбоку от водоуказательного стекла. Все операции выполнять в очках и брезентовых рукавицах, следить за уровнем воды во втором стекле.

12. Подтяжку болтов фланцевых соединений следует производить при давлении не выше 5 кгс/см 2 (0.5 МПа). Добивку сальников производить при избыточном давлении не более 0.02 Мпа (0.2 кгс/см 2),при температуре теплоносителя не выше 45 0 С. Заменять сальниковую набивку разрешается после полного опорожнения трубопровода. На всех фланцевых соединениях болты затягивать поочередно с диаметрально противоположных сторон

13. Перед включением котла в главный паропровод проверить исправность действия предохранительных клапанов; КИП и А.

1. Останов котла во всех случаях, кроме аварийных, производится по распоряжению старшего машиниста котельного оборудования.

2. При выводе котла в резерв или ремонт должны быть приняты меры для консервации поверхностей нагрева котла в соответствии с действующими указаниями по консервации теплоэнергетического оборудования.

3. При останове котла необходимо:

3.1. перекрыть подачу топлива на форсунки;

3.2. закрыть вентиля на горелочных устройствах;

3.3. вынуть форсунки;

3.4. перейти на ручную подпитку котла;

3.5. через 5 мин. после прекращения горения в топке выключить дутьевой вентилятор, а через 10 мин. - дымосос;

3.6. доложить старшему машинисту об останове котла.

4. Пуск дымососа для расхолаживания разрешается не ранее чем через 10 часов. Расхолаживание котла после его останова производится при закрытых шиберах газовоздушного тракта.

5. Спуск воды из остановленного котла разрешается после снижения давления в нем до атмосферного и при температуре не выше 80 0 С.

6. Надзор дежурного персонала за остановленным котлом должен вестись до полного снижения в нем давления и снятия напряжения с э/двигателей.

1. Об аварийном случае сообщать старшему машинисту в следующих случаях, если:

1.1. Перестало действовать более 50% предохранительных клапанов.

1.2. Давление поднялось выше разрешенного более чем на 10% и продолжает расти несмотря на прекращение подачи топлива, и усиленное питание котла водой, уменьшение тяги и дутья.

1.3. Произошел упуск воды из котла (ниже нижней кромки водоуказательного стекла). Подпитка при этом категорически запрещается.

1.4. Уровень быстро снижается несмотря на усиленное питание котла водой.

1.5. Уровень поднялся выше верхней кромки водоуказательного стекла и продувкой котла не удается снизить его.

1.6. Прекращено действие всех питательных насосов (устройств).

1.7. Прекращено действие всех водоуказательных приборов.

1.8. Разрыва труб пароводяного тракта или обнаружения трещин, вспучин в основных элементах котла, в паропроводах, питательных трубопроводах и пароводяной арматуре.

1.9. Взрыва в топке, взрыва или загорания горючих отходов в газоходах, разогрева докрасна несущих балок каркаса, при обвале обмуровки, а также других повреждениях, угрожающих персоналу или оборудованию.

1.10. Исчезновения напряжения на устройствах дистанционного или автоматического управления, а также на всех КИП.

1.11. Пожара, угрожающего персоналу, оборудованию или цепям дистанционного и автоматического управления отключающей арматуры, входящей в систему защиты котла.

1.12. Погас факел в топке котла.

1.13. Произошел останов дымососа или вентилятора.

1.14. Недопустимого понижения давления мазута (ниже 5 кгс/см 2).

1.15. Разрыва мазутопровода в пределах котла.

1. Котел должен быть остановлен в случаях:

1.1. Обнаружения свищей в трубах поверхностей нагрева, пароводоперепускных, а также водоопускных трубах котла, паропроводах, коллекторах, и различных соединениях.

1.2. Недопустимого превышения температуре металла поверхности нагрева, если снизить температуру изменением режима работы котлоагрегата не удается.

1.3. Выхода из строя всех дистанционных указателей уровня воды в барабане котла.

1.4. Резкого ухудшения качества питательной воды против установленных норм.

НАИМЕНОВАНИЕ ВЕЛИЧИНЫ

ОБОЗНАЧЕНИЕ

ЕД. ИЗМЕРЕНИЯ

ФОРМУЛА ИЛИ ИСПЫТАНИЯ

ЧИСЛОВОЕ ЗНАЧЕНИЕ

Теплопроизводительность котла брутто

G п ´ (I п - I п.в.) ´ 10 -3

Расход пара

по данным испытаний

Т-ра питательной воды

по данным испытаний

Температура насыщенного пара

по данным испытаний

Давление в барабане котла

по данным испытаний

Температура уходящих газов

по данным испытаний

Т-ра хол. воздуха

по данным испытаний

К-т избытка воздуха (перед дымососом)

a ух = a + D a

Суммарные присосы воздуха в топочную камеру, конвективную часть и экономайзер

по данным ПТЭ

Потери тепла с уходящими газами

q 2 = (K a ух + C) ´ (V ух - (a ух/ / a ух +в) ´ t х.в.) ´ К а ´ А т 10 -2

Потери котла в окружающую среду

К.П.Д. брутто котла

Расход натурального топлива

Q к ´ 10 5 / h бр ´ Q p

Расход э/энергии на собственные нужды котла:

по данным испытаний

На дутье

по данным испытаний

На питательные э/насосы

по данным испытаний

На перекачку топлива

по данным испытаний

Суммарный удельный расход э/энергии на собственные нужды котла

N т +N д +N пэн +N мэн

Удельный расход э/энергии:

На тягу, дутье

кВт ч/ Гкал

N т +N д / Q к

кВт ч / т пит. воды

N пэн / G п.в.

На перекачку топлива

кВт ч / тн. т

N мэн / В к

Суммарный удельный расход э/ энергии на собств. нужды котла

кВт ч / Гкал

Расход тепла на с.н. котла выраженный в % от расхода топлива, сожженного в агрегате

(Q c.н. ´ 10 5) / (B к ´ Q н)

к.п.д. нетто котла

h к - q тепл

Удельный расход условного топлива

Одним из основных источников загрязнения воздушного бассейна городов России являются топочные устройства ТЭЦ, технологических котельных и печей, сжигающих газовое, жидкое и твердое топливо. Их газовые выбросы характеризуются большими объемами, сильной запыленностью, невысокими температурами, содержанием сажи, оксидов углерода, азота, серы, ванадия и других. Установка каталитических фильтров в этих случаях технически и экономически нецелесообразна. В этом случае, на наш взгляд необходим другой подход. Он состоит в том, что в топочное устройство непосредственно с топливом вводятся микроскопические количества КАГТ - ультра дисперсных каталитических материалов (УДКМ), прошедших предварительную специальную обработку. УДКМ, благодаря очень малым размерам частиц) менее 0.01 мкм), большой удельной поверхности (50 - 500 м 2 / г) и особому фазовому состоянию, обладают высокими каталитическими и химическими свойствами. Введение в топливо КАГТ позволит иметь в каждой капле распыленного топлива и в каждой точке топочного устройства большое количество каталитически и химически активных частиц УДКМ и даст возможность с самого начала управлять механизмами горения топлива, а так же образования и ликвидации вредных веществ. Применение КАГТ обеспечит более полное сгорание топлива, позволит реализовывать взаимодействие между собой различных вредных соединений с образованием безвредных или значительно менее вредных веществ, что в обычных условиях неосуществимо. Так в присутствии КАГТ возможно взаимодействие между собой оксидов углерода и азота с образованием безвредных углекислого газа и молекулярного азота. Выполнив свою каталитическую роль КАГТ будет связывать окислы серы с образованием значительно менее вредных сульфатов металлов.

Данный подход может быть применен и для ликвидации вредных веществ топочными устройствами ТЭЦ, котельных установок и технологических печей работающих на угле и газе.

В таблице 1. приведены расчетные значения дополнительных тепловых эффектов от сгорания (взаимодействия) вредных веществ в топочных устройствах в присутствии КАГТ в пересчете на теплотворную способность мазутного топлива марки М-100.

Таблица 1.

ТЕПЛОВОЙ ЭФФЕКТ РЕАКЦИИ В ПЕРЕСЧЕТЕ НА МАЗУТ

МАРКИ М - 100

1. С + 0.5 О 2 = СО

1 т. С эквивалентна 0.24 т. М-100

2. СО + 0.5 О 2 = СО 2

1 т. СО эквивалентна 0.58 т. М-100

3. С + О 2 = СО 2

1 т. С эквивалентна 0.82 т. М-100

4. СО + 2NО = N 2 О + СО 2

5.СО + N 2 О = N 2 + СО 2

6. 2СО + 2NO = N 2 + 2 CO 2

1 т. СО + 1.1 т NO эквивалентна 0.33 т. М-100

7. SO 2 + О 2 + Ме = МеSO 4

где Ме - Fe, Ni, Cu, Al, Ca и др.

В таблице 2. приведены расчетные значения содержания вредных веществ в промвыбросах котельных установок ряда предприятий г. Томска, а также расчетные значения экономии топлива за счет применения КАГТ.

Таблица 2.

ПРЕДПРИЯТИЯ

ВЫБРОСЫ ВРЕДНЫХ ВЕЩЕСТВ,

всего т. / на 1 т. мазута, кг

РАСЧЕТНАЯ ЭКОНОМИЯ

М-100, т/год

ТОПЛИВА, т/ %

Завод ДСП

Сибкабель

Это расчетные данные для условий, когда осуществляется качественное распыление топлива и выдерживается оптимальное соотношение воздух / топливо. При реальных условиях эксплуатации эти выбросы (особенно сажи и окиси углерода) могут быть значительно выше. Следовательно выше будет и экономия топлива.

В настоящее время плановые платежи в местный бюджет за природопользование составляют около одного процента от стоимости 1 тонны топлива. Таким образом, в идеальном случае применение КАГТ даст потребителю экономии. с каждой тонны топлива около 2.5 %.

Следует также иметь ввиду, что плановые платежи за природопользование растут из года в год. Например, в г. Томске эти платежи по сравнению с 1993 г. возросли в 1994 г. в 10 раз, а в 1995 - в 17 раз.

Проведем оценку удорожания одной тонны топлива за счет применения КАГТ. Как видно из таблицы 3, удорожание 1 т. топлива составляет менее 2 % при соотношениях мазут / КАГТ более 20 т. / кг

Таблица 3.

СООТНОШЕНИЕ МАЗУТ / КАГТ,

ЗА 1 кг. КАГТ,

ЗА 1 т. ТОПЛИВА,

УДОРОЖАНИЕ

1 т. ТОПЛИВА,

Введение КАГТ в топливо не потребует от потребителя дополнительных затрат на переделку имеющегося оборудования. КАГТ представляет из себя пастообразную суспензию, которая долго хранится (не менее года) и достаточно быстро и равномерно “ растворяется “ при перемешивании в больших объемах топлива. Как правило, топливо приходит потребителю в цистернах (железнодорожных или автомобильных) и перед перекачкой (сливом) в резервуары подвергается в течении 4 - 10 часов интенсивному прогреву и перемешиванию водяным паром. Ввод КАГТ в цистерны на этой стадии позволит достаточно хорошо смешать его с топливом. Из резервуаров топливо поступает в топочное устройство с помощью топливного насоса. Однако до топочного устройства доходит только часть топлива, большая его часть через “ оборотку “ постоянно возвращается в резервуар и таким образом осуществляется постоянное дополнительное смещение КАГТ с топливом.

1. Годовой расход топлива по котельной за 1996 г. составил: 29026 тонн мазута.

2. При средней минимальной стоимости мазута 500 тыс. руб./т. годовые затраты на топливо:

U т = В год ´ Ц т = 0.5 ´ 29026 = 14513 млн. руб. / год

3. Экономия стоимости мазута составит:

Э м = D В ´ Ц м = 377.3 ´ 0.5 = 188.669 млн. руб.

4. Снижение вредных выбросов за счет уменьшения расход топлива составит:

D М тв = 0.01 ´ D В ´ (1 ´ 0.015) = 0.05 т/год

D МSO 2 = 0.02 ´ 377.3 ´ 1.07 ´ (1 - 0.02) = 8 т/год

D МV 2 O 5 = 10 -6 ´ 4000 ´ 0.015 ´ 377.3 = 0.02 т/год

D МNO 2 = 0.001 ´ 40.6 ´ 377.3 ´ 0.08 = 1.2 т/год

5. Удельная плата за выбросы 1 т вредных веществ:

Ц NO 2 = 14525 руб./т

Ц SO 2 = 11550 руб./т

6. Расчетная годовая плата за выбросы вредных веществ при работе котельной на мазуте по составляющим:

U тв = 0.0066 т/ч ´ 6600 ´ 8.52 ´ 11500 ´ 10 -9 =4.26 млн. руб.

U NO 2 = 0.0143 ´ 6600 ´ 8.52 ´ 14525 =11.6 млн. руб.

U SO 2 = 0.09 ´ 6600 ´ 8.52 ´ 11550 ´ 10 -9 = 58.2 млн. руб.

7. Суммарная плата за выбросы

U вр = U тв + U NO 2 + U SO 2 = 74.06 млн. руб.

8. Суммарные годовые издержки на топливо и плату за выбросы

U сум = 74.06 + 14513=14587.06

Экономия затрат при применении КАГТ

9. Затраты на КАГТ

U к =29026 ´ 0.01 ´ 200000=58.52

10. Экономия мазута за счет более полного его сгорания составит:

D В к = 0.013 ´ В г = 0.013 ´ 29026 = 377.3 т/год

11. Экономия топлива при повышении к.п.д. котельной до 92% за счет снижения температуры уходящих газов при снижении концентрации окислов серы в дымовых газах. Приблизительный к.п.д. котельной 89%

D В кпд =29026-29026 ´ (0.89 / 0.92) =421.26 т/год

12. Экономия затрат на топливо

D U т = (377.3 + 421.26) ´ 0.5 =399.28 млн. руб.

13. Экономия платы за выбросы при снижении выбросов на 60%

D U выбр. = 0.6 ´ U вр = 0.6 ´ 74.06 = 44.436 млн. руб.

14. Суммарная экономия издержек.

D U= D U т + D U выбр. -U к =399.28+44.436-58.52=385.196 млн. руб.

В заключении отметим, что сегодня развитие научно - технического прогресса позволяет людям чувствовать себя более комфортно в городах. К настоящему моменту появилось множество различных, доступных большинству людей удобств, таких как: водопровод, теплоснабжение, централизованная система освещения. Уже практически невозможно представить себе жизнь без этих благ цивилизации, которые стали привычны.

Однако улучшение жилищных условий имеет и обратную сторону - возникновение экологических проблем. Особенно остро проблема стоит в северных районах, в частности у нас, в Сибири. Это связано с большим количеством уже имеющихся предприятий, а так же с возникновением новых и развивающихся. Немалой проблемой так же являются достаточно суровые климатические условия. Проблемы экологии стояли перед человечеством давно, но обращать внимание на них стали только во второй половине ХХ века. Большая загазованность городов, промышленные выбросы и испытания ядерного оружия - все это проблемы человечества в целом.

Наглядным результатом небрежного отношения к природе является Иркутск Рост промышленности, и рост самого города вынуждали увеличивать мощности и количество энергетических предприятий. В настоящее время в городе Иркутске существуют сотни различных котельных, кочегарок и других крупных и мелких предприятий, которые сжигают тот или иной вид топлива.

Сложная экологическая ситуация, заставляет постоянно искать пути решения этой проблемы, результатом которой, зачастую являются испорченное здоровье жителей городов. Обратив внимание на город вечером с какой - либо высокой его точки, можно увидеть как город буквально тонет в дыму, газах. Это смог - бич крупных городов.

Поэтому применение каталитического активатора горения топлива сегодня позволит не только экономить значительную часть средств, расходуемых на топливо и платежи за выбросы, но и безусловно поможет решить экологическую проблему, путем снижения вредных выбросов в дымовых газах.

Человечество стоит на краю глобальной экологической катастрофы. Озоновые дыры, связанные с использованием фреона и других химических материалов, потепление климата, т.н. “парниковый эффект” - все эти проблемы создало современное человеческое общество, оно же и обязано их решить.

Обратим внимание на разработчиков КАГТ, которые внесли большой вклад в решение экологических проблем!

Д.Я. Борщов “ Устройство и эксплуатация отопительных котельных малой мощности “.

В.С. Вергазов “ Спутник машиниста отопительных котельных “.

В.А. Бочкарев “ Охрана окружающей среды. Методические указания“.

Газомазутные (ГМ) котельные агрегаты серии ДКВР предназначены для выработки сухого насы­щенного или слабо перегретого пара на технологические нужды промышленных предприятий, систем отопления, и горячего водоснабжения. Паровой котельный агрегат ДКВР-10-13-250 - двух- барабанный котел, водотрубный, реконструированный. Первая цифра после ДКВР: 2,5; 4; 6,5; 10; 20 - означает паропроизводительность котла в т/ч, вторая цифра: 13 или 23 - показывает избыточное давле­ние пара в ати, а третья цифра (если она есть): 250 или 225 - характеризует температуру перегретого пара в °С.

Основные характеристики котлов серии ДКВР и их комплектация приведены в табл. П1, табл. 8.17 - 8.19 .

24 25 28 2\ В-В 23

Разрез по топке 1

Дымовые газы

1, 2 - верхний и нижний барабаны; 3, 4 - кипятильные трубы первого и второго газохода; 5 - чугунная перегородка; 6 - фронтовой экран топки; 7 , 8 - опускные трубы и коллектор фронтового экрана; 9 - задний экран;

10 , 11 - коллектор и перепускные трубы заднего топочного экрана; 12 - левый боковой экран топки; 13 , 14 - коллектор и перепускные трубы левого бокового экрана; 15 - опускные трубы бокового топочного экрана;

16 - правый боковой экран топки; 17 - горелки; 18, 20 - шамотные перегородки;

19 - камера догорания; 21 - торкрет; 22 - обмуровка; 23 - питательная линия;

24 - паросепарационные устройства; 25 - паропровод; 26 - пароперегреватель;

27 - водоуказательное стекло; 28 - предохранительный клапан; 29 - термометр; 30 - манометр; 31 - трубопровод периодической продувки

Теплогенератор ДКВР-10-13-250 ГМ состоит из верхнего 1 (длинного) и нижнего 2 (укороченного) барабанов, которые соединены между собой изогнутыми кипятильными трубами в количестве 594 шт., и образуют соответственно первый 3 и второй 4 газоходы конвективной поверхности нагрева. Газоходы разделены между собой чугунной перегородкой 5 по всей высоте газохода с окном (от фронта котла) справа.

Передняя часть нижнего барабана крепится неподвижно, а остальные части котла имеют скользя­щие опоры, а также реперы, которые контролируют удлинения элементов при температурном расшире­нии.

Топка сформирована 118-ю экранными трубами, которые образуют соответственно: 6 - передний или фронтовой экран; 12 - левый боковой экран; 16 - правый боковой экран (аналогично левому); 9 - задний экран топки. Все трубы радиационной и конвективной поверхности нагрева имеют наружный диаметр 51 х 2,5 мм, чем достигается лучшая естественная циркуляция в контурах котла.

Все экранные трубы топки своими верхними концами развальцованы в верхнем барабане 1, а ниж­ними концами приварены к четырем нижним коллекторам: фронтовому - 8, левому боковому - 13 (ана­логично и правому) и заднему топочному - 10. Кроме того, фронтовой коллектор 8 соединен с верхним барабаном четырьмя опускными трубами 7, расположенными снаружи обмуровки, а нижний коллектор левого бокового топочного экрана 13 (аналогично, как и правого) соединен с верхним барабаном одной опускной трубой 15, проложенной в обмуровке. Нижний коллектор 10 заднего топочного экрана соеди­нен с нижним барабаном перепускными трубами 11. Поперечный фронтовой коллектор 8 расположен над горелками 17.

Обмуровка 22 - тяжелая, из красного кирпича, а футеровка - из шамотного кирпича. Верхний бара­бан в топке закрыт торкретом 21 во избежание перегрева металла верхнего барабана. Оператор перед приемом смены визуально должен проверить состояние торкрета. Кроме того, в верхнем барабане над топкой установлены две легкоплавкие вставки (смесь олова и свинца), которые плавятся при темпера­туре около 300 °С, что приводит к выпуску воды в топку, прекращению горения топлива и предохране­нию барабана от перегрева.

Камера догорания 19 предназначена для снижения потерь теплоты от химической неполноты сго­рания топлива (химического недожога) и отделена от топки кирпичной перегородкой 18 (с окном спра­ва, для прохода топочных газов), а от первого газохода 4 - кирпичной перегородкой - 20 (с окном сле­ва).

Подача питательной воды производится по линии 23, с установкой на ней обратного клапана и вен­тиля. В верхнем барабане 1 котла установлены паросепарационные устройства 24. Отбор пара произво­дится по паропроводу 25. Для получения перегретого пара используют пароперегреватель 26, который устанавливают обычно за одним или двумя рядами кипятильных труб первого газохода котла.

На верхнем барабане установлена арматура: водоуказательные приборы 27, предохранительные клапаны 28, термометр 29, манометр 30. На всех котлах ДКВР над топкой и газоходом установлены взрывные предохранительные клапаны. Обдувка внешних поверхностей нагрева кипятильного пучка труб в газоходах производится паром, с использованием обдувочных аппаратов.

1. Газовоздушный тракт или движение топочных газов.

Топливо и воздух подаются в горелки 17, а в топке образуется факел горения. Теплота от топочных газов в топке, за счет радиационного и конвективного теплообмена, передается всем экранным трубам (радиационным поверхностям нагрева), где эта теплота за счет теплопроводности металлической стенки и конвективного теплообмена от внутренней поверхности труб передается воде, циркулирующей по эк­ранам.

Затем топочные газы с температурой 900.1050 °С выходят из топки и через окно справа в кирпич­ной перегородке 18 переходят в камеру догорания 19, огибают кирпичную перегородку 20 с левой сто­роны и входят в первый газоход 3, где передают теплоту конвективному пучку труб. С температурой около 600 °С топочные дымовые газы, огибая чугунную перегородку 5 с правой стороны, входят во второй газоход 4 кипятильного пучка труб и с температурой около 200.250 °С, с левой стороны, выхо­дят из котла и направляются в водяной экономайзер.

2. Основные контуры естественной циркуляции.

Питательная вода после умягчения и деаэрации (из деаэратора и водяного экономайзера) по двум трубопроводам питательной линии 23 подается в водный объем верхнего барабана 1, где смешивается с котловой водой. В котле имеется пять контуров естественной циркуляции.

1-й контур (по кипятильным трубам). Котловая вода из верхнего барабана 1 опускается в нижний барабан 2 по кипятильным трубам 4 конвективного пучка, расположенным во втором газоходе - в об­ласти более низких температур топочных газов. Образующаяся пароводяная смесь (ПВС) поднимается в верхний барабан по кипятильным трубам 3, расположенным в первом газоходе - в области более высо­ких температур топочных газов.

2-й контур (по фронтовому экрану) - котловая вода из верхнего барабана 1 по четырем опуск­ным трубам 7 подводится к фронтовому коллектору 8, распределяется по нему, а образующаяся ПВС по экранным трубам 6, установленным в топке, поднимается в верхний барабан.

3-й контур (по заднему экрану топки) - котловая вода из нижнего барабана 2 по перепускным трубам 11 подводится к нижнему коллектору 10, распределяется по нему, а образующаяся ПВС по эк­ранным трубам 9, расположенным в топке, поднимается в верхний барабан.

4-й контур (по левому боковому топочному экрану) - котловая вода из верхнего барабана 1 по опускной трубе 15 (находится внутри обмуровки или снаружи) подводится к нижнему коллектору 13 левого бокового экрана; к коллектору 13 также подводится вода и из нижнего барабана 2, по перепуск­ным трубам 14, после чего вода распределяется по коллектору, а образующаяся ПВС по трубам 12 лево­го бокового экрана, расположенным в топке, поднимается в верхний барабан.

5-й контур (по правому боковому экрану топки 16) - осуществляется аналогично левому боко­вому топочному экрану.

Вода и пароводяная смесь (ПВС) из всех контуров циркуляции поднимается в верхний барабан, где в паросепарационных устройствах 24 отделяется пар, а вода смешивается с котловой водой и процесс цир - куляций повторяется. После паросепарационных устройств полученный сухой насыщенный пар идет к потребителю по паропроводу 25 или направляется в пароперегреватель 26 для получения перегретого пара.

Непрерывная продувка производится из верхнего барабана в расширитель (сепаратор) непрерывной продувки и регулируется вентилем. Периодическая продувка производится из пяти точек котла: четы­рех нижних коллекторов и нижнего барабана. В нижнем барабане над продувочной линией установлен паропровод, который используется для нагрева воды паром от соседних котлов во время растопки кот­ла.

Котел снабжен двумя предохранительными клапанами 28 и соответствующей арматурой: термо­метр 29, манометр 30, водоуказательное стекло 27. На задней стенке котла установлен обдувочный ап­парат, а на обмуровке, в верхней части топки и газода - взрывные предохранительные клапаны.

У котлов паропризводительностью 2,5; 4; 6,5 т/ч пара конструкция аналогична ДКВР-10-13 и отли­чается количеством кипятильных и экранных труб, а также отсутствием фронтового и заднего топочных экранов, в связи с этим существуют только три контура естественной циркуляции: по конвективному пучку и по двум боковым топочным экранам. Периодическая продувка соответственно производится из трех точек: двух нижних боковых коллекторов и нижнего барабана.

Паровые котлы типа ДКВР.

Рис. 7.17. Паровой котел ДКВР-6,5-13 :
I - топочная камера; 2- верхний барабан; 3 - манометр; 4- предохранительный клапан; 5- питательные трубопроводы; 6- сепарационное устройство; 7 - легкоплавкая пробка; 8 - камера догорания; 9 - перегородка; 10 - кипятильный пучок труб; 11 - трубопровод непрерывной продувки; 12 - обдувочное устройство; 13 - нижний барабан; 14 - трубопровод периодической продувки; 15 - кирпичная стенка; 16 - коллектор

Вертикально-водотрубные котлы типа ДКВР предназначены для выработки насыщенного и перегретого пара с температурой 250, 370 и 440 °С, имеют несколько типоразмеров в зависимости от рабочего давления пара 1,4; 2,4; 3,9 МПа и номинальной паропроизводительности 2,5; 4; 6,5; 10; 20; 35 т/ч.
Котлы типа ДКВР являются унифицированными. Они представляют собой двухбарабанные вертикально-водотрубные котлы с естественной циркуляцией. По длине верхнего барабана котлы ДКВР имеют две модификации - с длинным барабаном и укороченным. У котлов паропроизводительностью 2,5; 4; 6,5 и 10 т/ч (раннего выпуска) верхний барабан значительно длиннее нижнего. У котлов паропроизводительностью 10 т/ч последней модификации, а также 20 и 35 т/ч верхний барабан значительно укорочен. Комплекция котлов типа ДКВР теми или иными топочными устройствами зависит от вида топлива. Котлы ДКВР-2,5-13, ДКВР- 4-13 и ДКВР-6,5-13 имеют одинаковое конструктивное оформление.
Для примера на рис. 7.17 приведено устройство котла ДКВР- 6,5-13. Два барабана котла - верхний 2 и нижний 13 - изготовлены из стали 16ГС и имеют одинаковый внутренний диаметр 1 ООО мм. Нижний барабан укорочен на размер топки. Котел имеет экранированную топочную камеру 1 и развитый кипятильный пучок труб 10. Топочные экраны и трубы кипятильного пучка выполнены из труб 051 х 2,5 мм. Топочная камера разделена кирпичной стенкой 15 на собственно топку и камеру догорания, устраняющую опасность затягивания пламени в пучок кипятильных труб, а также снижающую потери от химической неполноты сгорания.
Ход движения продуктов горения топлива в котлах разных типов схематично показан на рис. 7.18, а - в. Дымовые газы из топки выходят через окно, расположенное в правом углу стены топки, и поступают в камеру догорания (см. рис. 7.17). С помощью двух перегородок 9, шамотной (первая по ходу газов) и чугунной, внутри котла образуются два газохода, по которым движутся дымовые газы, поперечно омывающие все трубы конвективного пучка. После этого они выходят из котла через специальное окно, расположенное с левой стороны в задней стене котла.
Верхний барабан в передней части соединен с двумя коллекторами 16 трубами, образующими два боковых топочных экрана. Одним концом экранные трубы ввальцованы в верхний барабан, а другим приварены к коллекторам 0108x4 мм. В задней части верхний барабан соединен с нижним барабаном пучком кипятильных труб, которые образуют развитую конвективную поверхность нагрева. Расположение труб коридорное с одинаковым шагом 110 мм в продольном и поперечном направлениях. Коллекторы соединены с нижним барабаном с помощью перепускных труб.
Питательная вода подается в котел по двум перфорированным (с боковыми отверстиями) питательным трубопроводам 5 под уровень воды в верхний барабан. По опускным трубам вода из барабана поступает в коллекторы 16, а по боковым экранным трубам пароводяная смесь поднимается в верхний барабан, образуя таким образом два контура естественной циркуляции.
Третий контур циркуляции образуют верхний и нижний бара¬баны котла и кипятильный пучок. Опускными трубами этого контура являются трубы наименее обогреваемых последних рядов (по ходу газов) кипятильного пучка.


Рис. 7.18. Схема движения газов в котлах ДКВР (а), ДЕ-4, -6,5, -10 (б) и ДЕ-16, -25 (в) :
Г - газ; В - воздух; ПГ - продукты горения

Вода по опускным трубам поступает из верхнего барабана в нижний, а пароводяная смесь по остальным трубам котельного пучка, имеющим повышенную тепловую нагрузку, поднимается в верхний барабан. В верхнем барабане котла происходит разделение пароводяной смеси на пар и воду. Для снижения солесодержания и влажности пара в верхнем барабане установлено сепарационное устройство 6 из жалюзи и дырчатого листа, улавливающее капли уносимой с паром котловой воды. При необходимости производства перегретого пара пароперегреватель устанавливают после второго или третьего ряда труб кипятильного пучка, заменяя часть его труб. Для котлов с давлением 1,4 МПа и перегревом 225... 250 °С пароперегреватель выполняют из одной вертикальной петли, а для котлов давлением 2,4 МПа - из нескольких петель труб 032 х 3 мм.
В нижней части верхнего барабана имеются патрубок, через который осуществляется непрерывная продувка котла (см. рис. 7.17, поз. 11) с целью снижения солесодержания котловой воды и поддержания его на заданном уровне, а также две контрольные легкоплавкие пробки 7, сигнализирующие об упуске воды.
Нижний барабан является шламоотстойником; из него по специальному перфорированному трубопроводу 14 проводится периодическая продувка котла. Кроме того, в нижнем барабане имеются линия для слива воды и устройство для подогрева паром в период растопки котла.
На верхнем барабане установлены два водоуказательных стекла, манометр 3, предохранительные клапаны 4, имеется патрубок для отбора пара на собственные нужды, парозапорный вентиль. Для защиты обмуровки и газоходов от разрушения и предотвращения возможных взрывов котла в верхних частях топки и кипятильного пучка расположены взрывные предохранительные клапаны. Для очистки наружных поверхностей труб от загрязнений котел оборудуют обдувочным устройством 12 - вращающейся трубой с соплами. Обдувка выполняется паром.
Рассматриваемый котел не имеет несущего каркаса, трубно-барабанная система его размещается на опорной раме, с помощью которой котел крепится к фундаменту.
Паровые котлы производительностью 10; 20; 30 т/ч имеют рабочее давление 1,4; 2,4 и 3,9 МПа и выполняются как с пароперегревателем, так и без него.
Обмуровка котлов типа ДКВР выполняется из шамотного и обыкновенного кирпича или облегченной из термоизоляционных плит.
Все котлы типа ДКВР и особенно с повышенным рабочим давлением работают на химически очищенной и деаэрированной воде. При сжигании газа и мазута КПД этих котлов 90 %.

Котел ДКВР расшифровывается как двухбарабанный, вертикально-водотрубный реконструированный агрегат. Его назначение – образование пара температурой 194 или 250 градусов. Агрегат используется в промышленности, обеспечивая технологические потребности предприятий. ДКВР часто применяется в отопительных и вентиляционных системах, а также для горячего водоснабжения.

Особенности использования котлов

Паровой котел дквр отличается длительным сроком эксплуатации. Он может работать до 25 лет. Иногда агрегат используется больше 50 лет. ДКВР не подвержен влиянию природных условий и перепадам температур. Поэтому он одинаково хорошо работает во всех климатических зонах.

Агрегаты могут применять разные виды топлива:

  • работают на жидком топливе и газообразном;
  • используют в качестве горючего уголь;
  • работают на растительных отходах (древесных, лузге) и фрезерном торфе.

Используемое горючее требует соответственного топочного устройства. Котел ДКВР, работающий с использованием газа и мазута, оснащен каменными камерами сгорания с газомазутными распылителями. Благодаря этому его производительность может повышается на 40%.

Для применения в качестве топлива древесных отходов, котлы ДКВР должны быть оснащены специальными скоростными топками системы Померанцева (ЦКТИ). Для фрезерного торфа агрегаты должны быть изготовлены по схеме Шершнева с предтопком. Котлы с шахтными топками способны работать с куксовым торфом.

Рис. 1

Для работы на углях агрегат оснащается полумеханическими камерами горения класса ПМЗ-РПК.

Схема агрегата

Конструктивные схемы котлов ДКВР, как правило, неизменные. На них не влияет то, какое топливо применяется или какое топочное устройство задействовано.

Объем парового агрегата называют в зависимости от того, какой наполнитель в нем присутствует. Так, если сегмент содержит жидкость, то это водное пространство. Если же сектор наполнен паром, то его именуют паровым. Поверхность, которая разделяет паровое и водное пространства – это зеркало испарения. В паровом пространстве есть специальное оборудование для разделения пара и влаги.

Устройство агрегата

Каждый котел ДКВР состоит из:

  • верхнего длинного барабана;
  • нижнего короткого барабана;
  • топочной камеры;
  • конвективного пучка;
  • питательных трубопроводов;
  • перегородки;
  • обдувочного устройства;
  • кирпичной стенки;
  • коллектора;
  • камеры догорания;
  • лестницы и площадки для техобслуживания ДКВР.

Рис. 2

Это описание базовых элементов схемы агрегата. Барабаны размещаются вдоль оси котла ДКВР и соединяются между собой развальцованными гнутыми циркуляционными трубами. Последние всегда располагаются вертикально. Таким образом, создается развитый конвективный пучок.

На днищах барабанов имеются овальные лазы. Они необходимы для их проверки и чистки или установки дополнительных устройств.

Экранированная топочная камера – еще одна комплектующая парового котла ДКВР. Она разделена на два сектора кирпичной перегородкой. Первый сегмент – это сама топка, а второй – камера догорания. Последняя повышает КПД парового ДКВР за счет уменьшения химического недожога.

Такое устройство присуще моделям котла ДКВР 2,5; 4 и 6,5. В паровом котле ДКВР -10 сегменты разделены трубами. При этом кирпичная перегородка тоже присутствует – между рядами труб. Это сепарирует котельный пучок от камеры догорания.

Часть циркулярных труб может не монтироваться, если в котле ДКВР установлен пароперегреватель. Его помещают в 1-ом газоходе. Он находится сразу за 3-им рядом циркуляционных труб. Все пароперегреватели стандартизированы. Они отличаются лишь количеством параллельных змеевиков. Число последних напрямую зависит от степени производительности прибора.


Рис. 3

В котле ДКВР предусмотрены торцевые лазы. Через них происходит уборка шламовых отложений.

Дополнительные элементы системы

Помимо основных комплектующих элементов, агрегат оснащен целой системой измерительных устройств и дополнительными деталями:

  • предохраняющими клапанами;
  • манометрами;
  • показателями уровня и запорным оборудованием;
  • клапанами питания;
  • арматурой для продувки;
  • клапанами для удержания насыщенного пара (при отсутствии в ДКВР пароперегревателей);
  • клапанами отбора перегретого пара (при наличии в паровом агрегате пароперегревателей);
  • арматурой на отрезке обдувки/прогрева нижнего барабана (для котла ДКВР -10);
  • клапанами спуска жидкости из нижнего барабана;
  • вентилями на отрезке введения химических веществ;
  • вентилями для взятия проб пара.

Для агрегатов ДКВР-10 предусмотрены запорный и игольчатый клапаны. Они служат для постоянной продувки верхнего барабана. Каждый котел ДКВР имеет специальную лестницу и площадку. Это упрощает работы по его обслуживанию.


Рис. 4

Описание принципа работы

Принцип работы котла ДКВР довольно прост. Вода поступает вначале в верхний барабан по двум специальным трубам. Тут она смешивается с котловой водой. Определенная часть последней поступает в нижний барабан по циркуляционным трубам. Затем проходит, нагреваясь, по подъемным и вместе с пароводяным соединением попадает в верхний барабан.

Следующая часть жидкости прибора направляется в нижние коллекторы по опускным трубам. Затем жидкость прогревается в экранных трубках и образовавшийся пар и пароводяное соединение возвращается в верхний барабан.

Тут пар движется через сепарационные механизмы. Из него отделяется влага. Сухой пар поступает к потребителю либо же закачивается в пароперегреватель. Тут он достигает более высоких температур.

Схема естественной циркуляции в котле ДКВР обеспечивается благодаря гравитации. Вода и пароводяная смесь имеют разную плотность. Поэтому жидкость всегда опускается вниз, отделяясь от пара, который направляется вверх. Контуров циркуляции может быть несколько.

При правильной циркуляции жидкости агрегат безопасен. Но существуют случаи, когда она нарушается.

Среди возможных причин сбоя циркуляции:

  • неодинаковый прогрев испаряющей поверхности (происходит, как правило, при шлаковании отдельных сегментов труб);
  • неровное распределение жидкости по трубам экранов и коллекторов (может случиться при загрязнении шламом);
  • неравномерное заполнение объема камеры топки факелом горения.

Базовое условие безопасного действия котла ДКВР – своевременное охлаждение поверхности нагрева. На нее постоянно воздействует высокая температура от топочных газов. Теплота передается трубам. Задача теплоносителя, который находится внутри обогреваемых труб, – равномерно циркулировать, отводя это тепло от стенок. Если процесс происходит неинтенсивно – возможно нарушение прочности металла. Это грозит свищами или разрывом труб.


Рис. 5

Преимущества

Паровой ДКВР имеет целый ряд качеств, которые выгодно отличают его от других подобных установок. Самое главное его свойство – высокая производительность. Агрегат выдает значительный показатель КПД даже при низком уровне давления. Допускается от 0,7 до 1,4 МПа. Продуктивность агрегата не снижается при его перепадах. При этом котлы ДКВР не требуют специально подготовленной очищенной воды.

Более детальное описание преимуществ котла ДКВР:

  • при необходимости агрегат переводится в водонагревательный режим;
  • работа на практически любом виде топлива;
  • схема работы агрегата гарантирует надежность;
  • высокий КПД работы (до 91%);
  • экономичность – не требует серьезных затрат на использование или техобслуживание, позволяет снизить расходы на теплоэнергоснабжение;
  • есть возможность его монтажа в помещении котельной, не разрушая перекрытий/стен благодаря сборной конструкции;
  • быстрый ввод в эксплуатацию, оперативное подключение к уже действующим системам;
  • конструкция агрегата позволяет менять его комплектацию, используя различные варианты элементов автоматики и контрольно-измерительные приборов;
  • высокоэффективный – имеет значительный диапазон настройки параметров производительности (до 150% от исходного значения).

Заключение

Котлы ДКВР по праву считаются одними из наиболее производительных агрегатов. Их схема довольно проста, при этом они продуктивны и способны работать при любых условиях. Устройства не требуют особого обслуживания. Котлы также не нуждаются в специальных условиях для работы.

При своей высокой эффективности паровые котлы экономичны. Они не требуют специальной очистки воды, которая проходит процесс переработки в них. Котлы довольно долговечны и удобны в эксплуатации. При корректной организации работы и соблюдении правил их использование безопасно. Паровые устройства ДКВР также снабжены рядом предохранительных клапанов.