Меню
Бесплатно
Главная  /  Пластиковые панели  /  Электростанции переносные бензиновые какую выбрать. Передвижные электростанции

Электростанции переносные бензиновые какую выбрать. Передвижные электростанции

November 16th, 2012

Или сказание о бродячем реакторе.

Советские мобильные атомные электростанции предназначались прежде всего для работы в отдаленных районах Крайнего Севера, где отсутствуют железные дороги и линии электропередач

В тусклом свете заполярного дня по заснеженной тундре пунктирной линией ползет колонна гусеничного транспорта: бронетранспортеры охраны, вездеходы с персоналом, цистерны с топливом и… четыре загадочные машины внушительных размеров, похожие на могучие железные гробы. Наверное, так или почти так выглядело бы путешествие мобильной атомной электростанции к Н-скому военному объекту, который стережет страну от вероятного противника в самом сердце ледяной пустыни...

Корни этой истории уходят, разумеется, в эпоху атомной романтики - в середину 1950-х. В 1955 году Ефим Павлович Славский - один из корифеев атомной промышленности СССР, будущий глава Минсредмаша, прослуживший на этом посту от Никиты Сергеевича до Михаила Сергеевича, - посетил ленинградский Кировский завод. Именно в беседе с директором ЛКЗ И.М. Синевым впервые прозвучало предложение о разработке мобильной атомной электростанции, которая могла бы питать электроэнергией гражданские и военные объекты, расположенные в отдаленных районах Крайнего Севера и Сибири.


Предложение Славского стало руководством к действию, и уже вскоре ЛКЗ в кооперации с Ярославским паровозостроительным заводом подготовил проекты атомного энергопоезда - передвижной АЭС (ПАЭС) небольшой мощности для транспортировки по железной дороге. Предусматривались два варианта - одноконтурная схема c газотурбинной установкой и схема с использованием паротурбинной уста-новки самого локомотива. Вслед за этим к разработке идеи подключились и другие предприятия. По итогам обсуждения зеленый свет был дан проекту Ю.А. Сергеева и Д.Л. Бродера из обнинского Физико-энергетического института (ныне ФГУП «ГНЦ РФ - ФЭИ»). Видимо посчитав, что рельсовый вариант ограничит ареал действия ПАЭС лишь территориями, охваченными железнодорожной сетью, ученые предложили поставить свою электростанцию на гусеницы, сделав ее практически вездеходной.

Эскизный проект станции появился в 1957 году, а уже два года спустя было произведено специальное оборудование для постройки опытных образцов ТЭС-3 (транспортируемой электростанции).

В те времена практически все в атомной индустрии приходилось делать «с нуля», однако опыт создания ядерных реакторов для транс-порт-ных нужд (например, для ледокола «Ленин») уже существовал, и на него можно было бы опереться.

ТЭС-3 — транспортабельная атомная электростанция, перевозимая на четырёх самоходных гусеничных шасси, созданных на базе тяжёлого танка Т-10. ТЭС-3 вступила в опытную эксплуатацию в 1961 году. Впоследствии программа была свёрнута. В 80-х годах дальнейшее развитие идея транспортабельных крупноблочных атомных электростанций небольшой мощности получила в виде ТЭС-7 и ТЭС-8.

Одним из главных факторов, которые приходилось учитывать авторам проекта при выборе тех или иных инженерных решений, была, разумеется, безопасность. С этой точки зрения оптимальной была признана схема малогабаритного двухконтурного водо-водяного реактора. Вырабатываемое реактором тепло отбиралось водой под давлением 130 атм при температуре на входе в реактор 275°С и на выходе - 300°С. Через теплообменник тепло передавалось рабочему телу, в качестве которого также выступала вода. Образовавшийся пар приводил в движение турбину генератора.

Активная зона реактора была спроектирована в виде цилиндра высотой 600 и диаметром 660 мм. Внутри помещались 74 тепловыделяющие сборки. В качестве топливной композиции решили применить интерметаллид (химическое соединение металлов) UAl3, залитый силумином (SiAl). Сборки представляли собой два коаксиальных кольца с этой топливной композицией. Подобная схема была разработана специально для ТЭС-3.

В 1960 году созданное энергетическое оборудование смонтировали на гусеничном шасси, позаимствованном у последнего советского тяжелого танка Т-10, который производился с середины 1950-х до середины 1960-х годов. Правда, для ПАЭС базу пришлось удлинить, так что энергосамоход (так стали называть вездеходы, перевозящие атомную электростанцию) имел десять катков против семи у танка.

Но даже при такой модернизации разместить всю энергоустановку на одной машине было невозможно. ТЭС-3 представляла собой комплекс из четырех энергосамоходов.

Первый энергосамоход нес на себе ядерный реактор с транспортируемой биозащитой и специальный воздушный радиатор для снятия остаточного охлаждения. На второй машине монтировались парогенераторы, компенсатор объема, а также циркуляционные насосы для подпитки первого контура. Собственно выработка электроэнергии была функцией третьего энергосамохода, где размещался турбогенератор с оборудованием конденсатно-питательного тракта. Четвертая машина играла роль пункта управления ПАЭС, а также имела резервное энергетическое оборудование. Здесь находились пульт и главный щит со средствами пуска, пусковой дизель-генератор и блок аккумуляторных батарей.

В дизайне энергосамоходов первую скрипку играли лапидарность и прагматизм. Поскольку ТЭС-3 предполагалось эксплуатировать преимущественно в районах Крайнего Севера, оборудование помещалось внутрь утепленных кузовов так называемого вагонного типа. В поперечном сечении они представляли собой шестиугольник неправильной формы, который можно описать как трапецию, поставленную на прямоугольник, что невольно вызывает ассоциацию с гробом.

ПАЭС предназначалась для функционирования только в стационарном режиме, работать «на ходу» она не могла. Чтобы запустить станцию, требовалось расставить энергосамоходы в нужном порядке и соединить их трубопроводами для теплоносителя и рабочего тела, а также электрическими кабелями. И именно на стационарный режим работы была спроектирована биозащита ПАЭС.

Система биозащиты состояла из двух частей: транспортируемой и стационарной. Транспортируемая биозащита перевозилась вместе с реактором. Активная зона реактора помещалась в своего рода свинцовый «стакан», который находился внутри бака. Когда ТЭС-3 работала, бак заливался водой. Слой воды резко снижал активацию нейтронами стенок бака биозащиты, кузова, рамы и прочих металлических частей энергосамохода. После окончания кампании (периода работы электростанции на одной заправке) воду сливали и транспортировка осуществлялась при пустом баке.

Под стационарной биозащитой понимались своего рода боксы из земли или бетона, которые перед пуском ПАЭС требовалось возводить вокруг энергосамоходов, несущих на себе реактор и парогенераторы.


Общий вид АЭС "ТЭС-3"

В августе 1960 года собранную ПАЭС доставили в Обнинск, на испытательную площадку Физико-энергетического института. Меньше чем через год, 7 июня 1961 года, реактор достиг критичности, а 13 октября состоялся энергетический пуск станции. Испытания продолжались до 1965 года, когда реактор отработал свою первую кампанию. Однако на этом история советской мобильной АЭС фактически закончилась. Дело в том, что параллельно знаменитый обнинский институт разрабатывал еще один проект в области малой атомной энергетики. Им стала плавучая АЭС «Север» с аналогичным реактором. Как и ТЭС-3, «Север» проектировался преимущественно для нужд энергообеспечения военных объектов. И вот в начале 1967 года Министерство обороны СССР решило отказаться от плавучей атомной станции. Заодно были остановлены работы и по наземной мобильной энергоустановке: ПАЭС была переведена в стояночный режим. В конце 1960-х появилась надежда на то, что детищу обнинских ученых все-таки найдется практическое применение. Предполагалось, что атомная станция могла бы использоваться в нефтедобыче в тех случаях, когда в нефтеносные слои требуется закачать большое количество горячей воды, чтобы поднять ископаемое сырье ближе к поверхности. Рассматривали, к примеру, возможность такого использования ПАЭС на скважинах в районе города Грозного. Но даже послужить кипятильником для нужд чеченских нефтяников станции не удалось. Хозяйственная эксплуатация ТЭС-3 была признана нецелесообразной, и в 1969 году энергоустановку пол-ностью законсервировали. Навсегда.

Для экстремальных условий

Как это ни удивительно, но с кончиной обнинской ПАЭС история советских мобильных атомных электростанций не прекратилась. Другой проект, о котором несомненно стоит рассказать, представляет собой весьма курьезный пример советского энергетического долгостроя. Начало ему было положено еще в начале 1960-х, но некий осязаемый результат он принес лишь в горбачевскую эпоху и вскоре был «убит» резко усилившейся после чернобыльской катастрофы радиофобией. Речь идет о белорусском проекте «Памир 630Д».

Комплекс передвижной АЭС «Памир-630Д» базировался на четырех грузовых автомобилях, представлявших собой связку «прицеп-тягач»

В определенном смысле можно сказать, что ТЭС-3 и «Памир» соединяют родственные связи. Ведь одним из основателей белорусской ядерной энергетики стал А.К. Красин - бывший директор ФЭИ, принимавший непо-средственное участие в проектировании первой в мире АЭС в Обнинске, Белоярской АЭС и ТЭС-3. В 1960 году его пригласили в Минск, где ученый вскоре был избран академиком АН БССР и назначен директором отделения атомной энергетики Энергетического института белорусской Академии наук. В 1965 году отделение было преобразовано в Институт ядерной энергетики (ныне Объединенный институт энергетических и ядерных исследований «Сосны» НАН).

В одну из поездок в Москву Красин узнал о существовании государственного заказа на проектирование передвижной атомной электростанции мощностью 500-800 кВт. Наибольший интерес к такого рода энергоустановке проявляли военные: им требовался компактный и автономный источник электричества для объектов, находящихся в отдаленных и отличающихся суровым климатом районах страны - там, где нет ни железных дорог, ни ЛЭП и куда довольно сложно доставить большое количество обычного топлива. Речь могла идти об электропитании радиолокаторных станций или пусковых установок ракет.

С учетом предстоящего использования в экстремальных климатических условиях к проекту предъявлялись особые требования. Станция должна была работать при большом разбросе температур (от -50 до +35°С), а также при высокой влажности. Заказчик требовал, чтобы управление энергоустановкой было максимально автоматизировано. При этом станция должна была вписываться в железнодорожные габариты О-2Т и в габариты грузовых кабин самолетов и вертолетов с размерами 30х4,4х4,4 м. Продолжительность кампании АЭС определялась в не менее чем 10 000 часов при времени непрерывной работы не более 2000 часов. Время развертывания станции должно было составлять не более шести часов, а демонтаж необходимо было уложить в 30 часов.


Реактор "ТЭС-3"

Кроме того, проектировщикам следовало придумать, как снизить расходование воды, которая в условиях тундры ненамного доступнее солярки. Именно это последнее требование, практически исключавшее применение водяного реактора, во многом определило судьбу «Памира-630Д».

Оранжевый дым

Генеральным конструктором и главным идейным вдохновителем проекта стал В.Б. Нестеренко, ныне член-корреспондент белорусской Национальной академии наук. Именно ему принадлежит идея использовать в реакторе для «Памира» не воду или расплавленный натрий, а жидкую тетраокись азота (N2O4) - причем одновременно в качестве теплоносителя и рабочего тела, так как реактор мыслился одноконтурным, без теплообменника.

Тетраоксись азота была выбрана, естественно, не случайно, так как это соединение обладает весьма интересными термодинамическими свойствами, такими как высокая теплопроводность и теплоемкость, а также низкая температура испарения. Его переход из жидкого в газообразное состояние сопровождается химической реакцией диссоциации, когда молекула тетраокиси азота распадается сначала на две молекулы диокиси азота (2NO2), а затем на две молекулы окиси азота и одну молекулу кислорода (2NO+O2). При увеличении количества молекул объем газа или его давление резко возрастают.


Кликабельно

В реакторе, таким образом, стало возможным реализовать замкнутый газожидкостный цикл, который давал реактору преимущества в эффективности и компактности.

Осенью 1963 года белорусские ученые представили свой проект мобильной атомной станции на рассмотрение научно-технического совета Государственного комитета по использованию атомной энергии СССР. Тогда же на суд членов НТС были вынесены аналогичные проекты ФЭИ, ИАЭ им. Курчатова и ОКБМ (Горький). Предпочтение отдали белорусскому проекту, однако лишь десять лет спустя, в 1973 году, в ИЯЭ АН БССР было создано специальное конструкторское бюро с опытным производством, которое приступило к конструированию и стендовым испытаниям узлов будущего реактора.

Одной из самых главных инженерных задач, которую предстояло решать создателям «Памира-630Д», стала отработка устойчивого термодинамического цикла с участием теплоносителя и рабочего тела нетрадиционного типа. Для этого применялся, например, стенд «Вихрь-2», представлявший собой фактически турбогенераторный блок будущей станции. В нем нагрев тетраоксида азота производился с помощью турбореактивного авиадвигателя ВК-1 с форсажной камерой.

Отдельную проблему представляла собой высокая коррозионная агрессивность тетраоксида азота, особенно в местах фазовых переходов - кипения и конденсации. Если же в контур турбогенератора попала бы вода, N2O4, прореагировав с ней, немедленно дала бы азотную кислоту со всеми ее известными свойствами. Противники проекта так и говорили порой, что, дескать, белорусские ядерщики намерены растворить в кислоте активную зону реактора. Частично проблема высокой агрессивности тетраоксида азота была решена добавлением в теплоноситель 10% обычной моноокиси азота. Этот раствор получил название «нитрин».

Тем не менее применение тетраоксида азота увеличивало опасность использования всего ядерного реактора, особенно если вспомнить, что речь идет о мобильном варианте АЭС. Подтверждением тому стала гибель одного из сотрудников КБ. Во время опыта из разорвавшегося трубопровода вырвалось оранжевое облачко. Находившийся поблизости человек ненамеренно вдохнул ядовитый газ, который, прореагировав с водой в легких, превратился в азотную кислоту. Спасти несчастного не удалось.


ПАЭС «Памир-630Д»

Зачем снимать колеса?

Впрочем, проектировщики «Памира-630Д» внедрили в свой проект ряд конструктивных решений, которые были призваны повысить безопасность всей системы. Во-первых, все процессы внутри установки, начиная от пуска реактора, управлялись и контролировались с помощью бортовых ЭВМ. Два компьютера работали параллельно, а третий находился в «горячем» резерве. Во-вторых, была реализована система аварийного охлаждения реактора за счет пассивного перетекания пара через реактор из части высокого давления в часть конденсатора. Наличие большого количества жидкого теплоносителя в технологическом контуре позволяло в случае, например, обесточивания эффективно отводить тепло от реактора. В-третьих, важным «страховочным» элементом конструкции стал материал замедлителя, в качестве которого был выбран гидрид циркония. При аварийном повышении температуры гидрид циркония разлагается, и выделяемый водород переводит реактор в глубоко подкритичное состояние. Реакция деления прекращается.

За экспериментами и испытаниями шли годы, и те, кто задумывал «Памир» в начале 1960-х годов, смогли увидеть свое детище в металле лишь в первой половине 1980-х. Как и в случае с ТЭС-3, белорусским конструкторам понадобилось несколько машин для размещения на них своей ПАЭС. Реакторный блок монтировался на трехосном полуприцепе МАЗ-9994 грузоподъемностью 65 т, в роли тягача для которого выступал МАЗ-796. Кроме реактора с биозащитой в этом блоке размещались система аварийного расхолаживания, шкаф распределительного устройства собственных нужд и два автономных дизель-генератора по 16 кВт. Такая же связка МАЗ-767 - МАЗ-994 везла на себе и турбогенераторный блок с оборудованием электростанции.

Дополнительно в кузовах КРАЗов передвигались элементы системы автоматизированного управления защиты и контроля. Еще один такой грузовик перевозил вспомогательный энергоблок с двумя стокиловаттными дизель-генераторами. Итого пять машин.

«Памир-630Д», как и ТЭС-3, был рассчитан на стационарную работу. По прибытии на место дислокации монтажные бригады устанавливали рядом реакторный и турбогенераторный блоки и соединяли их трубопроводами с герметичными сочленениями. Блоки управления и резервная энергоустановка ставились не ближе 150 м от реактора, чтобы обеспечить радиационную безопасность персонала. С реакторного и турбогенераторного блока снимали колеса (прицепы устанавливались на домкратах) и отвозили их в безопасную зону. Все это, конечно, в проекте, ибо реальность оказалась иной.


Макет первой белорусской и одновременно единственной в мире передвижной АЭС «Памир», которая была сделана в Минске

Электрический пуск первого реактора состоялся 24 ноября 1985 года, а спустя пять месяцев случился Чернобыль. Нет, проект не был немедленно закрыт, и в общей сложности экспериментальный образец ПАЭС отработал на разных режимах нагрузки 2975 часов. Однако, когда на волне охватившей страну и мир радиофобии вдруг стало известно, что в 6 км от Минска стоит ядерный реактор экспериментальной конструкции, случился масштабный скандал. Совмин СССР тут же создал комиссию, которой предстояло изучить вопрос о целесообразности дальнейших работ по «Памиру-630Д». В том же 1986 году Горбачевым был отправлен в отставку легендарный глава Средмаша 88-летний Е.П. Славский, покровительствовавший проектам мобильных АЭС. И нет ничего удивительного в том, что в феврале 1988 года согласно решению Совмина СССР и АН БССР проект «Памир-630Д» прекратил свое существование. Одним из главных мотивов, как значилось в документе, стала «недостаточная научная обоснованность выбора теплоносителя».


Памир-630Д — мобильная атомная электростанция, размещённая на автомобильном шасси. Была разработана в Институте ядерной энергетики АН БССР

Реакторный и турбогенераторные блоки были размещены на шасси двух автомобильных седельных тягачей МАЗ-537. Пульт управления и помещения для персонала были расположены ещё на двух автомобилях. Всего станцию обслуживало 28 человек. Установка была рассчитана на перевозку железнодорожным, морским и авиационным транспортом — самым тяжёлым компонентом был реакторный автомобиль, весивший 60 тонн, что не превышало грузоподъёмность стандартного железнодорожного вагона.

В 1986 году, после Чернобыльской аварии, безопасность использования данных комплексов была подвергнута критике. По соображениям безопасности оба существовавших на тот момент комплекта «Памира» были уничтожены .

А вот какое развитие эта тема получает сейчас.

ОАО «Атомэнергопром» рассчитывает предложить мировому рынку промышленный образец передвижной АЭС малой мощности порядка 2,5 МВт.

Российский «Атомэнергопром» представил в в 2009 году на международной выставке «Атомэкспо-Беларусь» в Минске проект блочной транспортабельной ядерной установки малой мощности, разработчиком которого является НИКИЭТ им. Доллежаля.

Как сообщил главный конструктор института Владимир Сметанников, блок мощностью 2,4-2,6 МВт способен работать 25 лет без перезагрузки топлива. Предполагается, что его можно будет в готовом виде поставить на площадку, произвести запуск в течение двух суток. Он требует в обслуживании не более 10 человек. Стоимость одного блока оценивается в сумму около 755 млн рублей, но оптимальное размещение - по два блока. Промышленный образец может быть создан через 5 лет, однако на проведение НИОКР потребуется еще около 2,5 млрд рублей

В 2009 году в Санкт-Петербурге была заложена первая мире плавучая атомная электростанция. Росатом на этот проект возлагает большие надежды: в случае его успешной реализации он ожидает массовых зарубежных заказов.

В Росатоме планируют активно экспортировать плавучие АЭС. По словам главы госкорпорации Сергея Кириенко, потенциальные иностранные заказчики уже есть, но они хотят увидеть, как будет реализован пилотный проект.

На руку строителям передвижных АЭС и экономический кризис, он только повышает спрос на их продукцию, — считает аналитик Unicredit Securities Дмитрий Коновалов. «Спрос будет именно потому, что электроэнергия этих станций является одной из наиболее дешевых. Атомные электростанции ближе к гидростанциям по цене за киловатт-час. И поэтому спрос будет как в индустриальных районах, так и в развивающихся регионах. А возможность мобильности и передвижения этих станций делает их еще более ценными, потому что потребности на электроэнергию в разных регионах тоже разные».

Россия первой решила строить плавучие АЭС, хотя в других странах такая идея тоже активно обсуждалась, но от ее реализации решили отказаться. Один из разработчиков Центрального конструкторского бюро «Айсберг» Анатолий Макеев рассказал BFM.ru следующее: «В свое время была идея использования таких станций. По-моему, американская компания ее предложила — она хотела построить 8 плавучих атомных электростанций, но это все провалилось из-за «зеленых». Есть вопросы и к экономической целесообразности. Плавучие электростанции дороже стационарных, да и мощность у них маленькая».

В 2009 году на Балтийском заводе началась сборка первой в мире плавучей атомной электростанции.

Плавучий энергоблок, построенный в Петербурге по заказу ОАО «Концерн Энергоатом», станет мощным источником электричества, тепла и пресной воды для удаленных регионов страны, постоянно испытывающих дефицит энергии.

Станция должна была быть сдана заказчику в 2012 году. После этого завод планирует заключить еще контракты на строительство еще 7-ми таких же станций. Кроме того, проектом плавучей атомной станции уже заинтересовались зарубежные заказчики.

Плавучая атомная станция состоит из гладкопалубного несамоходного судна с двумя реакторными установками. Она может использоваться для получения электрической и тепловой энергии, а также для опреснения морской воды. В сутки она может выдать от 100 до 400 тысяч тонн пресной воды.

Срок эксплуатации станции составит минимум 36 лет: три цикла по 12 лет, между которыми необходимо осуществлять перегрузку реакторных установок.

Согласно проекту, постройка и эксплуатация такой атомной станции намного выгоднее постройки и эксплуатации наземных атомных электростанций.

Экологическая безопасность АТЭС присуща и последней стадии ее жизненного цикла - снятия с эксплуатации. Концепция снятия с эксплуатации предполагает транспортировку станции, отработавшей срок службы к месту проведения ее разделки для утилизации и захоронения, что полностью исключает радиационное воздействие на акваторию региона, где эксплуатируется АТЭС.

Несмотря на столь высокие требования к безопасности, экологи все равно усматривают угрозу в ПАТЭС. Их главным аргументом является статистка аварий и происшествий, произошедших с судами, на которых используются атомные установки. Но все-таки большинство аварий произошло до 90-х годов прошлого века, конкретней, в 60-х годах, то есть еще во время становления атомной энергетики как таковой. Как ни крути, технологии, в том числе безопасности, шагнули далеко вперед. Во-вторых, хоть ПАТЭС и будут строиться на базе технологий, использованных для строительства судов и субмарин, но уровень безопасности их, по заверениям "Росэнергоатома", будет превосходить даже наземные АЭС. И, наконец, эксперты приводят примеры тех же аварий, но при этом отмечают, что даже при крушении судна реактор остается в безопасности.

Учитывая то, что этот проект основан на огромном опыте плавающих объектов - ледоколов, подводных лодок, проект вполне безопасный. Пример, затонувшая подводная лодка "Курск". У нее было огромный взрыв в носу, лодка погибла, а установка ядерная осталась целая. Когда лодку подняли и в док поставили, оказалось, что можно установку запускать", - комментирует Андрей Гагаринский. "Проект плавучей атомной станции прошел все необходимые государственные экспертизы, в том числе, экологическую. Установки такого типа наработали около 7 тыс. реакторо-лет и на сегодняшний день являются, по мнению специалистов, самыми надежными в мире"

Кстати: Эксплуатация ПАТЭС будет производиться вахтовым методом с проживанием обслуживающего персонала на станции. Продолжительность вахты четыре месяца, после чего происходит смена вахты-экипажа. Общая численность основного эксплуатирующего производственного персонала ПАТЭС, включая сменный и резервный составы, составит около 140 человек.

Для создания бытовых условий, соответствующих принятым стандартам, на станции предусмотрены столовая, бассейн, сауна, спортзал, салон отдыха, библиотека, телевидение и т.п. Для размещения персонала на станции имеется 64 одноместных и 10 двухместных кают. Жилой блок максимально удален от реакторных установок и от помещений энергетической установки. Численность привлекаемого постоянного непроизводственного персонала административно-хозяйственной службы, на который не распространяется вахтовый метод обслуживания, составит около 20 человек.

По словам главы "Росатома" Сергея Кириенко, если не развивать атомную энергетику России, то лет через двадцать она вообще может исчезнуть. Согласно поставленной Президентом России задаче, к 2030 году доля атомной энергетики должна увеличиться до 25%. Похоже, ПАТЭС призваны не дать сбыться печальным предположениям первого и решить задачи, поставленные вторым хотя бы отчасти.

Плавучие станции могут стать вообще уникальным российским проектом: в случае изготовления ПАТЭС для других государств, это будет тот же экспорт энергии из России, но уже не углеводородный.


В 2010 году головной энергоблок плавучей атомной теплоэлектростанции (ПАТЭС) "Академик Ломоносов" спущен на воду в среду в Петербурге на ОАО "Балтийский завод"

Однако, на сегодняшний день непростая ситуация, которая сложилась со строительством первой Плавучей атомной теплоэлектростанции (ПАТЭС), кажется, плавно двинулась в сторону разрешения. Генеральный директор концерна «Росэнергоатом» Евгений Романов, в своем блоге сообщил: вопрос с завершением строительства ПАТЭС должен решиться в ближайшие два года.

По данным экспертизы, проведенной в мае 2012 года совместно ОАО «Объединенная судостроительная корпорация» и «Росэнергоатом», работы по строительству плавучей атомной станции в настоящий момент выполнены всего на 35%, полтора года строительство, в сущности, не велось. И это, несмотря на тот факт, что согласно договору между «Балтийским заводом», выполняющим работы по строительству энергоблока и заказчиком ПАТЭС «Росэнергоатом», 24 мая 2012 года должна была состояться поставка готового энергоблока. Непростую ситуацию, сохранявшуюся до последнего момента на «Балтийском заводе», связывают с действиями предыдущего собственника предприятия. 13 января 2012 года на «Балтийском заводе» была введена процедура наблюдения в рамках дела о банкротстве. А обязательства по выполнению действующих контрактов, в том числе и продолжение строительства ПАТЭС, переведены на ООО «Балтийский завод - судостроение».

Предисловие

Основное их предназначение - быть аварийным источником электроснабжения. Однако они могут служить и в качестве малой электростанции, обеспечивая дом электричеством круглый год.

Основное их предназначение - быть аварийным источником электроснабжения. Однако они могут служить и в качестве малой электростанции, обеспечивая дом электричеством круглый год. Эти устройства мобильные, компактные и мощные.

Универсальные передвижные электростанции, работающие на бензине и дизеле, рассчитаны на напряжение от 200 до 400 В. Они просты в устройстве, довольно редко требуют ремонта или сервисного обслуживания.

Основные преимущества передвижных электростанций: низкая стоимость вырабатываемой энергии; большой ресурс и долговечность; довольно низкий шум от работы; возможность с их помощью обогревать дом; стабильно работают при самых низких (до -50 °C) и высоких (до +45 °C) температурах.

Важные компоненты передвижной электростанции - двигатель внутреннего сгорания и генератор. По типам генератора электростанции делят на синхронные и асинхронные. Первые предназначены для аварийного использования. Вторые способны поддерживать напряжение в сети с большей точностью и предназначены для подключения приборов, более чувствительных к перепадам напряжения.

Передвижные электростанции разделяют и по типу используемого топлива, они бывают бензиновыми и дизельными.

Мировые марки по производству передвижных станций, такие как Endress (Германия), Gesan (Испания), Hitachi (Япония), готовы предложить разнообразные модификации в зависимости от потребностей покупателей.

Дизельная электростанция стоит от 30 тыс. руб., бензиновая - от 28 тыс. руб. Цены могут подниматься до 100-200 тыс. руб. в зависимости от мощности и комплектации приборов. При выборе важно обратить внимание на объем предполагаемого потребления энергии, возможные перегрузки, перебои с основным электроснабжением и запас мощности станции.

Бензиновые служат аварийным источником электроснабжения в случаях частых перебоев электричества. Они могут быть различной мощности: от 0,5 до12 кВт. Генератор в них дополняется автозапуском, чтобы он начинал работать при отключении электроэнергии. Такая станция обойдется дешевле, нежели дизельная, но затраты на топливо будут выше. Бензиновые переносные электростанции компактны в размерах, немного весят и обладают низким уровнем шума (на 20-30 % ниже дизельных).

Дизельная электростанция может служить постоянным источником получения электричества и способна выдерживать нагрузку 24 часа в сутки круглый год. Небольшие имеют мощность до 12 кВт, а самые мощные могут достигать показателя в 2,5 тыс. кВт. Станции с высоким количеством оборотов (3 тыс. об./мин) предназначены для интенсивного использования. Для постоянного энергоснабжения подойдет агрегат с более низким числом оборотов - 1,5 тыс. в минуту.

Выбирая мощность передвижной электростанции, следует определить, какое количество приборов нужно обеспечить электричеством. В первую очередь постоянная подача тока нужна будет холодильнику и лампочкам освещения. Периодически потребляют энергию электроинструменты, утюг, пылесос и т. д. Для расчета показателя складывают мощности активно используемых приборов и к ним прибавляют запас в 20 %.

Например, для небольшого дачного дома, где работают три лампочки освещения, телевизор и холодильник, будет вполне достаточно 2 кВт мощности передвижной станции. Для благоустроенного загородного дома потребуется станция в 10-20 кВт.

При однофазной электропроводке прибора понадобится однофазная передвижная электростанция.

Постоянное снабжение электричеством является классической задачей в реализации энергетической инфраструктуры. Кабельные линии, распределяющие трансформаторы и преобразователи тока - обязательные компоненты подобных проектов. Но далеко не всегда потребляющие объекты нуждаются именно в регулярном энергоснабжении. Отчасти по причине специфики собственной эксплуатации, а отчасти - в силу непостоянного местоположения. В таких случаях может задействоваться передвижная электростанция, которая восполняет объекты потребления энергией в определенные интервалы времени или же входит в их обслуживающую инфраструктуру, перемещаясь в моменты необходимости.

Общие сведения о передвижных электростанциях

Потребность в электроэнергии может возникать в самых разных условиях. Например, на строительной площадке, удаленной от магистральных линий электроснабжения. Или в местах проведения ремонтных работ на коммуникационных сетях, которые также находятся на большом расстоянии от цивилизации. В этих случаях и применяется передвижная электростанция, за счет которой обеспечивается снабжение удаленных потребителей. Существуют станции малой мощности порядка 10 кВт, а также производительные агрегаты до 100 кВт и выше. В зависимости от нужд потребляющего объекта подбирается соответствующая электростанция.

Особенностью передвижного энергетического оборудования данного типа является именно возможность удобной транспортировки. Как правило, машинист электростанции передвижной отвечает не только за подключение и дальнейшее поддержание работоспособности агрегата, но и за его перемещение. Обычно для таких нужд используется автомобиль, который подцепляется к несущей платформе станции и осуществляет ее перемещение.

Принцип работы станций

Рабочий процесс реализуется по принципу генерации энергии. В этом сегменте наиболее распространены дизельные электроагрегаты, поскольку они позволяют добиться высокой степени автономности. От того же машиниста требуется лишь снабжать оборудование жидким топливом для генерации тепла.

Для сжигания топлива предусмотрена специальная камера, а двигатель в ходе работы осуществляет Чаще всего передвижная электростанция имеет в составе силовой установки поршневую группу и кривошипно-шатунный механизм, который активизирует коленчатый вал. В результате крутящий момент вращает ротор генератора, что и приводит к выработке нужного ресурса.

Сама электрическая машина может быть представлена генератором переменного или постоянного тока. В целом же можно говорить о трех рабочих этапах выработки электроэнергии - сжигание топлива, активация механической группы и генерация тока из физического усилия двигателя.

Разновидности

Оборудование различается по типу используемого топлива и способу перемещения. Что касается начального источника энергии, то он может быть жидким или газообразным. Обычно используется жидкое топливо - упомянутый дизель или бензин. Газ применяется там, где есть возможность подключения к магистральной линии.

Вообще, применение газа - это дешевый способ генерации электричества, но не всегда доступный, поскольку перемещение газовых баллонов требует поддержания высокой степени безопасности. Что касается дизеля и бензина, то выбор топлива зависит от типа используемой в станции силовой установки.

Типовая передвижная дизельная электростанция выигрывает за счет мощности, но дороже обходится в содержании. Также передвижные электрогенераторы делятся по способу перемещения. Бывают самоходные станции, прицепные, блочно-транспортабельные и переносные.

Преимущества и недостатки передвижных электростанций

Главное достоинство данного оборудования заключается в возможности обеспечения автономного энергоснабжения. Это не только питание удаленных от центральных линий подачи электроэнергии объектов, но и выполнение функции резервного снабжения. К примеру, такая установка будет уместна на даче, если в районе наблюдается нестабильная работа электросети. Сама же эксплуатация может доставить немало проблем. В первую очередь такие агрегаты значительную часть времени проводят в бездействии, поэтому требуется периодическое выполнение мероприятий технической консервации. Помимо этого, мобильные энергетические установки нуждаются в постоянном обслуживании функциональных и чувствительных элементов - достаточно отметить детали силовой установки.

Современный потребитель достаточно просвещен для того, чтобы разобраться, чем отличаются друг от друга бензиновый и дизельный генератор или какой мощности установка подойдет для обеспечения всех имеющихся на его объекте потребителей электропитания.

Ушли те времена, когда электропроводку в доме делали собственными силами. Сегодня лучше отдать эту важную для безопасности дома работу в руки специалистов, которые выполнят ее по всем законам электротехники.

Если все делать правильно, то схема электропроводки нового дома продумывается вместе с проектом дома.

Какой генератор выбрать?

Жизнь человека связана с необходимостью постоянного использования и преобразования энергии, как в быту, так и в промышленности. На сегодняшний день основным возобновляемым источником энергии является – электричество. Электрический ток заставляет работать компьютеры, бытовую технику, его применяют практически во всех сферах жизни человека, в том числе и в промышленности.

Определение

По сути, переносная электростанция – это автономное портативное устройство, способное трансформировать механическую энергию, получаемую от сгорания топлива, в электрический ток определенных мощностей. Сегодня все переносные электростанции, которые пользуются наибольшим спросом, можно разделить на две категории по виду используемого топлива:

  • Дизельные
  • Бензиновые

Надо заметить, что существуют так же инверторные генераторы, которые отличаются более экономичным исполнением обычных генераторов. Переменный ток в этих генераторах трансформируется в постоянный ток, происходит максимальная стабилизация. Технической особенностью таких генераторов является способность изменения количества оборотов во время работы в зависимости от фактических нагрузок, что обеспечивает высокую экономичность.

Электрооборудование мастерских

По техническому труду

Лекция № 2.1.1

Переносные электрические станции

Курс, группа, факультет : факультет технологии, 2 курс, дневное отделение

Дата проведение занятия : ________________

Цель занятия : изучение назначения, общего устройства, технологических характеристик, принципа работы и мер безопасности при работе с электроинструментами и бытовыми приборами в мастерских по техническому труду.

Задачи занятия:

1. Формирование у студентов минимально необходимых знаний основных законов электричества и освоение методов проведения электрических измерений в электрических цепях и выполнения поверок электроизмерительных приборов

2. Формирование знаний о назначении, общем устройстве, технологических характеристиках, принципах работы и мерах безопасности при работе с электроинструментами и бытовыми приборами в мастерских по техническому труду.

3. Привитие навыков электромонтажных работ в мастерских и выполнения первичных ремонтных работ электрооборудования в мастерских по техническому труду.

План занятия:

1. Назначение, общее устройство и классификация по техническим возможностям и фирмам-производителям переносных электрических станций.

2. Технологические характеристики и принцип работы.

3. Эксплуатация и меры безопасности.

Назначение, общее устройство и классификация по техническим возможностям и фирмам-производителям переносных электрических станций

Переносная электростанция представляет собой автономное устройство и предназначена для превращения механической энергии, полученной от сгорания топлива, в электрическую энергию.

Существует множество терминов для обозначения одного и того же оборудования, которое понимается под термином электростанция:

Портативная электростанция;

Переносная электростанция;

Бензиновая электростанция;

Дизельная электростанция;

Газовая электростанция;

Бензогенератор;

Дизельгенератор;

Стационарная, промышленная, передвижная и контейнерная электростанция;



Генераторная установка.

Все они объединяются общим принципом работы – преобразованием тепловой энергии топлива в электрическую. КПД таких электростанций 25-30%. Для повышения КПД (или для утилизации тепла, вырабатываемого электростанцией), созданы МИНИ-ТЭЦ, утилизирующие тепло для систем отопления.

Все электростанции можно разделить :

По назначению – бытовые, профессиональные (до 15кВА);

По применению – резервные, основные:

По виду топлива – бензин, дизтопливо, газ (сжиженный или магистральный);

По исполнению – открытые, в шумопоглощающем корпусе, в контейнере, в кунге и т.п.;

По виду пуска – ручной (для малогабаритных), электростартерный или автоматический;

По фирме – производителю.

Бензиновые переносные электростанции характеризуются высокой производительностью В качестве топлива используется бензин марок А-92 или А-95. Расход топлива зависит от мощности нагрузки, начинается со значения 0,3 л/час. Непрерывная работа генераторов обычно ограничена 6-8-мью часами. Ресурс работы (моторесурс) – от 500 до 2000 часов.

Преимущества (по сравнению с переносными дизельными моделями):

· низкая стоимость генератора;

· высокий экономический эффект при малых мощностях электропотребления;

· компактность;

· малошумность;

· гарантированный запуск при отрицательных температурах;

· простота обслуживания.

Недостатки электростанций этого типа:

· высокая стоимость используемого топлива;

· большая горючесть топлива повышает опасность возгорания, при установке и работе в помещении следует обеспечить вентиляцию воздуха.

Дизельные переносные электростанции по своим характеристикам схожи с бензиновыми, но они отличаются более высоким моторесурсом. Расход топлива зависит от мощности нагрузки и начинается со значения 0,8 л/час. Ресурс работы (моторесурс) – от 4000 часов.

Преимущества (по сравнению с переносными бензогенераторами):

· высокая надёжность и большой моторесурс;

· низкая стоимость топлива;

· высокая окупаемость при работе с большими мощностями;

· низкая опасность возгорания топлива.

Недостатки :

· более высокий уровень шума;

· при отрицательных температурах необходим подогрев топлива и системы охлаждения;

· значительное сокращение срока службы при работе на холостом ходу.

Переносные бензиновые и дизельные электростанции могут оснащаться инверторами . В чём отличие? В классических моделях параметры выходного напряжения определяются частотой вращения двигателя. В инверторных электростанциях амплитуду, частоту выходного напряжения формирует электронная схема. Сначала переменный ток электрогенератора преобразуется в постоянный ток. Затем ток опять преобразуется в переменный, но уже с качественными, стабильными параметрами.

Электростанции инверторного типа обладают следующими преимуществами :

· высокая стабильность параметров выходного напряжения инверторных электростанций (амплитуды, частоты) позволяет питать критичные к этим параметрам электронные приборы;

· низкая цена генератора;

· экономия топлива – электронная система обеспечивает точную регулировку оборотов двигателя в зависимости от мощности нагрузки; малый вес, компактность.

Газовый генератор – это самый молодой вид генераторных агрегатов. Газогенераторы – генераторы, работающие на самом «чистом» виде топлива, так как в результате сгорания газ не оставляет никаких твёрдых частиц, а, следовательно, не загрязняет атмосферу. Газ является самым недорогим видо м топлива, что обуславливает низкие затраты на содержание газогенератора. Этот экологичный вид генератора характеризуется и низким уровнем шума в процессе работы, что также является явным преимуществом перед бензиновым и дизельным генератором. Однако цена на газовый генератор значительно выше, чем на бензиновый или дизельный генератор, что обуславливает доступность лишь узкому кругу потребителей. Поэтому на сегодняшний день газогенератор и не получил такого широкого распространения, как дизельный или бензиновый виды генераторов.

Переносные солнечные электростанции предназначаются для преобразования солнечной энергии в электрическую. Накопленная электроэнергия хранится в аккумуляторной батарее. Преобразованная энергия используется напрямую или через преобразователи напряжения. Солнечные электростанции характеризуются высокой устойчивостью к механическим повреждениям и климатическому воздействию, благодаря этому их можно эксплуатировать в любых экстремальных условиях. В качестве аккумуляторов в переносных солнечных электростанциях используются герметичные свинцово-кислотные гелиевые аккумуляторные батареи. С помощью солнечных электростанций обеспечивается освещение временных строений и отдельно стоящих объектов. Однако широкого распространения они не получили. Поскольку стоимость их высока, мощность и КПД низки, а вес и габариты существенно ограничивают возможность мобильного перемещения.

Устройство бензинового генератора. Ключевым узлом агрегата является двигатель. Могут использоваться два типа двигателей:

* двухтактные – устанавливаются на маломощные агрегаты для непродолжительной эксплуатации.

* четырехтактные – обладают повышенным запасом прочности. Срок бесперебойной работы – 5-7 часов. Моторесурс – 3-4 тысячи моточасов.

Двигатель комплектуется различными системами. Одна из них отвечает за подачу топлива, другая – за шумоподавление, третья – за подачу смазки.В комплектацию также входит выхлопная труба.

Вырабатываемая мощность двигателя определяет тип используемого генератора переменного тока – однофазный либо трехфазный.

Если планируемая нагрузка превышает 5 кВт, электростанция комплектуется трехфазным генератором.

Кроме этого электрогенераторы могут быть асинхронными и синхронными. Некоторые бюджетные модели оснащаются асинхронными генераторами, обладающими несложной конструкцией.

Синхронные генераторы способны переносить трехкратные скачки напряжения.

Качественная и безошибочная работа ключевых внутренних узлов электроагрегата контролируется при помощи контрольно-измерительных приборов.

Схема бензинового генератора показывает расположение всех узлов электрической установки, и их влияние на работу агрегата. Рамный каркас конструкции связывает все узлы в единый рабочий комплекс.

Если рассматривать стационарные электростанции , то они выполняются на станине или в закрытом кожухе.


В первом случае массивная станина служит демпфером и амортизатором для работающего агрегата. Амортизация может производиться за счет конструкции корпуса или при помощи специальных гидравлических и механических демпферов. Электростанции большой мощности отличаются от переносных более совершенной системой запуска и управления двигателем, возможностью включения в систему автономного энергоснабжения с автоматическим запуском.

Электростанции дизельные, выполняемые в отдельном кожухе, как правило, обладают мощностью от 15 кВт. Используемые здесь двигатели крайне надежны и могут эксплуатироваться в течение долгих лет.

Электростанции в кожухе, помимо станины и основных элементов могут поставляться с собственной принудительной системой вентиляции и в утепленном исполнении для районов с низкими зимними температурами. Исполнение в кожухе дает свои преимущества по транспортировки электростанций большой мощности. Чаще всего в нем предусмотрены подъемные «уши» для кранов и спецтехники. Такие электростанции можно использовать вместе с системами бесперебойной подачи топлива и прогрессивной автоматикой, рассчитанной на питание большого количества потребителей с разными параметрами потребляемого тока.

Таким образом, стационарные электростанции в кожухе состоят из: генераторного блока, двигателя, бензобака или системы бесперебойной подачи топлива, охладителя, системы принудительной или естественной вентиляции, станины, кожуха, выполненного под требования заказчика, блока регуляции и распределения нагрузки.

Современный рынок бензиновых и дизельных генераторов характеризуется широким ассортиментом продукции от лучших производителей, среди которых основными являются фирмы-производители завоевавшие доверие большого круга потребителей по вполне понятным причинам. Ведь качество и надёжность долгосрочной работы генераторов – основные показатели, благодаря которым такие производители, как Gesan, Wilson, Endress, Kipor, Damask, Matrix, Huter, Green field, Champion, Hyundai, Fubag, Honda обеспечивают постоянно растущий уровень спроса на изготавливаемую продукцию