Меню
Бесплатно
Главная  /  Цветы  /  Главные документы с требованиями к заземлению. Заземление

Главные документы с требованиями к заземлению. Заземление

Безопасность эксплуатации электрического оборудования напрямую зависит насколько правильно и качественно выполнено соединение корпусов электрооборудования с заземляющим контуром. Одним из важных факторов правильной работы электрического оборудования (сюда можно отнести как промышленное производство, так и бытовые установки) является заземление.

Поэтому открыв «нормальный» распределительный щит наряду с современным модульным оборудованием, аппаратами защиты и автоматики часто можно увидеть символ обозначающий заземление .

Знак заземления размещают возле главных заземляющих шин электрических станций и подстанций, на корпусах оборудования, на дверцах щита возле крепления заземляющего проводника. Часто встречается в радиоэлектронных схемах, на электронных компонентах таких, например как блок питания Led ленты.

Думаю, что многие из Вас замечали этот знак у себя в электрощитах, но из-за непонимания данного обозначения большинство просто не обращают особого внимания. Висит себе наклейка, да и ладно. А что это такое - уже другой вопрос.

Поэтому дорогие друзья я бы хотел подробно уделить внимание этому вопросу. В сегодняшней статье разберем, какие размеры должны быть у знака заземления в соответствии ГОСТу и правил, а также на каких местах его необходимо накосить.

Какие места обозначаются знаком заземления

Как известно основным назначением заземления является обеспечение электробезопасности. А основным назначением знака заземления указать на конкретное место, где оборудование соединено с заземляющим контуром.

Где же принято наносить символы указывающие связь оборудования с «землей»? Прежде всего, это места соединения защитных проводников с главными заземляющими шинами, возле клемм или шпилек подключения защитного проводника.

Друзья давайте разберемся, где устанавливаются знаки заземления в электроустановках, согласно правил и ГОСТ.

Первый нормативный документ, в котором сказано про нанесение знака заземления ГОСТ Р 51778-2001 «Щитки распределительные для производственных и общественных зданий» В пункте 6.4.6 данного документа сказано что знак заземления должен наноситься возле заземляющего зажима, а также возле зажима куда подключается нулевой защитный проводник - PE.

Следующий нормативный документ - ГОСТ 12.2.007.0-75 ИЗДЕЛИЯ ЭЛЕКТРОТЕХНИЧЕСКИЕ. Общие требования безопасности. В пункте 3.3.5 сказано, что возле места присоединения заземляющего проводника должен наноситься любым способом нестираемый (подразумевается во время эксплуатации) . Кстати в этом же пункте сказано, что место для подключения заземляющего проводника должно быть зачищено от коррозии , а подключаемая площадка (гильза) не иметь поверхностной окраски.

Насчет зачистки от коррозии считаю очень важным замечанием. Я сам лично долго искал, где прописано данное действие.

Идем дальше - ПБ 08-624-03 «Правила безопасности в нефтяной и газовой промышленности». В пункте 1.5.14 сказано что символ «заземления» должен быть изображен в том месте, где металлические части оборудования соединяются с защитным проводником PE.

Ну и конечно не забываем про наше родное ПУЭ . В пунктах 1.7.118 и 1.7.119 которого также оговорено про нанесение опознавательных знаков заземления.

Знак заземления размеры по госту

Друзья мы с вами выяснили, что места, где выполняется подключение оборудования к заземляющему проводнику необходимо маркировать специальным символом. Размеры данного символа и методы его выполнения регламентируются ГОСТ 21130-75. В этом ГОСТе речь идет о нанесении знаков на оборудовании заводом-изготовителем. Методов исполнения в этом случае не много: штамповка, литье в металле, ударный метод и прессовка в пластмассе.

Как можно понять нанесенные таким образом знаки будут иметь либо вдавленную, либо выпуклую поверхность. После изготовления одним из вышеперечисленных методом для большей наглядности знак дополнительно окрашивается.

Это было раньше. Мы же с вами живем в современном мире и понимаем что квартирный щиток никто на завод отвозить не будет для того что на нем поставили «заземляющий штамп».

Благо есть в ГОСТ 21130-75 примечание позволяющее наносить символы заземления не только штамповкой и литьем.

Для всех скептиков в ГОСТ 21130-75 к пункту 3.1 есть примечание 2, в котором сказано что допускается выполнять знаки заземления аппликацией, краской, фотохимическим и иными способами. Главное требование в таком случае соблюдение размеров.

А размеры знака заземления по ГОСТ 21130 75 должны быть такими:

Для изготовления методом литья на металле или прессования в пластмассе.

H H1 D* b h r
5 3.6 10 0.7 2.5 0.35
8 6.0 16 1.2 4.0 0.6
10 7.0 20 1.4 5.0 0.7
14 9.0 25 1.8 5.5 0.9
22 15.0 40 3.0 9.0 1.5
28 17.5 45 3.5 8.5 1.75
30 20.0 50 4.0 10.0 2.0
50 35.0 90 7.0 20.0 3.5

Для изготовления заземляющих символов ударным способом.

D H H1 b h r
14 8 6.0 1.2 2.5 0.6
18 10 7.0 1.4 5.0 0.7
25 14 9.0 1.8 5.5 0.9

Цвет окружности D вокруг знака, должен отличаться от цвета поверхности оборудования, на котором он нанесен. Как правило, фон окрашивается в желтый, а рельеф окружности выполняется черным цветом.

(прошёл 16 августа 2016 года в 11:00 по МСК)

На первом вебинаре отвечаем на популярные вопросы, возникающие у электромонтажников:

  1. Какими нормативными документами должен руководствоваться монтажник при установке заземления и молниезащиты? И какие материалы разрешено использовать (черная сталь, омедненная сталь)?
  2. Какие надзорные органы принимают работы по заземлению и молниезащите?
  3. Что необходимо для приемо-сдаточных работ? Какие нужны протоколы?
  4. Каким НТД должно соответствовать применяемое оборудование?Какое оборудование может потребоваться при монтаже? (комплекты заземления, ручной инструмент, измерительные приборы, устройства защиты от импульсных перенапряжений, программное обеспечение)
  5. У кого можно получить техническую консультацию и помощь в расчетах?

Текст вебинара. Страница 1

Быстрая навигация по слайдам:

Примерное время чтения: 1 час 02 минуты.

— Коллеги, здравствуйте! Итак, мы пройдемся по документации, которая необходима при выполнении электромонтажных работ. Чаще всего она необходима на стадии выполнении работ и очень часто бывает, когда еще не получено техническое задание, а оговариваются какие-то предварительные условия, на момент монтажа уже возникают сложности и начинают требовать сертификаты. Мы сейчас коротко пробежимся по документациям, которые являются основополагающими для заземления и молниезащиты, на что ссылаться, на что обращать внимание и что из этого вы должны знать.

— Итак, нормативные документы. При выполнении электромонтажных работ по заземлению, мы, прежде всего, ориентируемся на ГОСТы, правила электроустановок, правила технической эксплуатации, СНИПы, руководящие документы, стандарты организации, правила пожарной безопасности.

— И необходимый набор документации.

Далее хотел бы обратить ваше внимание на пункт 1.7.55 - заземляющее устройство защитного заземления электроустановок зданий и сооружений молниезащиты второй и третьей категории, как правило, должно быть общим. То есть это то, что касается непосредственно вопроса: можно ли объединять молниезащиту и электропроводку газового котла? В данном пункте как раз оговаривается, что это просто необходимо делать. Далее хотел бы обратить ваше внимание на пункт 1.7.57 - электроустановка напряжением до 1 кВ в жилых, общественных и промышленных зданиях и наружных установок, должна, как правило, получать питание от источника с глухозаземленной нейтралью с применением системы. Для защиты от поражений электрическим током при косвенном прикосновении таких электроустановок должно быть выполнено автоматическое отключение питания в соответствии с пунктом 1.7.78 - 1.7.79. Очень часто, когда объект уже запитан и существует непосредственно заземление от электроподстанции, задают вопрос, нужно ли повторное заземление делать или нет. В данном пункте как раз оговорено, что повторное заземление делать нужно. Пункт 1.7.58 - питание электроустановок напряжением до 1 кВ переменного тока от источника с изолированной нейтралью с применением системы следует выполнять, как правило, при недопустимости перерыва питания при первом замыкании на землю или при открытой проводящей части связанны системы выравнивания потенциалов. В таких электроустановках для защиты косвенного прикосновения при первом замыкании на землю должно быть выполнено защитное заземление в сочетании с контролем изоляции сети или применено УЗО с номинальным отключающим током не более 30 мА. При двойном замыкании на землю должно быть выполнено автоматическое отключение питания в соответствии с пунктом 1.7.81. Также здесь оговаривается, что повторное заземление электроустановок напряжением до 1 кВ получающее питание по воздушным линиям должно выполняться в соответствии с пунктом 1.7.102 - 1.7.103. Соответственно ссылаясь на эти пункты и прочитав их, мы можем найти ответы на наши вопросы и то, что оговаривается непосредственно в правах и в эксплуатации электроустановок.

— Соответственно перед нами ГОСТ, который нормализирует все отношения. И прошу обратить внимание, что в ГОСТе не существует черной стали, то есть то, что мы привыкли в общественном понимании - к контуру заземления, когда заглубляются черные уголки или арматура. В современных ГОСТах она не оговаривается. Точно также в этом плане хотел бы обратить внимание, что при использовании контура заземления мы не можем штыри заглубить в тот же самый уголок или арматуру заглубить более чем на 2 м, что и было оговорено в предыдущих правилах эксплуатации. Так как мы находимся в зоне заморозков, то земля у нас промерзает где-то на метр на полтора и получается, что зимой верхняя часть заземления работает намного хуже, чем та, что на глубине. Используя стандартное штыревое заземление, мы можем заглубиться в землю гораздо глубже, избежав верхних слоев, при этом общая площадь заземления получается примерно такая же. Но, если мы, например, используем три штыря, связанных в контур между собой треугольником, сваренным общей площадью, общей длиной где-то в 6 метров при этом зимой по метру каждого уголка у нас не работает. Соответственно по факту мы получаем только три метра в земле, которые эффективно работают. Когда мы используем 6-ти метровое стандартное заземление, мы заглубляем его на 6 метров глубиной и теряем только один метр и по факту у нас работает 5 метров в штыре.

— Далее в ГОСТе оговорено соотношение диаметров заземляющих устройств, какие они должны быть. При этом хочу обратить ваше внимание на те штыри, которые присутствуют у нас на рынке, как непосредственно производство ZANDZ, так и у других производителей.

— На высоковольтных объектах мы используем циркуляр №11/2006 электромонтажный. Здесь, на какие моменты хотел бы обратить внимание: заземляющие устройства электроустановок напряжением свыше 1 кВ должны выполняться с требованием либо сопротивлению - это пункт 1.7.90 либо по напряжению 1.7.91. Также с соблюдением требований к конструктивному выполнению, которое регулируется пунктами 1.7.92 - 1.7.93 и к ограничению напряжению на заземляющем устройстве - требования 1.7.89, 1.7.93. Эти требования не распространяются на заземляющие устройства опор высоковольтных линий.

— Измерение сопротивления заземления нужно осуществлять соответствующими приборами. На данном слайде мы видим прибор, который позволяет измерять не только сопротивление заземления, но и удельное сопротивление грунта. В последнее время мы начали собирать статистику, насколько теория соотносится с практикой. То есть перед каждым монтажом пытаемся замерить сначала удельное сопротивление грунта, после этого монтируем заземление и проверяем, насколько расчеты оказались верны. К сожалению, при замерах сопротивления грунта не всегда возможно учесть еще какие-то субъективные данные, такие как грунтовые воды, например, а в некоторых случаях на глубине 3-х - 4-х метров может быть песок и так далее. В некоторых случаях с помощью именно глубинного заземления можно решить какие-то моменты.

— Заземление телефонных станций. По сути дела заземлением лично я начал заниматься как телефонист, потому что любую телефонную станцию нужно заземлять для того, чтобы она корректно работала. Многие, наверное, сталкивались с телефонией, когда работали с проблемой зависания линий. И зависания линий происходят прежде всего, когда операторы приходят к сигналу отбоя. Сигнал отбоя у нас по ГОСТу двух типов бывает: когда плюс на минус меняется или при кратковременном обесточивании. Когда переполюсовка, то в большинстве случаев срабатывает сигнал отбоя, а когда идет кратковременный сбой, так как мы знаем, что в электронике все составляющие заземляются непосредственно на корпус. И если корпус не заземлен, то с какого-нибудь конденсатора может остаточное напряжение остаться на корпусе. Соответственно АТС не отлавливает сигнал отбоя и продолжает держать его линию занятой, после чего или оператор через какое-то время отбивает. И получается, что по факту по телефонной линии никто не говорит, а дозвониться не могут, потому что она занята.

В последнее время вопросы правильного заземления стали очень обсуждаемыми. Связано это с тем, что на практике часто приходится решать нестандартные задачи, и решение их требует применения различных методов. В этой статье мы рассмотрим основные положения существующих нормативов по данному вопросу.

Существующие стандарты к заземлению

Сегодня действует целый ряд нормативов, призванных урегулировать устройство заземления. Ниже мы кратко их перечислим.

  • Правила устройства электроустановок (ПУЭ)
  • ГОСТ 50571.3-94, требования по обеспечению безопасности от поражения электротоком
  • ГОСТ Р 12.1.019-2009, электробезопасность
  • ГОСТ Р 50571.29-2009, выбор и установка электрооборудования.
  • ГОСТ, требования к специальным установкам.

Сразу оговоримся, что здесь перечисленные наиболее значимые документы. Также в перечень не были включены стандарты международной электротехнической комиссии (IEC) к специальным электроустановкам.

Представленные нормы всегда используют для оборудования той или иной системы заземления.

Требования к заземлению ГОСТ

В данном разделе мы рассматрим основные требования к заземлению согласно ГОСТ.

  • Защитное заземление либо зануление призвано обеспечить безопасность людей и других живых существ при прикосновении к металлическим предметам и электроприборам. При этом заземляться должны все элементы установок, которые могут войти в непосредственный контакт с человеком.
  • Производится оно путем соединения металлических элементов электроустановок либо оборудования с землей, либо другим ее аналогом.
  • Зануление выполняется при помощи электрического соединения металлических элементов с заземленной при помощи нулевого проводника точкой.
  • Предпочтение отдается естественным заземлителям, при этом допустимое напряжение должно обеспечиваться в любое время года.
  • Соответствие устройств заземления всем изложенным требованиям устанавливается при сдаче электросооружения в эксплуатацию, а также проверяется в процессе ее действия.

Правила устройства электроустановок (ПУЭ) заземления

В этой главе мы по пунктам приведем основные положения ПУЭ заземления.

  • Сопротивление устройства, к которому присоединяются нейтрали генератора или трансформатора, должно составлять приблизительно 8 Ом напряжение при этом должно быть 220 В, вне зависимости от времени года. Это должно обеспечиваться естественными заземлителями
  • Сопротивление заземлителя, который располагается недалеко от нейтрали генератора или трансформатора должно составлять около 60 Ом если напряжение в сети составляет 220 В.
  • Повторное заземление при этом PEN-проводника выполняется в обязательном порядке на концах ВЛ, а также на их ответвлениях, длина которых не более 250 м.
  • Общее сопротивление заземлителей повторных заземлений должно составлять не более 20 Ом при напряжении в 220 В.
  • Заземляющий проводник должен присоединяться непосредственно к нейтрали трансформатора или генератора.

Организация заземления или зануления не требуется в случае, если номинальное напряжение составляет до 42 В, а переменное - 110 и менее. В.

www.auto-bahn.ru


Здравствуйте, дорогие гости сайта «Заметки электрика».

Сегодня я расскажу Вам про контур заземления, для чего он необходим и как правильно выполнить его монтаж своими руками.

Покупая дачные участки для строительства домов и коттеджей, мы должны получить разрешение от энергоснабжающей организации на присоединение определенной мощности. И на данном этапе практически у всех возникает проблема с электромонтажом контура заземления, т.к. в технических условиях на электроснабжение дома он обязателен.

Также он необходим при реконструкции старой электропроводки. Более подробно об организации электропроводки в своем доме читайте в статье: электропроводка в деревянном доме.

Что такое контур заземления?

Для начала давайте разберемся, что такое заземление?

Заземление — это ЗУ (заземляющее устройство), предназначенное для электрического соединения с «землей» различных заземляемых частей электрооборудования.

Для каждой системы заземления (TN-C, TN-C-S, TN-S, TT и IT) существуют свои требования к сопротивлению заземляющего устройства (переходите по ссылкам соответствующих систем заземления и знакомьтесь).

Сопротивление ЗУ очень сильно зависит от:

  • типа грунта
  • структуры грунта
  • состояния грунта
  • глубины залегания электродов
  • количества электродов
  • свойств электродов

Контур заземления — это и есть, соединенные между собой, горизонтальные и вертикальные электроды, которые заложены на определенной глубине в грунте Вашего участка.

Все вышеописанные свойства грунта определяются его сопротивлением растекания тока. И чем это сопротивление меньше, тем лучше для монтажа контура заземления.

Грунты, идеально подходящие для монтажа контура заземления:

  • суглинок
  • глина с высокой влажностью

Грунты, не подходящие для монтажа контура заземления:

  • камень
  • скала

В зависимости от условий окружающей среды, даже один и тот же тип грунта может иметь разные свойства.

Поэтому производить монтаж контура заземления необходимо осознанно, а выбор количества и длины заземляющих электродов рассматривать по конкретному случаю.

В данной статье я опишу Вам самый распространенный и простой способ монтажа контура заземления. Существуют и более современные способы, например, модульно-штырьевая система заземления. Но к ним мы вернемся в других моих статьях. Чтобы не пропустить новые выпуски статей, подпишитесь.

Подготовка

Выбираем место для установки и монтажа заземляющего устройства.


Согласно ПУЭ (п.1.7.111), искусственные вертикальные и горизонтальные заземлители (электроды) должны быть либо медными, либо из черной или оцинкованной стали. Также их поверхность не должна быть окрашена.

В качестве вертикальных и горизонтальных заземлителей (электродов) мы используем:

  • стальной уголок размером 50х50х5 (мм) с поперечным сечением 480 (кв.мм)
  • стальную полосу размером 40х4 (мм) с поперечным сечением 160 (кв.мм)

Вот мои заготовки материала для монтажа контура заземления для повторного заземления PEN-проводника жилого многоквартирного дома и дальнейшего его разделения: на защитный проводник РЕ и нулевой рабочий проводник N.



Монтаж контура заземления

Теперь нам необходимо взять лопату и выкопать траншею в виде треугольника с размерами (3 х 3 х 3) метра. Можно выкопать траншею в виде прямой линии длиной порядка 4-5 метров. Последнее время мы именно так и делаем.

Ширина траншеи составляет 0,3-0,5 метра, а глубина 0,5-0,8 метра.

В вершины данного треугольника забиваем кувалдой стальной уголок (вертикальные заземлители) длиной 2,5-3 метра. Вместо кувалды можно использовать специальные буры. Если траншея у Вас выкопана в виде прямой линии, то забиваем вертикальные электроды в количестве 4-5 штук через каждый метр.

Чтобы легче забивать стальные уголки в землю, заострите их концы болгаркой.

Забиваем стальные уголки (вертикальные электроды) не полностью, а оставляем около 20 (см). Затем с помощью сварочного аппарата привариваем к нашим стальным уголкам по периметру треугольника или прямой линии горизонтальную стальную полосу, идущую в силовой электрический щиток на шину РЕ (ГЗШ).

Проводник, который соединяет заземляющее устройство с заземляющей частью электроустановки (вводным распределительным устройством или сборкой), называется заземляющим.


В нашем примере в качестве заземляющего проводника применяется стальная полоса размерами 40 х 4 (мм), что удовлетворяет требованиям ПУЭ.

В итоге у нас получается вот такая конструкция (схема). Кстати забыл сказать, что места сварки нужно обработать антикоррозийным составом, например, битумом, а траншею закопать однородным грунтом.

Можно сделать и по-другому, воспользовавшись ПУЭ, п.1.7.117. Выводим из земли горизонтальный заземляющий проводник в виде стальной полосы, а к нему с помощью болтового соединения подключаем проводник, который прокладываем до шины РЕ (ГЗШ):

  • медный сечением не менее 10 кв.мм
  • алюминиевый сечением не менее 16 кв.мм
  • стальной сечением не менее 75 кв.мм

Я использовал заземляющий проводник из медной шины.

zametkielectrika.ru

1. Область применения

Настоящий стандарт устанавливает требования к заземляющим устройствам и защитным проводникам электроустановок.

Область применения стандарта - по ГОСТ 30331.1/ГОСТ Р 50571.1.

Требования настоящего стандарта являются обязательными.

2. Нормативные ссылки

ГОСТ 10434-82. Соединения контактные электрические. Классификация. Общие технические требования

ГОСТ 22782.0-81. Электрооборудование взрывозащищенное. Общие технические требования и методы испытаний

ГОСТ 30331.1-95 (МЭК 364-1-72, МЭК 364-2-70)/ГОСТ Р 50571.1-93(МЭК 364-1-72, МЭК 364-2-70) Электроустановки зданий. Основные положения

ГОСТ 30331.2-95 (МЭК 364-3-93)/ГОСТ Р 50571.2-94 (МЭК 364-3-93) Электроустановки зданий. Часть 3. Основные характеристики

ГОСТ 30331.3-95 (МЭК 364-4-41-92)/ГОСТ Р 50571.3-94 (МЭК 364-4-41-92) Электроустановки зданий. Часть 4. Требования по обеспечению безопасности. Защита от поражения электрическим током.

541. Общие требования

541.1. Эксплуатационные характеристики заземляющего устройства должны удовлетворять требованиям безопасности и обеспечивать нормальную работу электроустановки.

542. Заземление

542.1. Заземляющие устройства.

542.1.1. Заземляющие устройства могут быть объединенными или раздельными для защитных или функциональных целей в зависимости от требований, предъявляемых электроустановкой.

542.1.2. Заземляющие устройства должны быть выбраны и смонтированы таким образом, чтобы:

Значение сопротивления растеканию заземляющего устройства соответствовало требованиям обеспечения защиты и работы установки в течение периода эксплуатации;

Протекание тока замыкания на землю и токов утечки не создавало опасности, в частности, в отношении нагрева, термической и динамической стойкости;

Были обеспечены необходимая прочность или дополнительная механическая защита в зависимости от заданных внешних факторов по ГОСТ 30331.2/ГОСТ Р 50571.2.

542.1.3. Должны быть приняты меры по предотвращению повреждения металлических частей из-за электролиза.


542.2. Заземлители.

542.2.1. В качестве заземлителей могут быть использованы находящиеся в соприкосновении с землей:

Металлические стержни или трубы

Металлические полосы или проволока;

Металлические плиты, пластины или листы;

Фундаментные заземлители;

Стальная арматура железобетона;

Примечание. Возможность использования в качестве заземлителей предварительно напряженной арматуры в железобетоне должна быть обоснована расчетными данными;

Стальные трубы водопровода в земле при выполнении условий 542.2.5;

Другие подземные сооружения, отвечающие требованиям 542.2.6.

Примечание. Эффективность заземлителя зависит от конкретных грунтовых условий, и поэтому в зависимости от этих условий и требуемого значения сопротивления растеканию должны быть выбраны количество и конструкция заземлителей. Значение сопротивления растеканию заземлителя может быть рассчитано или измерено.

542.2.2. Тип заземлителей и глубина их заложения должны быть такими, чтобы высыхание и промерзание грунта не вызывали превышения значения сопротивления растеканию заземлителя свыше требуемого значения.

542.2.3. Материал и конструкция заземлителей должны быть устойчивыми к коррозии.

542.2.4. При проектировании заземляющих устройств следует учитывать возможное увеличение их сопротивления растеканию, обусловленное коррозией.

542.2.5. Металлические трубы водопровода могут использоваться в качестве естественных заземляющих устройств при условии получения разрешения от водоснабжающей организации, а также при условии, что приняты надлежащие меры по извещению эксплуатационного персонала электроустановки о намечаемых изменениях в водопроводной системе.

Примечание. Желательно, чтобы надежность заземляющих устройств не зависела от других систем.

542.2.6. Металлические трубы других систем, не относящихся к упомянутой в 542.2.5 (например, с горючими жидкостями или газами, систем центрального отопления и т. п.), не должны использоваться в качестве заземлителей для защитного заземления.

Примечание. Это требование не исключает их включения в систему уравнивания потенциалов в соответствии с ГОСТ 30331.3/ГОСТ Р 50571.3.

542.2.7. Свинцовые и другие металлические оболочки кабелей, не подверженные разрушению коррозией, могут использоваться в качестве заземлителей при наличии разрешения владельца кабеля и при условии, что будут приняты надлежащие меры по извещению эксплуатационного персонала электроустановки о всяких изменениях, касающихся кабелей, которые могут повлиять на его пригодность к использованию в качестве заземлителя.

542.3. Заземляющие проводники.

542.3.1. Заземляющие проводники должны удовлетворять требованиям 543.1 и, если они проложены в земле, их сечение должно соответствовать значениям, указанным в табл. 54А.

Таблица 54А - Наименьшие размеры заземляющих проводников, проложенных в земле

542.3.2. Заземляющий проводник должен быть надежно присоединен к заземлителю и иметь с ним удовлетворяющий требованиям ГОСТ 10434 электрический контакт. При использовании зажимов они не должны повреждать ни заземлитель (например, трубы), ни заземляющие проводники.

542.4. Главные заземляющие зажимы или шины.

542.4.1. В каждой установке должен быть предусмотрен главный заземляющий зажим или шина и к нему (или к ней) должны быть присоединены:

Заземляющие проводники;

Защитные проводники;

Проводники главной системы уравнивания потенциалов (см. приложение В);

Проводники рабочего заземления (если оно требуется).

542.4.2. В доступном месте следует предусматривать возможность разъема (отсоединения) заземляющих проводников для измерения сопротивления растеканию заземляющего устройства. Эта возможность может быть обеспечена при помощи главного заземляющего зажима или шины. Конструкция зажима должна позволять его отсоединение только при помощи инструмента, быть механически прочной и обеспечивать непрерывность электрической цепи.

543. Защитные проводники

Примечание. Требования к защитным проводникам для систем уравнивания потенциалов см. в разделе 547.

543.1. Наименьшие площади поперечного сечения защитных проводников должны быть:

Рассчитаны в соответствии с 543.1.1 или

Выбраны в соответствии с 543.1.2.

В обоих случаях следует учитывать требования 543.1.3

Примечание. Заземляющий зажим оборудования установки должен допускать возможность подключения защитных проводников.

543.1.1. Площадь поперечного сечения защитного проводника S, мм 2 , должна быть не меньше значения, определяемого следующей формулой (применяется только для времени отключения не более 5 с):

где I - действующее значение тока короткого замыкания, протекающего через устройство защиты при пренебрежимо малом переходном сопротивлении, А;

t - выдержка времени отключающего устройства, с;

Примечание. Следует учитывать ограничение тока сопротивлением цепи и ограничивающую способность (интеграл Джоуля) устройства защиты.

k - коэффициент, значение которого зависит от материала защитного проводника, его изоляции и начальной и конечной температур. (Формула для расчета дана в приложении А). Значение k для защитных проводников в различных условиях указаны в таблицах 54В-54Е.

Если в результате применения формулы получается нестандартное сечение, следует использовать проводники ближайшего большего стандартного сечения.

Примечание.

1. Необходимо, чтобы сечение, рассчитанное таким образом, соответствовало условиям, определяемым сопротивлением цепи «фаза - нуль».

2. Значение максимальной температуры для электроустановок во взрывоопасных зонах устанавливают по ГОСТ 22782.0.

3. Следует учитывать максимально допустимые температуры зажимов.

Таблица 54В - Значения коэффициента k для изолированных защитных проводников, не входящих в кабель, и для неизолированных проводников, касающихся оболочки кабелей

Примечание.

Таблица 54С - Значение коэффициента k для защитного проводника, входящего в многожильный кабель

Таблица 54D - Значение коэффициента k при использовании в качестве защитного проводника оболочки или брони кабеля

* Значения коэффициента k для проводников, изготовленных из алюминия, свинца или стали, которые в МЭК 364-5-54-80 не указаны.

Таблица 54E - Значение коэффициента для неизолированных проводников для условий, когда указанные температуры не создают опасности повреждения близлежащих материалов

* Указанные температуры допускаются только при условии, что они не ухудшают качество соединений.

Примечание. Начальная температура проводника принята равной 30° С.

543.1.2. Сечение защитных проводников должно быть не менее значений, приведенных в таблице 54F. В этом случае не требуется проверять сечение на соответствие 543.1.1.

Таблица 54F В миллиметрах в квадрате

Сечение фазных проводников Наименьшее сечение защитных проводнико
S ≤ 16
16 < S ≤ 35
S > 35
S
16
S/2

Значения таблицы 54F действительны только в случае, если защитные проводники изготовлены из того же материала, что и фазные проводники. В противном случае сечения защитных проводников выбирают таким образом, чтобы их проводимость была равной проводимости, получаемой в результате применения таблицы.

2,5 мм 2 - при наличии механической защиты;

4 мм 2 - при отсутствии механической защиты.

Примечание. При выборе и прокладке защитных проводников следует учитывать внешние воздействующие факторы по ГОСТ 30331.2/ГОСТ Р 50571.2.

543.2. Типы защитных проводников.

543.2.1. В качестве защитных проводников могут быть использованы:

Жилы многожильных кабелей;

Изолированные или неизолированные провода в общей оболочке с фазными проводами;

Стационарно проложенные неизолированные или изолированные проводники

Металлические покровы кабелей, например алюминиевые оболочки кабелей, экраны, броня некоторых кабелей

Металлические трубы или металлические оболочки для проводников;

Некоторые проводящие элементы, не являющиеся частью электроустановки (сторонние проводящие части), например металлические строительные конструкции зданий и конструкции производственного назначения (подкрановые пути, галереи, шахты лифтов и т. п.).

543.2.2. Оболочки или рамы комплектных устройств заводского изготовления или кожуха комплектных шинопроводов, имеющиеся в составе установки, могут использоваться в качестве защитных проводников при условии, что они одновременно удовлетворяют следующим требованиям:

а) электрическая непрерывность цепи осуществлена таким образом, что обеспечивается ее защита от механических, химических и электрохимических повреждений;

б) их проводимость не менее приведенной в 543.1

в) они должны обеспечивать возможность подключения других защитных проводников в любом предусмотренном для этого месте.

543.2.3. Металлические защитные покровы (неизолированные или изолированные) некоторых систем электропроводок, в частности, оболочки кабелей с минеральной изоляцией, а также металлические трубы электропроводок и электротехнические короба могут быть использованы в качестве защитных проводников для соответствующих цепей, если они одновременно отвечают требованиям 543.2.2 а, б. Использование других труб и оболочек в качестве защитных проводников не допускается.

543.2.4. Сторонние проводящие части (СПЧ) могут использоваться в качестве защитных проводников, если они одновременно отвечают следующим требованиям:

а) электрическая непрерывность цепи обеспечивается либо их конструкцией, либо соответствующими соединениями, защищающими ее от механических, химических и электрохимических повреждений;

б) их проводимость не менее приведенной в 543.1;

в) их демонтаж невозможен, если не предусмотрены меры по сохранению непрерывности цепи и ее проводимости;

г) они сконструированы или при необходимости, приспособлены для этой цели.

Допускается использование металлических труб водопровода при наличии разрешения организации, ответственной за эксплуатацию водопровода. Использование труб системы газоснабжения в качестве защитных проводников запрещается.

543.2.5. Использование СПЧ в качестве РЕN-проводника запрещается.

543.3. Обеспечение электрической непрерывности защитных проводников.

543.3.1. Защитные проводники должны быть надлежащим образом защищены от механических и химических повреждений, а также от электродинамических усилий.

543.3.2. Соединения защитных проводников должны быть доступны для осмотра и испытания, за исключением соединений, заполненных компаундом или герметизированных.

543.3.3. Запрещается включать коммутационные аппараты в цепи защитных проводников, однако могут иметь место соединения, которые могут быть разобраны при помощи инструмента для целей испытания

543.3.4. В случае использования устройства контроля непрерывности цепи заземления включать его обмотку последовательно (в рассечку) с защитным проводником запрещается.

543.3.5. Не допускается использовать открытые проводящие части оборудования в качестве защитных проводников для другого электрооборудования, за исключением случаев, предусмотренных 543.2.2

544. Защитное заземлениe

Примечание. Требования к защите для систем ТМ, ТТ и IТ - по ГОСТ 30331.3/ГОСТ Р 50571.3.

544.1. Защитные проводники, используемые совместно с устройствами защиты от сверхтока.

При использовании устройства защиты от сверхтока для защиты от поражения электрическим током необходимо прокладывать защитные проводники в общей оболочке с фазными проводниками или в непосредственной близости к ним.

544.2. Заземлители и защитные проводники для устройств защиты, срабатывающих при отклонении или исчезновении напряжения.

544.2.1. Должен быть предусмотрен дополнительный заземлитель, не связанный электрически с другими заземленными металлическими частями, такими как металлоконструкции, металлические трубы, металлические оболочки кабелей. Это условие считают выполненным, если вспомогательный заземлитель установлен на определенном расстоянии от заземленных металлических частей.

544.2.2. Заземляющий проводник, идущий от вспомогательного заземлителя, должен быть изолированным во избежание соприкосновения его с защитным проводником системы защитного заземления или с соединенными с ним или другими проводящими частями, которые могут находиться в соприкосновении с системой защитного заземления.

Примечание. Это требование необходимо соблюдать во избежание случайного шунтирования датчика напряжения.

544.2.3. Защитный проводник должен быть соединен с корпусами только того электрического оборудования, которое должно отключаться в случае срабатывания защитного устройства.

545. Рабочее заземление

545.1. Общие требования .

В случае, когда заземление требуется как для защиты, так и для нормальной работы электроустановки, в первую очередь следует соблюдать требования, предъявляемые к мерам защиты.

546.2. РЕN-проводники.

546.2.1. В системах ТN для стационарно проложенных кабелей, имеющих площадь поперечного сечения не менее 10 мм 2 по меди или 16 мм 2 по алюминию, единственная жила может использоваться в качестве РЕN-проводника при условии, что рассматриваемая часть установки не защищена устройствами защитного отключения, реагирующими на дифференциальный ток.

546.2.2. Во избежание блуждающих токов изоляция РЕN-проводника должна быть рассчитана на самое высокое напряжение, которое может быть к нему приложено.

Примечание. РЕN-проводник не требуется изолировать внутри комплектных устройств управления и распределения электроэнергии.

546.2.3. В случаях, когда, начиная с какой-либо точки установки, нулевой рабочий и нулевой защитный проводники разделены, запрещается объединять эти проводники за этой точкой по ходу энергии. В месте разделения необходимо предусмотреть отдельные зажимы или шины нулевого рабочего и защитного проводников. РЕN-проводник должен подключаться к зажиму, предназначенному для защитного проводника.

547. Проводники системы уравнивания потенциалов

547.1. Наименьшие площади поперечного сечения.

547.1. Наименьшие площади поперечного сечения.

547.1.1. Главные проводники системы уравнивания потенциалов.

Сечение главного проводника системы уравнивания потенциалов должно быть не менее половины наибольшего сечения защитного проводника установки, но не менее 6 мм 2 . Однако не требуется применять проводники сечением более 25 мм 2 по меди или равноценное ему, если проводник изготовлен из другого металла.

547.1.2. Дополнительные проводники системы уравнивания потенциалов.

Сечение дополнительного проводника системы уравнивания потенциалов, соединяющего две открытые проводящие части электрооборудования, нормально не находящихся под напряжением, должно быть не менее сечения наименьшего из защитных проводников, подключенных к этим частям.

Сечение дополнительного проводника системы уравнивания потенциалов, соединяющего заземляемые части электрооборудования и металлические конструкции строительного и производственного назначения, должно быть не менее половины сечения защитного проводника электрооборудования, подключенного к данной заземляющей части.

Дополнительные проводники системы уравнивания потенциалов должны при необходимости удовлетворять требованиям 543.1. Связь для уравнивания потенциалов может быть обеспечена либо металлоконструкциями строительного и производственного назначения, либо дополнительными проводниками, либо сочетанием того и другого.

547.1.3. Шунтирование расходомеров.

В случае использования труб водопровода здания в качестве заземляющих или защитных проводников необходимо предусматривать шунтирование расходомеров при помощи проводника надлежащего сечения, в зависимости от того, используется ли он в качестве защитного проводника системы уравнивания потенциалов или проводника рабочего заземления.

www.zandz.ru

Для чего нужен контур заземления?

Заземление – это устройство специальной конструкции, которое будет соединяться с землей (грунтом). В таком случае в такое соединение включают электрические приборы, которые в нормальном своем состоянии не находятся под напряжением. А вот при нарушении условий эксплуатации или иных причин приведших к повреждению изоляции – оно может возникнуть. Поэтому так важно соблюдать нормы заземления контура заземления.

Все дело заключается в следующем – ток всегда стремиться туда, где находиться наименьшее сопротивление. Так при нарушении в оборудование происходит выход тока на корпус изделия. Техника начинает работать с перебоями и постепенно приходить в негодность. Но намного страшнее другое – при прикосновении к такой поверхности, человек получает такой разряд, что просто погибает.

Но при использовании – контура заземления будет происходить следующие. Напряжение будет распределяться между существующим контуром и человеком. Вот только контур заземления в данном случае будет обладать меньшим сопротивлением. И это значит, что человек хоть и почувствует неудобство, но все же весь основной ток уйдет через контур в грунт.

Важно! При устройстве контура заземления важным будет помнить, и соблюдать все необходимое для устройства его с минимальным сопротивлением.

Контур заземления – виды и его устройство

В основном для заземления используются металлические стрежни, которые играют роль электродов. Они соединяются между собой и углубляются на достаточное расстояние в землю. Такая конструкция соединяется с щитом, установленным в доме. Для этого используется полоса из металла нужной толщины. (рис.2)

Само расстояние, на которое погружают электрод, напрямую зависит от высоты расположения грунтовых вод. Чем их залегание выше, тем и выше система заземления. Но при всем этом удаление ее от нужного объекта составляет от одного метра до десяти метров. Это расстояние является важным условием и должно строго соблюдаться.

Расположение электродов зачастую носить форму геометрической фигуры. Зачастую – это треугольник, линия или квадрат. На форму влияет площадь, которую следует обязательно обхватить и удобство монтажа.

Важно! Система заземления в обязательном порядке располагается ниже уровня промерзания грунта, которое существует в конкретном месте.

Основные типы контуров заземления

Так существуют два основных типа технологических решений. Это контуры заземления – глубинный и традиционный.

Так при традиционном способе расположение электродов следующие – одни располагается горизонтально, а остальные вертикально. Первым электродом является стальная полоса, а вторыми являются соответственно стрежни из металла. Все они должны иметь допустимые значения по своему размеру.

Необходимо учитывать, что место для устройства конура необходимо подбирать из того, что он должно быть мало людным. Наилучшим для этого будет подходить теневая сторона с постоянной влажностью почвы.

Но у данного контура заземления существуют и свои минусы:

  • довольно трудное и физически тяжелое его устройство;
  • металлические изделия, из которой состоит контур подвержено коррозии, что не только его разрушает, но им ожжет служить причиной ухудшения проводимости;
  • так как он расположен в верхней части земли, то очень сильно зависит от параметров окружающей среды, которые могут изменить его проводимые характеристики.

Глубинный способ намного эффективнее традиционного. Его изготавливают специализированные производства. И он обладает рядом достоинств:

  • соответствует всем установленным нормам;
  • срок службы значительно продолжительный;
  • не зависит от окружающей среды, благодаря глубине залегания;
  • монтаж довольно прост.

Необходимо учитывать, что после устройства любого из типов контура заземления, необходимо проверить его соответствие на все требования и надежность. Для этого необходимо пригласить специализированных экспертов. У них должна быть лицензия на проведения такой деятельности. После проверки выдается соответствующие заключение. На контур заземления необходимо завести паспорт к нему приложить протокол об проводимых испытаниях и разрешение на использование.(рис. 3)

Важно! Нельзя экономить на материалах при устройстве контура заземления (рис. 4). Иначе его работа будет полностью сведена к нулю.

Контур наружного заземления

Эта система служит для подстанции трансформатора и является замкнутой. Состоит из небольшого количества электродов. Они располагаются по вертикали. Заземлитель по горизонтали, он изготавливается, и полос стали 4*40 мм.

Контур заземления должен обладать сопротивление в 40 м, не как не больше, а земля максимально – 1000 м/м. В настоящее время согласно правилам можно увеличить значения, но не более чем в десять раз для грунта. Из этого можно сделать вывод, что для достижения значения в 40 м нужно произвести вертикальную установку восьми электродов по пять метровых. Они должны быть изготовлены из круга при его диаметре 16 мм. Или можно использовать десять трех метровых, при использовании уголка из стали 50*50 мм.

Наружный контур отводиться от края здания больше чем на метр. Элементы располагающиеся горизонтально закапываются в траншею на расстояние 700 мм от уровня поверхности почвы. Полоску располагают ребром.

Таким образом понятно, что следует четко руководствоваться существующими нормами. Так контур заземления ПУЭ отражен в главе 1.7. Н так же необходимо следить за всеми изменениями в требованиях, которые могут случаться довольно часто.


стр. 1



стр. 2



стр. 3



стр. 4



стр. 5



стр. 6



стр. 7



стр. 8



стр. 9



стр. 10

СИСТЕМА СТАНДАРТОВ БЕЗОПАСНОСТИ ТРУДА

ЭЛЕКТРОБЕЗОПАСНОСТЬ.
ЗАЩИТНОЕ ЗАЗЕМЛЕНИЕ, ЗАНУЛЕНИЕ

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ
Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Система стандартов безопасности труда

ЭЛЕКТРОБЕЗОПАСНОСТЬ. ЗАЩИТНОЕ ЗАЗЕМЛЕНИЕ.
ЗАНУЛЕНИЕ

Occupational safety standards system.

Electric safety. Protective conductive earth, neutralling

ГОСТ
12.1.030-81

Постановлением Государственного комитета СССР по стандартам от 15 мая 1981 г. № 2404 срок действия установлен

с 01.07 1982 г.

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на защитное заземление и зануление электроустановок постоянного и переменного тока частотой до 400 Гц и устанавливает требования по обеспечению электробезопасности с помощью защитного заземления, зануления.

Стандарт не распространяется на защитное заземление, зануление электроустановок, применяемых во взрывоопасных зонах, на электрифицированном транспорте, судах, в металлических резервуарах, под водой, под землей и для медицинской техники.

Термины, используемые в стандарте, и их пояснения, приведены в справочном приложении 1.

1.4. В качестве заземляющих устройств электроустановок в первую очередь должны быть использованы естественные заземлители.

При использовании железобетонных фундаментов промышленных зданий и сооружений в качестве естественных заземлителей и обеспечении допустимых напряжений прикосновения не требуется сооружение искусственных заземлителей, прокладка выравнивающих полос снаружи зданий и выполнение магистральных проводников заземления внутри здания. Металлические и железобетонные конструкции при использовании их в качестве заземляющих устройств должны образовывать непрерывную электрическую цепь по металлу, а в железобетонных конструкциях должны предусматриваться закладные детали для присоединения электрического и технологического оборудования (см. справочные приложения 2, 3 и 4).

1.5. Допустимые напряжения прикосновения и сопротивления заземляющих устройств должны быть обеспечены в любое время года.

1.6. Заземляющее устройство, используемое для заземления электроустановок одного или различных назначений и напряжений, должно удовлетворять всем требованиям, предъявляемым к заземлению этих электроустановок.

1.7. В качестве заземляющих и нулевых защитных проводников следует использовать специально предназначенные для этой цели проводники, а также металлические строительные, производственные и электромонтажные конструкции. В качестве нулевых защитных проводников в первую очередь должны использоваться нулевые рабочие проводники. Для переносных однофазных приемников электрической энергии, светильников при вводе в них открытых незащищенных проводов, приемников электрической энергии постоянного тока в качестве заземляющих и нулевых защитных проводников следует использовать только предназначенные для этой цели проводники.

1.8. Материал, конструкция и размеры заземлителей, заземляющих и нулевых защитных проводников должны обеспечивать устойчивость к механическим, химическим и термическим воздействиям на весь период эксплуатации.

1.9. Для выравнивания потенциалов металлические строительные и производственные конструкции должны быть присоединены к сети заземления или зануления. При этом естественные контакты в сочленениях являются достаточными.

2. ЭЛЕКТРОУСТАНОВКИ НАПРЯЖЕНИЕМ ОТ 110 ДО 750 кВ

2.1. В электроустановках напряжением от 110 до 750 кВ должно быть выполнено защитное заземление.

2.2. Заземляющие устройства следует выполнять по нормам на напряжение прикосновения или по нормам на их сопротивление.

Заземляющее устройство, которое выполняют по нормам на сопротивление, должно иметь в любое время года сопротивление не более 0,5 Ом. При удельном сопротивлении «земли» r, большем 500 Ом·м, допускается повышать сопротивление заземляющего устройства в зависимости от r.

2.3. Напряжение на заземляющем устройстве при стекании с него тока замыкания на «землю» не должно превышать 10 кВ.

Напряжение выше 10 кВ допускается на заземляющих устройствах, с которых исключен вынос потенциалов за пределы зданий и внешних ограждений электроустановки.

При напряжениях на заземляющем устройстве выше 5 кВ должны предусматриваться меры по защите изоляции отходящих кабелей связи и телемеханики.

2.4. В целях выравнивания потенциала на территории, занятой электрооборудованием, должны быть проложены продольные и поперечные горизонтальные элементы заземлителя и соединены сваркой между собой, а также с вертикальными элементами заземлителя.

3. ЭЛЕКТРОУСТАНОВКИ НАПРЯЖЕНИЕМ ВЫШЕ 1000 В В СЕТИ С ИЗОЛИРОВАННОЙ НЕЙТРАЛЬЮ

3.1. В электроустановках напряжением выше 1000 В в сети с изолированной нейтралью должно быть выполнено защитное заземление, при этом рекомендуется предусматривать устройства автоматического отыскания замыкания на «землю». Защиту от замыканий на «землю» рекомендуется устанавливать с действием на отключение (по всей электрически связанной сети), если это необходимо по условиям безопасности.

3.2. Наибольшее сопротивление заземляющего устройства R в Ом не должно быть более

где I - расчетная сила тока заземления на землю, А.

При использовании заземляющего устройства одновременно для электроустановок напряжением до 1000 В

Расчетная сила тока замыкания на землю должна быть определена для той из возможных в эксплуатации схемы сети, при которой сила токов замыкания на землю имеет наибольшее значение.

3.3. При удельном сопротивлении земли r, большем 500 Ом×м, допускается вводить на указанные значения сопротивлений заземляющего устройства повышающие коэффициенты, зависящие от r.

4. ЭЛЕКТРОУСТАНОВКИ НАПРЯЖЕНИЕМ ДО 1000 В В СЕТИ С ЗАЗЕМЛЕННОЙ НЕЙТРАЛЬЮ

4.1. В стационарных электроустановках трехфазного тока в сети с заземленной нейтралью или заземленным выводом однофазного источника питания электроэнергией, а также с заземленной средней точкой в трехпроводных сетях постоянного тока должно быть выполнено зануление.

4.2. При занулении фазные и нулевые защитные проводники должны быть выбраны таким образом, чтобы при замыкании на корпус или на нулевой проводник, возникал ток короткого замыкания, обеспечивающий отключение автомата или плавление плавкой вставки ближайшего предохранителя.

4.3. В цепи нулевых защитных проводников не должно быть разъединяющих приспособлений и предохранителей.

В цепи нулевых рабочих проводников, если они одновременно служат для целей зануления, допускается применение разъединительных приспособлений, которые одновременно с отключением нулевых рабочих проводников отключают также все проводники, находящиеся под напряжением.

4.4. Сопротивление заземляющего устройства, к которому присоединены нейтрали генераторов (трансформаторов) или выводы однофазного источника питания электроэнергией, с учетом естественных заземлителей и повторных заземлителей нулевого провода должно быть не более 2,4 и 8 Ом соответственно, при междуфазных напряжениях 660, 380 и 220 В трехфазного источника питания или 380, 220 и 127 В однофазного источника питания.

При удельном электрическом сопротивлении «земли» r выше 100 Ом×м допускается увеличение указанной нормы в r/100 раз.

(Измененная редакция, Изм. № 1).

4.5. На воздушных линиях электропередачи зануление следует осуществлять нулевым рабочим проводом, проложенным на тех же опорах, что и фазные провода.

5. ЭЛЕКТРОУСТАНОВКИ НАПРЯЖЕНИЕМ ДО 1000 В В СЕТИ С ИЗОЛИРОВАННОЙ НЕЙТРАЛЬЮ

5.1. В электроустановках переменного тока в сетях с изолированной нейтралью или изолированными выводами однофазного источника питания электроэнергией защитное заземление должно быть выполнено в сочетании с контролем сопротивления изоляции.

5.2. Сопротивление заземляющего устройства в стационарных сетях должно быть не более 10 Ом. При удельном сопротивлении земли, большем 500 Ом×м, допускается вводить повышающие коэффициенты, зависящие от r.

6. ПЕРЕДВИЖНЫЕ ЭЛЕКТРОУСТАНОВКИ И РУЧНЫЕ ЭЛЕКТРИЧЕСКИЕ МАШИНЫ КЛАССА I В СЕТЯХ НАПРЯЖЕНИЕМ ДО 1000 В

6.1. Режим нейтрали и защитные меры передвижных источников питания электроэнергией, используемых для питания стационарных приемников электрической энергии, должны соответствовать режиму нейтрали и защитным мерам, принятым в сетях стационарных приемников электрической энергии.

6.2. При питании передвижных приемников электрической энергии и ручных электрических машин класса I от стационарных сетей с заземленной нейтралью или от передвижных электроустановок с заземленной нейтралью зануление следует выполнять в сочетании с защитным отключением.

Допускается выполнять зануление - для ручных электрических машин класса I; зануление или зануление в сочетании с повторным заземлением - для передвижных приемников электрической энергии.

6.3. При питании передвижных приемников электрической энергии и ручных электрических машин класса I от стационарной сети или передвижного источника питания электроэнергией, имеющих изолированную нейтраль и контроль сопротивления изоляции, защитное заземление должно применяться в сочетании с металлической связью корпусов электрооборудования или защитным отключением.

6.4. Сопротивление заземляющего устройства в передвижных электроустановках с изолированной нейтралью при питании от передвижных источников электроэнергии определяется по значениям допустимых напряжений прикосновения при однополюсном замыкании на корпус либо устанавливается в соответствии с требованиями нормативно-технической документации.

(Измененная редакция, Изм. № 1).

6.5. Защитное заземление передвижного источника питания электроэнергией с изолированной нейтралью и постоянным контролем сопротивления изоляции допускается не выполнять:

если расчетное сопротивление заземляющего устройства больше сопротивления заземляющего устройства рабочего заземления прибора постоянного контроля сопротивления изоляции;

если передвижной источник питания электроэнергией и приемники электрической энергии расположены непосредственно на передвижном механизме, их корпуса соединены металлической связью и источник не питает другие приемники электрической энергии вне этого механизма;

если передвижной источник питания электроэнергией предназначен для питания конкретных приемников электрической энергии, их корпуса соединены металлической связью, а их число и длина кабельной сети определяются либо величиной допустимого напряжения прикосновений при однополюсном замыкании на корпус, либо установлены нормативно-технической документацией.

6.6. В передвижных электроустановках с источником питания электроэнергией и приемниками электрической энергии, расположенными на общей металлической раме передвижного механизма, и не имеющих приемников электрической энергии вне этого механизма, допускается применять в качестве единственной защитной меры металлическую связь корпусов оборудования и нейтрали источника питания электроэнергией с металлической рамой передвижного механизма.

(Измененная редакция. Изм. № 1).

7. КОНТРОЛЬ УСТРОЙСТВ ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ, ЗАНУЛЕНИЯ

7.1. Соответствие устройств защитного заземления или зануления требованиям настоящего стандарта должно устанавливаться при приемосдаточных испытаниях электроустановок после их монтажа на месте эксплуатации по «Правилам устройства электроустановок», утвержденным Госэнергонадзором СССР, а также периодически в процессе эксплуатации указанных устройств по «Правилам технической эксплуатации электроустановок потребителей» и «Правилам техники безопасности при эксплуатации электроустановок потребителей», утвержденным Госэнергонадзором СССР.

ПРИЛОЖЕНИЕ 1
Справочное

ТЕРМИНЫ И ПОЯСНЕНИЯ, ПРИМЕНЯЕМЫЕ В СТАНДАРТЕ

Пояснение

1. Заземлитель

Проводник или совокупность металлически соединенных проводников, находящихся в соприкосновении с землей или ее эквивалентом

2. Естественный заземлитель

Заземлитель, в качестве которого используют электропроводящие части строительных и производственных конструкций и коммуникаций

3. Заземляющий проводник

Проводник, соединяющий заземляемые части с заземлителем

4. Заземляющее устройство

Совокупность конструктивно объединенных заземляющих проводников и заземлителя

5. Магистраль заземления (зануления)

Заземляющий (нулевой защитный) проводник с двумя или более ответвлениями

6. Заземленная нейтраль

Нейтраль генератора (трансформатора), присоединенная к заземляющему устройству непосредственно или через малое сопротивление

7. Изолированная нейтраль

Нейтраль генератора (трансформатора), не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление

ПРИЛОЖЕНИЕ 2
Справочное

ОЦЕНКА ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ ЖЕЛЕЗОБЕТОННЫХ ФУНДАМЕНТОВ ПРОМЫШЛЕННЫХ ЗДАНИЙ В КАЧЕСТВЕ ЗАЗЕМЛИТЕЛЕЙ

При использовании железобетонных фундаментов промышленных зданий в качестве заземлителей сопротивление растеканию заземляющего устройства R в Ом должно оцениваться по формуле

где S - площадь, ограниченная периметром здания, м 2 ;

r э - удельное эквивалентное электрическое сопротивление земли, Ом·м.

Для расчета r э в Ом·м следует использовать формулу

где r 1 - удельное электрическое сопротивление верхнего слоя земли, Ом·м;

r 2 - удельное электрическое сопротивление нижнего слоя, Ом·м;

h 1 - мощность (толщина) верхнего слоя земли, м;

a, b - безразмерные коэффициенты, зависящие от соотношения удельных электрических сопротивлений слоев земли.

Если ρ 1 > ρ 2 , a = 3,6, b = 0,1;

если ρ 1 < ρ 2 , a =1,1´10 2 , b = 0,3´10.

Пример расчета:

Пусть r 1 =500 Ом·м; r 2 =130 Ом·м; h 1 = 3,7 м; = 55 м.

Тогда в соответствии с формулой (2) получим

Под верхним слоем следует понимать слой земли, удельное сопротивление которого r 1 более чем в 2 раза отличается от удельного электрического сопротивления нижнего слоя r 2 .

В электроустановках напряжением от 110 до 750 кВ не требуется прокладка выравнивающих проводников, в том числе у входов и въездов, кроме мест расположения заземления нейтралей силовых трансформаторов, короткозамыкателей, вентильных разрядников и молниеотводов, если выполняется условие

где I к.з. - расчетная сила тока однофазного замыкания, стекающего в «землю» с фундаментов здания, кА.

(Измененная редакция. Изм. № 1).

ПРИЛОЖЕНИЕ 3
Справочное

Соединение арматуры железобетонных конструкций

1 - молниеприемная сетка; 2 - токоотвод; 3 - арматура колонны; 4 - заземляющая перемычка; 5 - арматура фундамента

ПРИЛОЖЕНИЕ 4
Справочное

Соединение металлической колонны с арматурой железобетонного фундамента

1 - арматура подошвы; 2 - арматура фундамента; 3 - фундамент; 4 - фундаментные болты (не менее двух), соединенные с арматурой фундамента; 5 - стальная колонна; 6 - пластины для приварки проводников заземления

РАЗРАБОТАН Министерством монтажных и специальных строительных работ СССР

ИСПОЛНИТЕЛИ:

Р.Н. Карякин, д-р техн. наук; В.А. Антонов, канд. техн. наук; Л.К. Коновалова; В.К. Добрынин; В.И. Солнцев; М.П. Ратнер, канд. техн. наук; В.П. Коровин; А.И. Кустова; В.И. Сыроватка, д-р техн. наук; А.И. Якобс, д-р техн. наук; В.И. Бочаров, канд. техн. наук; В.Н. Ардасенов, канд. техн. наук

ВНЕСЕН Министерством монтажных и специальных строительных работ СССР

Зам. министра К.К. Липодат

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 15 мая 1981 г. № 2404

1. Общие положения. 1

2. Электроустановки напряжением от 110 до 750 кв.. 2

3. Электроустановки напряжением выше 1000 в в сети с изолированной нейтралью.. 3

4. Электроустановки напряжением до 1000 в в сети с заземленной нейтралью.. 3

5. Электроустановки напряжением до 1000 в в сети с изолированной нейтралью.. 4

6. Передвижные электроустановки и ручные электрические машины класса i в сетях напряжением до 1000 в.. 4

7. Контроль устройств защитного заземления, зануления. 5

Приложение 1 Термины и пояснения, применяемые в стандарте. 5

Приложение 2 Оценка возможности использования железобетонных фундаментов промышленных зданий в качестве заземлителей. 6

Приложение 3 Соединение арматуры железобетонных конструкций. 7

Приложение 4 Соединение металлической колонны с арматурой железобетонного фундамента. 7