Меню
Бесплатно
Главная  /  Внутренняя отделка  /  Карбоновые кислоты примеры веществ. Химические свойства карбоновых кислот и методы получения

Карбоновые кислоты примеры веществ. Химические свойства карбоновых кислот и методы получения

КАРБОНОВЫЕ КИСЛОТЫ

Карбоновыми кислотами называют производные углеводородов, содержащие одну или несколько карбоксильных групп.

Число карбоксильных групп характеризует основность кислоты.

В зависимости от количества карбоксильных групп карбоновые кислоты подразделяются на одноосновные карбоновые кислоты (содержат одну карбоксильную группу), двухосновные (содержат две карбоксильные группы) и многоосновные кислоты.

В зависимости от вида радикала, связанного с карбоксильной группой, карбоновые кислоты делятся на предельные, непредельные и ароматические. Предельные и непредельные кислоты объединяют под общим названием кислоты алифатического или жирного ряда.

    Одноосновные карбоновые кислоты

1.1 Гомологический ряд и номенклатура

Гомо­логический ряд одноосновных предельных карбоновых кислот (иногда их называют жирными кислотами) начинается с муравьиной кислоты

Формула гомологического ряда

Номенклатура ИЮПАК разрешает сохранять для многих кислот их тривиальные названия, которые обычно указывают на природный источник, из которого была выделена та или иная кислота, например, муравьиная, уксусная, масляная, валериановая и т.д.

Для более сложных случаев названия кислот производят от названия уг­леводородов с тем же числом атомов углерода, что и в молеку­ле кислоты, с добавлением окончания -овая и слова кислота. Муравьиная кислота Н-СООН называется метановой кисло­той, уксусная кислота СН 3 -СООН - этановой кислотой и т. д.

Таким образом, кислоты рассматриваются как производные углеводородов, одно звено которых превращено в карбоксил:

При составлении названий кислот с разветвленной цепью по рациональной номенклатуре их рассматривают как производные уксусной кислоты, в молекуле которой атомы водорода замещены радикалами, например, триметилуксусная кислота (СН 3) 3 С – СООН.

1.2 Физические свойства карбоновых кислот

Только с чисто формальных позиций можно рассматривать карбоксильную группу как комбинацию карбонильной и гидроксильной функций. Фактически их взаимное влияние друг на друга таково, что полностью изменяет их свойства.

Обычная для карбонила поляризация двойной связи С=0 сильно возрастает за счет дополнительного стягивания свобод­ной электронной пары с соседнего атома кислорода гидроксильной группы:

Следствием этого является значительное ослабление связи О-Н в гидроксиле и легкость отщепления атома водорода от него в виде протона (Н +). Появление пониженной электронной плотности (δ+) на центральном углеродном атоме карбоксила приводит также к стягиванию σ-электронов соседней связи С-С к карбоксильной группе и появлению (как у альдегидов и кетонов) пониженной электронной плотности (δ +) на α-углеродном атоме кислоты.

Все карбоновые кислоты обладают кислой реакцией (обна­руживается индикаторами) и образуют соли с гидроксидами, оксидами и карбонатами металлов и с активными метал­лами:

Карбоновые кислоты в большинстве случаев в водном растворе диссоциированы лишь в малой степени и являются слабыми кислотами, значительно уступая таким кислотам, как соляная, азотная и серная. Так, при растворении одного моля в 16 л воды степень диссоциации муравьиной кислоты равна 0,06, уксусной кислоты - 0,0167, в то время как соля­ная кислота при таком разбавлении диссоциирована почти полностью.

Для большинства одноосновных карбоновых кислот рК а = 4,8, только муравьиная кислота имеет меньшую величи­ну рК а (около 3,7), что объясняется отсутствием электронодонорного эффекта алкильных групп.

В безводных минеральных кислотах карбоновые кислоты протонируются по кислороду с образованием карбкатионов:

Сдвиг электронной плотности в молекуле недиссоцииро­ванной карбоновой кислоты, о котором говорилось выше, по­нижает электронную плотность на гидроксильном атоме кис­лорода и повышает ее на карбонильном. Этот сдвиг еще боль­ше увеличивается в анионе кислоты:

Результатом сдвига является полное выравнивание заря­дов в анионе, который фактически существует в форме А - резонанс карбоксилат-аниона.

Первые четыре представителя ряда карбоновых кислот - подвижные жидкости, смешивающиеся с водой во всех отно­шениях. Кислоты, в молекуле которых содержится от пяти до девяти атомов углерода (а также изомасляная кислота), - маслянистые жидкости, растворимость их в воде невелика.

Высшие кислоты (от С 10) - твердые тела, практически не­растворимы в воде, при перегонке в обычных условиях они разлагаются.

Муравьиная, уксусная и пропионовая кислоты имеют ост­рый запах; средние члены ряда обладают неприятным запа­хом, высшие кислоты запаха не имеют.

На физических свойствах карбоновых кислот сказывается значительная степень ассоциации вследствие образования во­дородных связей. Кислоты образуют прочные водород­ные связи, так как связи О-Н в них сильно поляризованы. Кроме того, карбоновые кислоты спо­собны образовывать водородные связи с участием атома кисло­рода карбонильного диполя, обладающего значительной электроотрицательностью. Действительно, в твердом и жидком со­стоянии карбоновые кислоты существуют в основном в виде циклических димеров:

Такие димерные структуры сохраняются в некоторой степе­ни даже в газообразном состоянии и в разбавленных растворах в неполярных растворителях.

      Химические свойства

Для кислот характерны три типа реакций: замещения иона водорода карбоксильной группы (образование солей); с участием гидроксильной группы (образование сложных эфиров, галогенангидридов, ангидридов кислот); замещения водорода в радикале.

Образование солей. Карбоновые кислоты легко образуют соли при взаимодействии с взаимодействии с металлами, их оксидами, со щелочами или основаниями, при действии аммиака или аминов:

Соли карбоновых кислот находят широкое применение в народном хозяйстве. Они используются в качестве катализаторов, стабилизаторов полимерных материалов, при изготовлении красок и т.д.

Образование сложных эфиров. Со спиртами кислоты дают сложные эфиры:

Образование галогенангидридов. При действии на кислоты галогенидов фосфора или SОС1 2 получаются галогенангидриды кислот:

Галогенангидриды – очень реакционноспособные вещества, которые применяются для разнообразных синтезов.

Образование ангидридов кислот. Если от двух молекул карбоновых кислот отнять одну молекулу воды (в присутствии водоотнимающих веществ Р 2 О 5 и др.), образуется ангидрид карбоновой кислоты:

Ангидриды кислот, подобно галогенангидридам, очень реакци-онноснособны; они разлагаются различными соединениями с активным водородом, образуя производные кислоты и свобод­ную кислоту:

Галогенирование карбоновых кислот. Водородные атомы углеводо­родных радикалов в кислотах по реакционной способности по­добны атомам водорода в алканах. Исключение составляют атомы водорода, расположенные у α-углеродного атома (непо­средственно связанного с карбоксилом). Так, при действии хлора и брома в присутствии переносчиков галогенов (РС1 3 , 1 2 и др.) на карбоновые кислоты или на их хлорангидриды проис­ходит замещение именно α -водородных атомов:

Действие окислителей. Одноосновные карбоновые кис­лоты, как правило, устойчивы к действию окислителей. Легко окисляются лишь муравьиная кислота (до СО 2 и Н 2 О) и кисло­ты с третичным атомом углерода в α -положении. При окисле­нии последних получаются α -оксикислоты:

В животных организмах одноосновные карбоновые кисло­ты также способны окисляться, причем атом кислорода на­правляется всегда в β-положение. Так, например, в организме больных диабетом масляная кислота переходит в β -оксимасляную кислоту:

Образование кетонов Сухая пе­регонка кальциевых и бариевых солей карбоновых кислот (кроме муравьиной кислоты) приводит к образованию кетонов. Так, при перегонке ацетата кальция, полученного из СаСО 3 и СН 3 СООН, образуется диметилкетон, при перегонке пропионовокислого кальция - диэтилкетон:

Образование амидов. При нагревании аммониевых солей кислот по­лучаются амиды:

Образование углеводородов. При сплавле­нии солей щелочных металлов карбоновых кислот со щелоча­ми (пиролиз) происходит расщепление углеродной цепи и декарбоксилирование, в результате чего из углеводородного радикала кис­лоты образуется соответствующий углеводород, например:

Важнейшие представители

Муравьиная кислота - бесцветная жидкость с резким запа­хом. Является сильным восстановителем и окисляется до уголь­ной кислоты. В природе свободная муравьиная кислота встреча­ется в выделениях муравьев, в соке крапивы, в поте животных. Применяют муравьиную кислоту при крашении тканей в качестве восстановителя, при дублении кож, в медицине, в различных органических синтезах.

Уксусная кислота - бесцветная жидкость с резким запахом. Водный раствор (70 - 80 %) уксусной кислоты называется уксусной эссенцией, а 3 -5%-ный водный раствор - столовым уксу­сом.

Уксусная кислота широко встречается в природе. Она содер­жится в моче, поте, желчи и коже животных, растениях. Образуется при уксуснокислом брожении жидкостей, содержащих спирт (вино, пиво и др.).

Широко используется в химической промышленности для производства ацетатного шелка, красителей, сложных эфиров, ацетона, уксусного ангидрида, солей и т.д. В пищевой промыш­ленности уксусная кислота используется для консервирования продуктов, некоторые сложные эфиры уксусной кислоты приме­няются в кондитерском производстве.

Масляная кислота представляет собой жидкость с неприят­ным запахом. Содержится в виде сложного эфира в коровьем масле. В свободном состоянии находится в прогоркшем масле.

2. Двухосновные карбоновые кислоты

Общая формула гомологического ряда предельных двухосновных кислот

Примерами могут служить:

Предельные двухосновные кислоты - твердые кристалли­ческие вещества. Подобно тому, как это отмечалось для одноосновных кислот, предельные двухосновные кислоты с четным числом атомов углерода плавятся при более высокой темпера­туре, чем соседние гомологи с нечетным числом атомов углерода. Растворимость в воде кислот с нечетным числом атомов угле­рода значительно выше растворимости кислот с четным чис­лом атомов углерода, причем с возрастанием длины цепи рас­творимость кислот в воде уменьшается.

Двухосновные кислоты диссоциируют последовательно:

Они сильнее соответствующих одноосновных кислот. Сте­пень диссоциации двухосновных кислот понижается с увели­чением их молекулярной массы.

В молекуле двухосновных кислот содержатся две карбок­сильные группы, поэтому они дают два ряда производных, на­пример средние и кислые соли, средние и кислые сложные эфиры:

При нагревании щавелевой и малоновой кислот легко от­щепляется СО 2:

Двухосновные кислоты с четырьмя и пятью атомами угле­рода в молекуле, т. е. янтарная и глутаровая кислоты, при на­гревании отщепляют элементы воды и дают внутренние цик­лические ангидриды:

3. Непредельные карбоновые кислоты

Состав непредельных одноосновных кислот с одной двой­ной связью можно выразить общей формулой С n Н 2 n -1 СООН. Как и для любых бифункциональных соединений, для них ха­рактерны реакции как кислот, так и олефинов. α.β-Непредельные кислоты несколько превосходят по силе соответст­вующие жирные кислоты, так как двойная связь, находящая­ся рядом с карбоксильной группой, усиливает ее кислотные свойства.

Акриловая кислота. Простейшая непредельная одноосновная кислота

Олеиновая, линолевая и линоленовая кислоты.

Олеиновая кислота С 17 Н 33 СООН в виде глицеринового эфира чрезвычайно распространена в природе. Ее строение выража­ется формулой

Олеиновая кислота - бесцветная маслянистая жидкость, легче воды, на холоду затвердевает в игольчатые кристаллы, плавящиеся при 14 °С. На воздухе она быстро окисляется и желтеет.

Молекула олеиновой кислоты способна присоединять два атома галогена:

В присутствии катализаторов, например Ni, олеиновая кислота присоединяет два атома водорода, переходя в стеари­новую кислоту.

Олеиновая кислота представляет собой цис-изомер (все природные непредельные высокомолекулярные кислоты, как правило, относятся к цис-ряду).

Линолевая С 17 Н 31 СООН и линоленовая С 17 Н 29 СООН кисло­ты еще более ненасыщены, чем олеиновая кислота. В виде сложных эфиров с глицерином - глицеридов - они являются главной составной частью льняного и конопляного масел:

В молекуле линолевой кислоты две двойные связи. Она может присоединять четыре атома водорода или галогена. В молекуле линолевой кислоты три двойные связи, поэтому она присоединяет шесть атомов водорода или галогена. Обе кислоты, присоединяя водород, переходят в стеариновую кис­лоту.

Сорбиновая кислота

Она имеет две сопряженные друг с другом и с карбоксильной группой двойные связи, имеющие транс-конфигурацию; является пре­красным консервантом для многих пищевых продуктов: овощ­ных консервов, сыра, маргарина, фруктов, рыбных и мясных продуктов.

Малеиновая и фумаровая кислоты. Простейшими из двухосновных кислот, содержащих этиленовую связь, являют­ся два структурных изомера:

Кроме того, для второй из этих кислот возможны две про­странственные конфигурации:

Фумаровая кислота содержится во многих растениях: осо­бенно часто она встречается в грибах. Малеиновая кислота в природе не найдена.

Обе кислоты обычно получают при нагревании яблочной (оксиянтарной) кислоты:

При медленном, осторожном нагревании получается главным образом фумаровая кислота; при более сильном нагревании и при перегонке яблочной кислоты получается малеиновая кис­лота.

Как фумаровая, так и малеиновая кислота при восстанов­лении дают одну и ту же янтарную кислоту.

· Нахождение в природе · Получение · Физические свойства · Строение · Сила · Карбоновые кислотные остатки · Характерные химические реакции и получение важных производных · Химические методы анализа карбоновых кислот · Спектральные методы анализа карбоновых кислот · Применение · Литература · Официальный сайт · Примечания · Близкие статьи ·

Разнообразные карбоновые кислоты очень широко распространены в природе.

Одноосновные предельные карбоновые кислоты

Муравьиная кислота содержится в выделениях муравьёв, крапиве, пчелином яде, сосновой хвое, уксусная кислота - продукт уксуснокислого брожения. Масляная кислота образуется при прогоркании сливочного масла. Валериановая кислота есть в валериановом корне. Капроновая, каприловая и каприновая кислоты получили своё название из-за того что содержатся в козьем молоке (латынь a caper - козёл). Энантовая кислота получила своё название от греческих oine - вино, и anthos - цветок. Пеларгоновая кислота содержится в летучем масле пеларгонии розовой и других растений семейства гераниевых. Лауриновая кислота (также лавровая) имеется в больших количествах в лавровом масле. Миристиновая кислота преобладает в масле растений семейства миристиковых, к примеру в ароматных семенах мускатного дерева - мускатном орехе. Пальмитиновую кислоту легче всего выделить из пальмового масла, выжимаемого из ядер кокосового ореха (копры). Stear по-гречески означает жир, сало - отсюда и название стеариновой кислоты. Вместе с пальмитиновой она относится к наиболее важным жирным кислотам и составляет главную часть большинства растительных и животных жиров. Из смеси этих кислот (стеарина) ранее изготовляли свечи. Арахиновая кислота встречается в масле земляного ореха - арахиса. Бегеновая кислота содержится в бегеновом масле,которое выжимают из крупных, как орех, семян распространённого в Индонезии растения семейства моринговых. Практически чистую лигноцериновую кислоту (латынь lignum - дерево, древесина и cera - воск) извлекают из смолы бука. Ранее эту кислоту называли также карнаубовой, потому что её довольно много в карнаубском воске, которым покрыты листья бразильской восковой пальмы. Кислоты с более длинными молекулами встречаются в основном уже в восках, к примеру церотиновая, монтановая (в горном воске (монтан-воске), от лат. montana - гористые места, горные области) , мелиссиновая (в пчелином воске, melissa по-гречески - пчела), лацериновая. Разветвлённая фтионовая кислота (3,13,19-триметилтрикозановая) (от греческий phthisis - чахотка) содержится, как и туберкулостеариновая (является левовращающим изомером 10-метилоктадекановой, или 10-метилстеариновой), в оболочке туберкулёзной палочки.

Двухосновные предельные кислоты

В щавеле, и кроме этого в ревене содержится щавелевая кислота. Эта простейшая двухосновная кислота - продукт распада некоторых аминокислот, например глицина . При нарушении обмена веществ (например при недостатке витамина B 6) в организме человека выделяется её малорастворимая кальциевая соль. Янтарная кислота была синтезирована ещё алхимиком Агриколой при прокалывании янтаря. Малоновая кислота получила своё название от лат. malum - яблоко. Фумаровая кислота (от лат. fumus - дым)была обнаружена в растении Fumaria officinalis (дымянка), которое в античные времена сжигали, чтобы дымом отогнать злых духов. Глутаровая кислота (получена из глутаминовой кислоты) получила название от лат. gluten - клей, поскольку была найдена в клейковине пшеницы. Брассиловая кислота (НООС–(СН 2) 11 –СООН) найдена в масле растений семейства Brassica (крестоцветных), тапсиевая (НООС–(СН 2) 14 –СООН) - от растения тапсия с греческого острова Тапсос, которое употреблялось в древности как лекарственное, японовая (НООС–(СН 2) 19 –СООН) - выделена из высушенного сока некоторых акаций и пальм, растущих в Юго-Восточной Азии.

Непредельные карбоновые кислоты

Простейшая из них, акриловая имеет острый запах (на латыни acris - острый, едкий), получается при дегидратации глицерина (при пригорании жиров). Название кротоновой кислоты происходит от растения Croton tiglium, из масла которого она была выделена. Ангеликовая кислота была выделена из ангеликового масла, полученного из ангеликового (дягильного) корня растения Angelica officinalis - дягеля, он же дудник. А тиглиновая - из того же масла Croton tiglium, что и кротоновая кислота, только названа по второй части этого ботанического термина. Сорбиновая кислота была получена из ягод рябины (на латыни - sorbus). Эруковая кислота была выделена из масла растения Eruca - того же семейства Brassica, что и капуста, и кроме этого из масла репы (Brassica napus), при длительном нагревании с сернистой кислотой эруковая кислота изомеризуется в брассидиновую.

Самая распространённая из высокомолекулярных непредельных кислот - олеиновая. Изомерна ей элаидиновая кислота. Наибольшей биологической активностью обладают кислоты с несколькими двойными связями: линолевая с двумя, линоленовая с тремя и арахидоновая с четырьмя. Полиненасыщенные кислоты организм человека сам синтезировать не может и должен получать их готовыми с пищей. Названия этих кислот произошли от греческий elaion и лат. oleum - масло, а название арахидоновой (как и арахиновой) происходит от арахиса. Ненасыщенная рицинолевая кислота выделена из касторового масла, которое содержится в семенах клещевины (Ricinus communis). Другая непредельная трёхосновная аконитовая кислота выделена из ядовитых растений Aconitum семейства лютиковых, а название непредельной двухосновной итаконовой кислоты было получено просто перестановкой букв в названии аконитовой кислоты.

Таририновая кислота с ацетиленовой связью была выделена из горького экстракта коры американского тропического дерева рода Tariri antidesma.

Гидроксикислоты

Молочная кислота образуется при молочнокислом брожении сахаров (при прокисании молока и брожении вина и пива).

Яблочная, винная, лимонная, хинная - образуются в вакуолях клеток плодов при частичном окислении

Все началось с уксуса, по крайней мере, открытие карбоновых кислот . Название объединяет органические соединения, содержащие карбоксильную группу COOH.

Важно расположение атомов именно в таком порядке, поскольку есть и другие кислородосодержащие соединения.

Уксусную из карбоновых открыли первой, но ее строение многие века оставалось тайной. Вещество знали, как продукт скисания вин.

Как соединение 2-ух атомов , 4-ех и 2-ух кислорода стала известна миру лишь в 18-ом столетии.

После, открыли целый ряд карбоновых . Ознакомимся с их классификацией, общими свойствами и областями применения.

Свойства карбоновых кислот

Отличаясь от другой органики наличием карбоксильных групп, карбоновые кислоты классифицируются по их числу.

Есть одно-, двух-, и многоосновные соединения. Одноосновные карбоновые кислоты выделяются связью между карбоксильной группой и углеводородным радикалом.

Соответственно, общая формула веществ группы: — C n H 2 n +1 COOH. Уксусная – одноосновная. Ее химическая запись: — CH 3 COOH. Еще проще строение соединения: — COCOOH.

К простейшим отнесена и с формулой C 2 H 5 COOH. У остальных соединений одноосновного ряда есть изомеры, то есть, разные варианты строения.

У муравьиной же, уксусной и пропионовой есть лишь один план строения.

Если у карбоновой кислоты формула с двумя карбоксильными группами, она может называться диосновной.

Общая запись веществ категории: — COOH-R-COOH. Как видно, карбоксильные группы располагаются по разные стороны линейной молекулы.

В многоосновных карбоксильных радикалов, как минимум три. Два стоят по краям молекулы, а остальные крепятся к центральным атомам углерода. Такова, к примеру, лимонная . Пространственная запись ее формулы: —

Подразделяют карбоновые соединения и по характеру углеводородного радикала. Химические связи между его атомами могут быть одинарными.

В этом случае перед нами предельные карбоновые кислоты. Наличие двойных связей указывает на непредельные вещества.

Формула непредельных карбоновых кислот может одновременно являться записью высших представителей класса.

Высшими называют соединения, в которых боле 6-ти атомов углерода. Соответственно, от 1-го до 5-ти атомов углерода – признак низших веществ.

Высшие карбоновые кислоты – это, к примеру, , , линоленовая, пальмитиновая и арихидоновая. В полследней 21 атом углерода, в остальных по 18.

Имея органическое происхождение, большинство карбоновых пахнут, хотя бы слегка. Однако, есть группа особенно ароматных.

В их состав входит бензольное ядро. То есть, группы являются производными бензола. Его формула: — C 6 H 6 .

У вещества сладковатый запах. Поэтому, карбоновые с бензольным ядром именуют ароматическими. Причем, обязательна прямая связь ядра и карбоксильных групп.

По физическому состоянию карбоновые бывают, как жидкими, так кристаллическими. Имеется в виду агрегатность веществ при обычных условиях.

Часть соединений растворима в воде, другая часть смешивается лишь с органикой. Нюансы химического поведения зависят от количества в молекулах карбоксильных групп.

Так, типичная реакция карбоновых кислот одноосновной категории– окрашивание лакмусовой в цвет.

Классикой, так же, считается взаимодействие с галогенами, тогда как дикарбоновые соединения могут образовывать эфиры карбоновых кислот. Они «рождаются» во взаимодействии со спиртами.

Карбоновая кислота с двумя основаниями всегда содержит метиленовую группу, то есть, двухвалентную CH 2 .

Ее наличие между карбоксильными группами повышает кислотность атомов водорода. Поэтому, возможна конденсация производных . Это еще одно объяснение появления эфиров.

Двухосновные соединения образуют, так же, соли карбоновых кислот . Они используются на производстве моющих средств, в частности, мыла.

Впрочем, о том, где пригождаются карбоновые кислоты и их соединения, поговорим отдельно.

Применение карбоновых кислот

В производстве мыла особенно важны стеариновая и пальмитиновая кислоты. То есть, используются высшие соединения.

Они делают мыльные брикеты твердыми и позволяют смешать фракции, расслаивающие без присутствия кислот.

Способность делать массы однородными пригождается и на производстве лекарств. Большинство связующих элементов в них – карбоновые кислоты.

Соответственно, применение реагентов внутрь, как и наружно, безопасно. Главное, знать предельную дозировку.

Превышение дозы, или концентрации кислот, ведет к разрушительным последствиям. Возможны химические ожоги, отравления.

Зато, едкость соединений наруку металлургам, мебельщикам, рестовраторам. Им карбоновые кислоты и смеси с ними помогают полировать и очищать неровные, заржавевшие поверхности.

Растворяя верхний слой металла, реагенты улучшают его внешний вид и эксплуатационные характеристики.

Химические карбоновые кислоты могут быть очищенными, или же, техническими. Для работы с металлами подойдут и последние.

Но, в качестве косметических и лекарственных средств применяют лишь высокоочищенные соединения. Такие нужны и в пищевой промышленности.

Около трети карбоновых кислот – официально зарегистрированные добавки, известные простым обывателям, как ешки.

На упаковках они отмечаются букврй Е и порядковым номером рядом с ней. Уксусная кислота, к примеру, пишется, как Е260.

Пищей карбоновые кислоты могут служить и для растений, входя в состав удобрений. Одновременно, можно создавать яды для вредоносных насекомых и сорняков.

Идея заимствована из природы. Ряд растений самостоятельно вырабатывают карбоновые кислоты, дабы близ них не было других трав, конкурирующих за почву и ее ресурсы. При этом, вырабатывающие яд растения, сами имеют к нему иммунитет.

Около трети карбоновых соединений используют в качестве протрав для тканей. Обработка необходима, чтобы материи равномерно окрашивались. С этой же целью реактивы применяют в кожевенной промышленности.

Добыча карбоновых кислот

Поскольку карбоновые кислоты биогенны, около 35% из них получают из природных продуктов. Но, химический синтез выгоднее.

Поэтому, при возможности переходят на него. Так, гиалуроновую кислоту, используемую для омоложения, долгое время добывали из пуповин младенцев и крупного рогатого скота.

Теперь же, соединение получают биохимическим способом, выращивая на пшеничном субстрате бактерий, беспрерывно дающих кислоту.

Получение карбоновых кислот чисто химическим путем – это окисление спиртов и альдегидов.

Под последним понятием скрываются спирты, лишенные водорода. Реакция протекает так: — СН 3 – СН 2 ОН → СН 3 – СОН → СН 3 – СООН.

Ряд карбоновых кислот получают гидролизом сложных эфиров. Получая в свой состав воду, они преобразуются в героинь .

Сформировать их можно и из моногалогенпроизводных. Кислоты из них получаются под действием цианида . Полупродукт реакции необходимо разложить водой.

От схемы производства, количества его ступеней, расходных материалов, во многом зависит стоимость конечных продуктов. Узнаем, каков ценник на карбоновые кислоты в их чистом виде.

Цена карбоновых кислот

Большинство карбоновых кислот продают большими объемами. Фасуют, обычно, по 25-35 килограммов. Жидкости разливают в канистры.

Порошки засыпают в полиэтиленовые пакеты, а стеариновую кислоту, вообще, заворачивают в . Ценник, обычно, выставляется за кило.

Так, 1000 граммов лимонной кислоты стоит в районе 80-ти рублей. Столько же берут за муравьиную и щавелевую.

Стоимость олеиновой – около 130-ти рублей за килограмм. Салициловая кислота оценивается уже в 300. Стеариновая кислота на 50-70 рублей дешевле.

Ряд карбоновых кислот оценивается в долларах, поскольку основные поставки ведутся из США и стран Евросоюза.

Оттуда поступает, к примеру, гиалуроновая кислота. За килограмм отдают уже не пару сотен рублей, а несколько сот баксов.

Отечественный продукт присутствует, но ему не доверяют, в первую очередь, клиенты красоты.

Они знают, что омоложение с помощью гиалуроновой кислоты – придумка американцев, практикуемая ими полвека.

Соответственно, велика практика производства препарата, который должен быть качественным, ведь попадает в кожу и организм.

Образование галогеналканов при взаимодействии спиртов с галогеноводородами - обратимая реакция. Поэтому понятно, что спирты могут быть получены при гидролизе галогеналканов - реакции этих соединений с водой:

Многоатомные спирты можно получить при гидролизе галогеналканов, содержащих более одного атома галогена в молекуле. Например:

Гидратация алкенов

Гидратация алкенов - присоединение воды по π — связи молекулы алкена, например:

Гидратация пропена приводит в соответствии с правилом Марковникова к образованию вторичного спирта - пропанола-2:

Гидрирование альдегидов и кетонов

Окисление спиртов в мягких условиях приводит к образованию альдегидов или кетонов. Очевидно, что спирты могут быть получены при гидрировании (восстановлении водородом, присоединении водорода) альдегидов и кетонов:

Окисление алкенов

Гликоли, как уже отмечалось, могут быть получены при окислении алкенов водным раствором перманганата калия. Например, этиленгликоль (этандиол-1,2) образуется при окислении этилена (этена):

Специфические способы получения спиртов

1. Некоторые спирты получают характерными только для них способами. Так, метанол в промышленности получают реакцией взаимодействия водорода с оксидом углерода (II) (угарным газом) при повышенном давлении и высокой температуре на поверхности катализатора (оксида цинка):

Необходимую для этой реакции смесь угарного газа и водорода, называемую также «синтез-газ», получают при пропускании паров воды над раскаленным углем:

2. Брожение глюкозы . Этот способ получения этилового (винного) спирта известен человеку с древнейших времен:

Основными способами получения кислородсодержащих соединений (спиртов) являются: гидролиз галогеналканов, гидратация алкенов, гидрирование альдегидов и кетонов, окисление алкенов, а также получение метанола из «синтез-газа» и сбраживание сахаристых веществ.

Способы получения альдегидов и кетонов

1. Альдегиды и кетоны могут быть получены окислением или дегидрированием спиртов . При окислении или дегидрировании первичных спиртов могут быть получены альдегиды, а вторичных спиртов - кетоны:

3CH 3 –CH 2 OH + K 2 Cr 2 O 7 + 4H 2 SO 4 = 3CH 3 –CHO + K 2 SO 4 + Cr 2 (SO 4) 3 + 7H 2 O

2. Реакция Кучерова. Из ацетилена в результате реакции получается уксусный альдегид, из гомологов ацетилена - кетоны:

3. При нагревании кальциевых или бариевых солей карбоновых кислот образуются кетон и карбонат металла:

Способы получения карбоновых кислот

1. Карбоновые кислоты могут быть получены окислением первичных спиртов или альдегидов :

3CH 3 –CH 2 OH + 2K 2 Cr 2 O 7 + 8H 2 SO 4 = 3CH 3 –COOH + 2K 2 SO 4 + 2Cr 2 (SO 4) 3 + 11H 2 O

5CH 3 –CHO + 2KMnO 4 + 3H 2 SO 4 =5CH 3 –COOH + 2MnSO 4 + K 2 SO 4 + 3H 2 O,

3CH 3 –CHO + K 2 Cr 2 O 7 + 4H 2 SO 4 = 3CH 3 –COOH + Cr 2 (SO 4) 3 + K 2 SO 4 + 4H 2 O,

CH 3 –CHO + 2OH CH 3 –COONH 4 + 2Ag + 3NH 3 + H 2 O.

Но при окислении метаналя аммиачным раствором оксида серебра, образуется карбонат аммония, а не муравьиная кислота:

HCHО + 4OH = (NH 4) 2 CO 3 + 4Ag + 6NH 3 + 2H 2 O.

2. Ароматические карбоновые кислоты образуются при окислении гомологов бензола :

5C 6 H 5 –CH 3 + 6KMnO 4 + 9H 2 SO 4 = 5C 6 H 5 COOH + 6MnSO 4 + 3K 2 SO 4 + 14H 2 O,

5C 6 H 5 –C 2 H 5 + 12KMnO 4 + 18H 2 SO 4 = 5C 6 H 5 COOH + 5CO 2 + 12MnSO 4 + 6K 2 SO 4 + 28H 2 O,

C 6 H 5 –CH 3 + 2KMnO 4 = C 6 H 5 COOK + 2MnO 2 + KOH + H 2 O

3. Гидролиз различных производных карбоновых кислот также приводит к получению кислот. Так, при гидролизе сложного эфира образуются спирт и карбоновая кислота. Реакции этерификации и гидролиза, катализируемой кислотой, обратимы:

4. Гидролиз сложного эфира под действием водного раствора щелочи протекает необратимо, в этом случае из сложного эфира образуется не кислота, а ее соль:


Химические соединения, которые состоят в том числе и из карбоксильной группы COOH, получили от ученых название карбоновые кислоты. Существует большое количество наименований этих соединений. Они классифицируются по разным параметрам, например, по количеству функциональных групп, наличию ароматического кольца и так далее.

Строение карбоновых кислот

Как уже упоминалось, для того чтобы кислота была карбоновой, она должна иметь карбоксильную группу, которая, в свою очередь, имеет две функциональные части: гидроксил и карбонил. Их взаимодействие обеспечивается ее функциональным сочетанием одного атома углерода с двумя кислородными. Химические свойства карбоновых кислот зависят от того, какое строение имеет эта группа.

За счет карбоксильной группы эти органические соединения можно называть кислотами. Их свойства обуславливаются повышенной способностью иона водорода H+ притягиваться к кислороду, дополнительно поляризуя связь O-H. Также благодаря этому свойству органические кислоты способны диссоциировать в водных растворах. Способность к растворению уменьшается обратно пропорционально росту молекулярной массы кислоты.

Разновидности карбоновых кислот

Химики выделяют несколько групп органических кислот.

Моноосновные карбоновые кислоты состоят из углеродного скелета и только одной функциональной карбоксильной группы. Каждый школьник знает химические свойства карбоновых кислот. 10 класс учебной программы по химии включает в себя непосредственно изучение свойств одноосновных кислот. Двухосновные и многоосновные кислоты имеют в своей структуре две и более карбоксильных групп соответственно.

Также по наличию или отсутствию двойных и тройных связей в молекуле бывают ненасыщенные и насыщенные карбоновые кислоты. Химические свойства и их отличия будут рассмотрены ниже.

Если органическая кислота имеет в составе радикала замещенный атом, то в ее название включается наименование группы-заместителя. Так, если атом водорода замещен галогеном, то в названии кислоты будет присутствовать наименование галогена. Такие же изменения претерпит наименование, если произойдет замещение на альдегидную, гидроксильную или аминогруппы.

Изомерия органических карбоновых кислот

В основе получения мыла лежит реакция синтеза сложных эфиров вышеперечисленных кислот с калиевой или натриевой солью.

Способы получения карбоновых кислот

Способов и методов получения кислот с группой COOH существует множество, но наиболее часто применяются следующие:

  1. Выделение из природных веществ (жиров и прочего).
  2. Окисление моноспиртов или соединений с COH-группой (альдегидов): ROH (RCOH) [O] R-COOH.
  3. Гидролиз тригалогеналканов в щелочи с промежуточным получением моноспирта: RCl3 +NaOH=(ROH+3NaCl)=RCOOH+H2O.
  4. Омыление или гидролиз эфиров кислоты и спирта (сложных эфиров): R−COOR"+NaOH=(R−COONa+R"OH)=R−COOH+NaCl.
  5. Окисление алканов перманганатом (жесткое окисление): R=CH2 [O], (KMnO4) RCOOH.

Значение карбоновых кислот для человека и промышленности

Химические свойства карбоновых кислот имеют большое значение для жизнедеятельности человека. Они чрезвычайно необходимы для организма, так как в большом количестве содержатся в каждой клетке. Метаболизм жиров, белков и углеводов всегда проходит через стадию, на которой получается та или иная карбоновая кислота.

Кроме того, карбоновые кислоты используют при создании лекарственных препаратов. Ни одна фармацевтическая промышленность не может существовать без применения на деле свойств органических кислот.

Немаловажную роль соединения с карбоксильной группой играют и в косметической промышленности. Синтез жира для последующего изготовления мыла, моющих средств и бытовой химии основан на реакции этерификации с карбоновой кислотой.

Химические свойства карбоновых кислот находят отражение в жизнедеятельности человека. Они имеют большое значение для человеческого организма, так как в большом количестве содержатся в каждой клетке. Метаболизм жиров, белков и углеводов всегда проходит через стадию, на которой получается та или иная карбоновая кислота.