Меню
Бесплатно
Главная  /  Декор и дизайн  /  Промышленные оптические коннекторы в металлическом корпусе. Оптические коннекторы

Промышленные оптические коннекторы в металлическом корпусе. Оптические коннекторы

  • Сетевые технологии
  • Часто у знакомых системных администраторов, не сталкивавшихся раньше с оптическим волокном, возникают вопросы, как и какое оборудование необходимо для организации соединения. Немного почитав, становится понятно, что нужен оптический трансивер. В этой обзорной статье я напишу основные характеристики оптических модулей для приема/передачи информации, расскажу основные моменты, связанные с их использованием, и приложу много наглядных изображений с ними. Осторожно, под катом много трафика, делал кучу своих собственных фотографий.

    Что и зачем

    Сегодня практически любое сетевое оборудование для передачи данных в сетях Ethernet, предоставляющее возможность подключения через оптическое волокно, имеет оптические порты. В них устанавливаются оптические модули, в которые уже может подключаться волокно. В каждый модуль встроен оптический передатчик (лазер) и приемник (фотоприемник). При классической передаче данных с их использованием предполагается использовать два оптических волокна - одно для приема, другое для передачи. На изображении снизу представлен коммутатор с оптическими портами и установленными модулями.

    Вот об этих маленьких электронных штуковинах дальше и пойдет речь.

    Виды оптических модулей

    Периодически возникают вопросы, какой же оптический приемопередатчик нужен в конкретной ситуации. Если перед глазами оказывается прайслист какой-либо, то просто разбегаются глаза от обилия всевозможных наименований. Попробую прояснить, что же значат различные буквы и цифры в названии модулей и что же из них вам может понадобиться. Оптические модули различаются формфактором (GBIC, SFP, X2...), типом технологии («прямые», CWDM, WDM, DWDM...), мощностью (в дицебелах), разъемами (FC, LC, SC).

    Различные формфакторы

    В первую очередь модули различаются своими формфакторами. Немного расскажу про различные варианты.

    GBIC

    GigaBit Interface Converter, активно использовался в 2000-х. Самый первый промышленно стандартизованный формат модулей. Очень часто применялся при передачи через многомодовые волокна. Сейчас же практически не используется в силу своих размеров. У меня осталась одна старая циска 3500, еще без поддержки CEF, в которой можно воспользоваться данными модулями. На изображении снизу два GBIC-модуля 1000Base-LX и 1000Base-T:

    SFP

    Small Form-factor Pluggable, наследник GBIC. Наверно самый распространенный на сегодняшний день формат, гораздо удобнее в силу меньших размеров. Такой формфактор позволил значительно увеличить плотность портов на сетевом оборудовании. Благодаря таким размерам стало возможно реализовать до 52 оптических портов на одной железке в один юнит. Используется для передачи данных на скоростях 100Mbits, 1000Mbits. На изображении снизу коммутатор с оптическими портами и пара модулей 1000Base-LX и 1000Base-T.

    SFP+

    Enhanced Small Form-factor Pluggable. Имеют идеентичный SFP размер. Схожий размер позволил сделать оборудование с портами, поддерживающими обычные SFP и SFP+. Такие порты могут работать в режимах 1000Base/10GBase. Лишь дальнобойные CWDM-модули имеют большую длину из-за радиатора. Используются для передачи данных на скоростях 10 Gbits. Малые размеры придали некоторые особенности - для дальнобойных модулей бывают случаи слишком сильного нагрева. Поэтому для передачи более чем на 80 км таких модулей пока нет. На картинке снизу два модуля SFP+ - CWDM и обычный 10GEBase-LR:

    XFP

    10 Gigabit Small Form Factor Pluggable. Также, как и SFP+, используются для передачи данных на скоростях 10 Gbits. Но в отличии от предыдущих, немного шире. Увеличенный размер позволил использовать их для прострела на большие расстояние по стравнению с SFP+. Снизу дополнительная плата для Huawei с установленными XFP и пара таких модулей.

    XENPAK

    Модули, используемые преимущественно в оборудовании Cisco. Используются для передачи данных на скоростях 10 Gbits. Сейчас уже изредка можно найти им применение, изредка можно встретить в старых линейках маршрутизаторов. Также такие модули бывают для подключения медного провода 10GBase-CX4. К сожалению, у меня нашелся лишь один XENPAK-модуль 10GEBase-LR и старая Cisco-вская плата WS-X6704-10GE под них.

    X2

    Дальнейшее развитие модулей формата XENPAK. Часто в разъемы X2 можно установить модуль TwinGig, в который уже можно установить два модуля SFP… Это нужно в случае, если на оборудовании нет 1GE оптических портов. В основном X2-формфактор использует Cisco. В продаже существуют адаптеры X2-SFP+ (XENPACK-to-SFP+). Интересно, что такой комплект (адаптер+SFP+ модуль) выходит дешевле одного X2 модуля.
    К сожалению, на руках у меня нашелся только адаптер, но чтобы понять, как выглядят эти модули и какого они размера этого вполне хватит. На рисунке снизу адаптер X2-SFP+ со вставленным SFP+ модулем.

    Но если кому интересно, вот можно посмотреть больше картинок и возможностей этого разъема.

    Да, я не затрагивал относительно новые формфакторы (QSFP, QSFP+, CFP). На текущий момент они еще не очень распространены.

    Различные стандарты

    Как известно, комитетом 802.3 принято множество разных стандартов Ethernet. Соответственно, оптические модули поддерживают один из них. Неплохая шпаргалка по стандартам Ethernet есть . В основном сейчас распространены следующие типы:
    • 100Base-LX - 100 мегабит по волокну на 10км
    • 100Base-T - 100 мегабит по меди на 100 м
    • 1000Base-LX - 1000 мегабит по волокну на 10 км
    • 1000Base-T - 1000 мегабит по меди на 100 м
    • 1000Base-ZX - 1000 мегабит по одномодовому волокну на 70 км
    • 10GBase-LR - 10GE по одномодовому волокну на 10 км
    • 10GBase-ER - 10GE по одномодовому волокну на 40 км
    Конечно же, оптические модули есть и под другие стандарты, в том числе и 40GE и 100GE. Я перечислил основные типы, используемые в провайдерских сетях. Обычно в названии или спецификации написано, по какому стандарту будет работать тот или иной модуль. Но еще важно посмотреть, поддерживает ли этот стандарт порт оборудования, куда будет установлен модуль. Например, 100Base-LX не заведется в порту коммутатора, поддерживающего только 1000Base-LX. Эту особенность тоже надо учитывать.

    С использованием спектрального уплотнения

    Описанные выше оптические модули передают сигнал в основном на длине волны 1310 нм или 1550 нм на двух волокнах (одно для передачи, другое для приема). Они имеют широкополосный фотоприемник (принимают все) и лазер, излучающий на определенной длине волны (грубо конечно). Но имеется возможность использовать уплотнение по длине волны. Это дает возможность использовать меньшее количество волокон для организации нескольких каналов тем самым увеличивая пропускную способность одного волокна.

    WDM

    Такие модули работают в паре, с одной стороны сигнал передается на длине волны 1310 нм, с другой 1550 нм. Это позволяет вместо двух волокон для организации одного канала использовать одно. Приемник на таких модулях так и остается широкополосным. Бывают как для 1GE, так и для 10GE. Снизу фотографии пары WDM-модулей с различными разъемами для подключения патчкордов LC и SC.

    В большинстве случаев предпочтительнее использовать WDM-модули для малых расстояний. Их цена не очень большая (по 1 тыс рублей за модуль против 500 рублей за обычный). Причина - вы экономите целое волокно, на нем можно будет потом еще один такой же канал прогнать. Хотя конечно есть и другие способы экономии волокон.

    CWDM

    Дальнейшее продолжение технологии WDM. С ее использованием можно добиться до 8 дуплексных каналов по одному волокну. Для этих целей используются CWDM-мультиплексоры (пассивные устройства с призмой внутри, позволяющей делить сигнал по цветам с шагом 20нм в диапазоне от 1270нм до 1610нм). Для этого также используют специальные CWDM-модули, в простонародье их называют «цветные», они передают сигнал на определенной длине волны. В то же время приемник на них широкополосный. Кроме того, такие оптические модули часто делают для передачи на большие расстояние (до 160 км). На рисунке ниже представлен малый комплект CWDM-SFP, на котором с использованием мультиплексоров можно поднять 2GE на одном волокне.

    Как можно заметить, дужки у всех разные. В зависимости от длины волны модуль имеет свою раскраску. К сожалению, у всех производителей они разные.

    Здесь появляется понятие оптический бюджет . Правда его расчет выходит за рамки этой статьи. В кратце, чем больше доступных портов, тем больше вы сможете смультиплексировать каналов, тем больше будет затухание. Кроме того, различные длины волн дают различные затухания на 1 километр передаваемого сигнала. А еще нужно учитывать тип волокна…

    Можно много писать о методиках подбора таких модулей, о пересечении длин волн, о нежелательных длинах, о ADD/DROP-модулях. Но это отдельная тема.

    Разъемы

    Это то место, куда вы будете подключать оптический патчкорд. На оптических модулях сейчас используются преимущественно два типа раъемов - SC и LC. Грубо и жаргонно - большой и мелкий квадраты. Понятно, что имея в наличии патчкорд с разъемом SC, вы не подсоедините его к разъему LC. Нужно либо менять патчкорд, либо ставить переходник-адаптер. В большинстве случаев SFP-модули имеют разъем LC, в то время как X2/XENPAK - SC. Выше на изображениях уже были модули с различными разъемами.

    Немного о патчкордах

    Оптические патчкорды, они же оптические шнуры. Нас будут интересовать следующие характеристики: дуплекс/симплекс (количество волокон), полировка (сейчас это UPC-синие или APC-зеленые), разъем (SC, LC, FC), многомодовость и длина. Конечно, важна еще и толщина сердцевины волокна, но сейчас на многомодовые обычные шнуры используют стандартную толщину. Снизу я представил изображение с различными видами концов патчкордов.

    В основном вы будете встречать следующее обозначение шнуров - ШО-2SM-SC/UPC-SC/UPC-3.0 . Это расшифровывается следующим образом: Шнур Оптический Дуплексный Одномодовый (Single-Mode) с разъемами SC и полировкой UPC с одной стороны и SC-UPC с другой длиной 3.0 метра. Соответственно, например, ШО-SM-LC/APC-SC/APC-15.0 - одномодовый дуплексный шнур с разъемами LC-LC и гравировкой APC длиной 15 метров.

    Неоторые особенности

    Оптические модули - активное оборудование, они потребяют электроэнергию и выделяют тепло. Это следует учитывать при подключении оборудования к электросети. Также коммутатор, заполненный мощными модулями под завязку может потребовать дополнительного охлаждения.

    Не стоит забывать, что в оптические модули встроены лазеры, и с ними необходимо соблюдать некоторую технику безопасности. Конечно в большинстве случаев никакой угрозы они не предоставляют в силу слабой мощности, но бывали случаи, дальнобойные мощные 10GE модули могут вполне выжечь сетчатку глаза или оставить ожог, если использовать палец в качестве аттюниатора.

    Современные оптические модули имеют функцию DDM (Digital Diagnostics Monitoring) - в них встроен ряд сенсоров, через которые можно определить текущее значение некоторых параметров. Смотрится это через интерфейс оборудования, в которое установлен модуль. Самые важные параметры для вас - текущие принимаемая мощность и температура.

    Ряд производителей сетевого оборудования запрещают использовать сторонние модули в их оборудовании. По крайней мере раньше Cisco не давала их запускать, они в ней просто не работали. Сейчас же в узких кругах известны

    Коннектор - коннектор

    Самый привычный для пользователей и операторов тип соединений это коннектор-коннектор. Соединение многоразовое и типичное. Позволяет переключать входы и выходы аппаратуры без специальных приспособлений. Во многом напоминает электрические штеккера и вилки.

    В отличие от электрических соединений в соединении коннектор - коннектор понятие розетка-вилка (мама-папа) несколько изменено. Фактически соединяются два однотипных коннектора посредством специализированного гнезда.

    Принцип действия достаточно прост для понимания, чего не скажешь о технологии изготовления. Задача соединения соединить два оптоволокна вплотную с отклонением от оси порядка микрона при этом ограничив усилие оператора, чтобы не допустить сколов в оптоволокне. Наконечники коннекторов выполняются из керамики и имеют прецизионную точность изготовления. Строго по центру керамического наконечника проходит оптоволокно.

    Оптические разъемы

    Существуют несколько стандартов оптических коннекторов: ST, SC, LC, FC, FDDI и др. Принцип работы у них одинаковый, различны только способы фиксации или тип крепления к гнезду. Рисунки поясняющие различия наиболее распространённых:

    ST-коннектор

    ST-коннектор(от англ. Straight Tip). Соединения оптоволоконных линий
    Размеры и чертежи ОВ-разъёмов

    Самый распространенный в локальных оптических сетях. Керамический наконечник имеет цилиндрическую форму диаметром 2.5 мм со скругленным торцом. Фиксация производится за счет поворота оправы вокруг оси коннектора (байонетное соединение), при этом вращения основы коннектора отсутствуют (теоретически) за счет паза в разъеме розетки. Направляющие оправы сцепляясь с упорами ST-розетки при вращении вдавливают конструкцию в гнездо. Пружинный элемент обеспечивает необходимое прижатие.

    SC-коннектор

    SC-коннектор(от англ. Subscriber Connector)

    Сечение корпуса имеет прямоугольную форму. Подключение/отключение коннектора осуществляется поступательным движением по направляющим и фиксируется защелками. Керамический наконечник имеет цилиндрическую форму диаметром 2.5 мм со скругленным торцом (некоторые модели имеют скос поверхности). Наконечник почти полностью покрывается корпусом и потому менее подвержен загрязнению нежели в ST-конструкции. Отсутствие вращательных движений обуславливает более осторожное прижатие наконечников.

    LC-коннектор

    Коннекторы типа LC - это малогабаритный вариант SC-коннекторов. Он также имеет прямоугольное сечение корпуса. Конструкция исполняется на пластмассовой основе и снабжена защелкой, подобной защелке, применяющейся в модульных коннекторах медных кабельных систем. Вследствие этого и подключение коннектора производится схожим образом. Наконечник изготавливается из керамики и имеет диаметр 1.25 мм. Встречаются как многомодовые, так и одномодовые варианты коннекторов. Ниша этих изделий - многопортовые оптические системы.

    Тот же тип коннектора на два соединения:

    FC-коннектор

    FC-коннектор для соединения оптического волокна
    Размеры и чертежи ОВ-разъёмов

    FC-коннектор. В данном случае фиксация коннектора к гнезду резьбовое. Характеризуются отличными геометрическими характеристиками и высокой защитой наконечника. Получили широкое применение в межстанционных соединениях связи. Имеет тот же диаметр керамического наконечника что и ST-коннектор.

    Гнездо для FC-коннектора закреплённое в оптическом кроссе

    FDDI-коннектор

    FDDI-коннектор. Спаренный коннектор для соединения ОВ

    Для подключения дуплексного кабеля часто применяют FDDI-коннекторы. Конструкция исполняется из пластмассы и содержит два керамических наконечника. Для исключения неправильного подключения линка коннектор имеет несимметричный профиль.

    Технология FDDI предусматривает четыре типа используемых портов: A, B, S и M. Проблема идентификации соответствующих линков решается за счет снабжения коннекторов специальными вставками, которые могут различаться по цветовой гамме или содержать буквенные индексы.

    В основном данный тип используется для подключения к оптическим сетям оконечного оборудования.

    Промышленностью выпускаются так же розетки-адаптеры для соединения различных типов коннекторов чертежи некоторых из них доступны по ссылке: "Розетки-адаптеры "

    Буквы АРС, PC или UPC в обозначении или маркировки ОВ-коннекторов

    В маркировке оптоволоконных коннекторов могут также присутствовать буквы АРС, PC или UPC. Аббревиатура АРС обозначает, что угол полировки торца изделия составляет 8°. Обычно оконечные с полировкой АРС изготавливаются с корпусом или хвостовиком зелёного цвета .

    Рис. А. 13. Схема образования оптического контакта в месте соединения наконечников разъемов PC и АРС.

    Затухание на соединении коннекторов оптоволокна. (оптиковолоконных, волоконно-оптических) линий

    Производители коннекторов обещают следующие затухание на соединении:

    Тип
    коннектора
    Потери (Дб) при 1300 нм
    Многомодовый Одномодовый
    ST 0.25 0.3
    SC 0.2 0.25
    LC 0.1 0.1
    FC 0.2 0.6
    FDDI 0.3 0.4

    На практике такие хорошие затухания получаются не всегда.

    Оконечить волокно коннектором можно и при монтаже стойки (необходим соответствующий инструмент и заготовки коннекторов), но на практике так не делают. В процессе монтажа станционного оборудования или оконечивания оптического кабеля используют готовые и оконеченные оптические шнуры, закупаемые вместе со стойкой или кроссом. Шнур разрезается пополам и каждая половина соединяется посредством сварки с оптоволокном кабеля. Соединения укладываются в кассету (сплайс-пластину) и прячутся в предназначенный для этого бокс. Наружу выводятся только коннекторы, которые вставляются в гнёзда, выведенные на лицевую панель кросса. Станционные операторы могут относится к этим гнёздам как к разъёмам типа "мама". Но по сути гнездо оптоволоконного кросса это просто трубка с необходимыми для данного типа коннектора креплением.

    С теорией и более научно тема оптического соединения коннекторов раскрыта на странице "Оптические разъемы " из книги Листвиных "Рефлектометрия оптических волокон".

    Так же о строении и принципах построения оптоволоконных коннекноров много информации есть на страницах книги Д.Бейли, Э.Райт Волоконная оптика. Теория и практика . По теме коннекторы из неё страницы → Коннекторы Свойства коннектора Общее строение коннектора Распространенные типы коннекторов Работа с коннекторами Косички

    В настоящее время существует множество оптических разъемов, отличающихся размерами и формами, методами крепления и фиксации. Выбор типа оптического коннектора зависит от используемого активного оборудования, задач монтажа волс и требуемой точности. Основными являются - LC, SC, FC, ST.

    Использование оптического разъема LC позволяет добиться высокой плотности монтажа в коммутационной панели или шкафу.

    Диаметр наконечника разъема 1,25 мм, материал - керамика. Фиксация разъема происходит за счет прижимного механизма - защелки, аналогично разъему типа RJ-45, которая исключает непредвиденное разъединение.

    При использовании дуплексных патч-кордов возможно соединение коннекторов клипсой. Используется для многомодовых и одномодовых волокон.


    Тип разъема SC используется как для многомодового волокна, так и одномодового. Диаметр наконечника 2,5 мм, материал - керамика. Корпус коннектора выполнен из пластика. Фиксация коннектора осуществляется поступательным движением с защелкиванием.

    Разъемы FC, как правило, используются в одномодовых соединених. Корпус разъема выполнен из никелированной латуни. Резьбовая фиксация позволяет обеспечить надежную защиту от случайных разъединения.

    В настоящее время ST коннектор широко не применяется из-за недостатков и возросших потребностей по плотности монтажа. Фиксация коннектора происходит за счет поворота вокруг оси, подобно BNC разъему.

    Оптические коннекторы применяются при оконцовке оптических волокон и для их стыковки с пассивным или активным телекоммуникационным оборудованием.

    По мере развития ВОЛС было разработано более 70 типов оптических разъёмов для различных условий применения.

    Соединение станционного оптоволокна с линейным происходит на оптическом кроссе при помощи оптических разъемов, представляющие собой оптические коннекторы и оптические адаптеры (вилки и розетки соответственно).
    Оптический адаптер представляет собой розетку, в которую с обеих сторон вставляются коннекторы. Таким же образом патч корд присоединяется к активному оборудованию ВОСП, лицевая панель которых имеет оптический адаптер, соответствующий типу коннектора.
    Оптические разъёмные соединители (коннекторы) предназначены для того, чтобы обеспечить прохождение света от одного элемента ВОСП к другому, например, из среды передачи в линейное и оконечное оборудование, с минимально возможными потерями при воздействии различных внешних факторов. Такое соединение должно быть устойчивым и воспроизводимым при повторном использовании.

    Существует 2 вида оптических адаптеров:
    1) соединительные, имеющие одинаковые типы разъемов с каждой стороны для соединения коннекторов одного типа. Обозначение соединительных адаптеров соответствует типу подключаемых коннекторов (FC, SC, LC, ST и т. д.);
    2) переходные, имеющие разные типы разъемов с каждой стороны адаптера (FC/SC).
    Основной концепцией при создании оптических адаптеров является их передача оптического сигнала без каких-либо искажений в разъеме. Отсюда можно выделить основные параметры механического соединения.

    Основные параметры оптических разъемов:
    Вносимые потери (затухание, вызванное утратой концентричности торцов) представляют собой разницу уровней средней мощности сигнала на входе оптического разъема и на выходе.
    Затухание отражения (передаваемое излучение частично отражается обратно в волокно к источнику (лазеру)). Достаточно сильное обратное отражение (RL - Return Loss) приведёт к нарушению функционирования лазера и изменению структуры транслируемого сигнала. Для уменьшения этого явления придумали несколько типов полировки.

    FC- коннектор - коннекторы типа FC были разработаны компанией NTT и ориентированы в основном на применение в одномодовых линиях дальней связи, специализированных системах и сетях кабельного телевидения. Керамический наконечник диаметром 2,5 мм с выпуклой торцевой поверхностью диаметром 2 мм обеспечивает физический контакт стыкуемых световодов. Наконечник изготавливается со строгими допусками на геометрические параметры, что гарантирует низкий уровень потерь и минимум обратных отражений. Радиус наконечника обеспечивает физический контакт стыкуемых световодов.




    Коннектор FC с металлической феррулой

    Для фиксации коннектора FC на розетке используется накидная гайка с резьбой М8х0,75. В данной конструкции подпружиненный наконечник жестко не связан с корпусом и хвостовиком, что усложняет и удорожает коннектор, однако такое дополнение окупается повышением надежности.
    Коннекторы типа FC устойчивы к воздействию вибраций и ударов, что позволяет применять их на соответствующих сетях, например, непосредственно на подвижных объектах, а также на сооружениях, расположенных вблизи железных дорог.

    Адаптер для FC с аттенюатором

    Особенности

    • Совместимость с IEC 61 754-143, TIA/EIA, NTT, спецификациям Belcore
    • Коррозийно-резистентный корпус
    • Высокая надежность
    • 2,5 мм керамическая ферула
    • Устойчивость к вибрации и одиночным ударам

    Область применения

    • Кабельные системы, CATV, LAN, WAN
    • Медицинское и контрольно-измерительное оборудование
    • Телекоммуникационные и бортовые сети

    Технические характеристики


    ST-коннектор - рекомендуется использовать в первую очередь для многомодовых применений. Наконечник коннектора не развязан с корпусом и оболочкой кабеля, что делает конструкцию проще, надежнее и дешевле, в тоже время такая конструкция полностью удовлетворяет многомодовому применению. Моноблочная конструкция ST коннектора разработана для быстрого оконцевания. Коннекторы имеют керамические наконечники диаметром 2,5 мм.

    Коннекторы ST фиксируются байонетным замком

    Особенности

    • Используются коннекторы с керамическим наконечником
    • Быстрая, легкая сборка, высокие оптические характеристики
    • Надежность в эксплуатации
    • Взаимосочленяемые соединители по технологиям Lucent Technology ST Connector
    • Удобное соединение при помощи байонетного крепежа
    • Полная совместимость с IEC 61 754-2

    Область применения

    • LAN системы и оборудование
    • Оптические подсистемы локальных сетей
    • Телекоммуникационные сети
    • Сетевая обработка данных

    Технические характеристики


    SС-коннектор - одним из недостатков коннекторов типов FC и ST считается необходимость вращательного движения при подключении к адаптеру. Для устранения этого недостатка, препятствующего увеличению плотности монтажа на лицевой панели, разработаны коннекторы типа SC. Корпус коннектора SC в поперечном сечении прямоугольный. Наконечник не связан жестко с корпусом и хвостовиком.

    При подключении коннектора SC происходит проворачивание наконечника

    SC коннектор duplex

    Подключение и отключение коннектора SC производится линейно (push-pull), что предохраняет наконечники коннекторов от прокручивания друг относительно друга в момент фиксации в адаптере. Фиксирующий механизм открывается только при вытягивании коннектора за корпус. К недостаткам коннекторов SC следует отнести несколько более высокую цену и меньшую механическую прочность относительно рассмотренных ранее коннекторов типов FC и ST. Сила, выдергивающая коннектор SC из адаптера, регламентируется в пределах 40 Н, в то время как для серии FC это значение практически может равняться прочности миникабеля. Как и в случае с коннекторами ST, этот недостаток ограничивает применение коннекторов типа SC на подвижных объектах.

    Особенности

    • Низкая стоимость,
    • Корпус типа push-pull,
    • Конструкция предварительной сборки,
    • Совместимость с IEC, TIA/EIA-568A TIA/EIA, NTT,
    • Низкие прямые потери

    Область применения

    • Кабельные системы, CATV, LAN, WAN,
    • Медицинское и контрольно-измерительное оборудование,
    • Телекоммуникации

    Технические характеристики

    LС-коннектор - популярный компактный волоконно-оптический коннектор нового поколения, доминирующий на рынке телекоммуникационного оборудования, это уменьшенный вариант SC-коннекторов. Он также имеет прямоугольное сечение корпуса. Конструкция коннектора сравнительно проста: керамический сердечник диаметром 1,25 мм, не связанный с пластмассовым корпусом. Механизм фиксации – защелка (аналогично RJ-45) Вследствие этого и подключение коннектора производится схожим образом. Пара коннекторов легко объединяется в дуплекс. Использование данного коннектора позволяет увеличить плотность портов активного оборудования, патч-панелей и настенных розеток в два раза по сравнению со стандартными коннекторами, скажем, SC, без каких-либо компромиссов с качеством.

    Коннектор LC широко используются при изготовлении оптических шнуров и пигтейлов, оконцевании многожильных оптических кабелей, изготовлении аттенюаторов, разветвителей, коллиматоров.

    Существуют модели коннекторов, специально адаптированные для установки на микрокабель 900 мкм и кабели с диаметрами внешней оболочки 1,6, 2,0, 2,4 и 3 мм. Ферул в коннекторе может вращаться, последовательно занимая шесть позиций, что позволяет добиваться прямых потерь <0,1 дБ.

    Особенности

    • Оптимальные оптические характеристики в связи с использованием высококачественных ферул
    • Широкий выбор ферул
    • Малогабаритная форма
    • Высокая концентрация при использовании
    • Перестраиваемость
    • Совместимость с Telcordia, ANSI/EIA/TIA, IEC
    • Адаптация к кабелю 1,6/1,8/2,0мм

    Область применения

    • Gigabit Ethernet
    • Телекоммуникационные сети
    • Базовые инсталляции
    • Многопортовые оптические системы

    Технические характеристики

    MU-коннектор - разъемы MU волокна представляют тенденции нового поколения, они представляют собой уменьшенный приблизительно вдвое аналог SC коннектора. Механизм фиксации за счет уменьшения габаритов в коннекторах этого типа может быть менее надежен.

    Наконечник и центратор – керамические, диаметром 1,25 мм. Корпус выполнен из пластмассы, детали – полимерные и металлические.

    Доля оборудования, выпускаемого с коннекторами типа MU, относительно невелика, однако есть перспективы роста, в первую очередь за счет снижения доли использования в оборудовании коннекторов более ранних разработок.

    Особенности

    • Разъем с пылезащитной заглушкой
    • Соответвие требованиям ROHS
    • Аппаратная совместимость NTT-MU
    • NTT&JIS соответствие
    • Соединение типа push-pull (толчок-рывок)
    • Высокая точность выравнивания
    • Материал ферул – цирконий
    • Полная совместимость с IEC 61 754-6

    Область применения

    • Сфера телекоммуникаций
    • Кабельное телевидение (CATV)
    • LAN (FITL, FTTH and FTTD)
    • SONET / SDH
    • ATM и WDM приложений
    • Цифровая сеть

    Технические характеристики


    MT-RJ-коннектор - коннекторы MT-RJ разработаны консорциумом производителей в составе AMp Hewlett-Packard, Siecor LIN, Fujikura и USConnec. Эти коннекторы изготавливаются исключительно в виде дуплексных пар и поэтому не могут считаться универсальными. Технологически они сложны в производстве.

    Корпус коннекторов содержит пару металлических направляющих, в которые предварительно установлены два оптических волокна. Оптические волокна кабеля подвариваются к предустановленным волокнам. После установки кабель фиксируется поворотом запирающего ключа.

    Коннекторы типа MT-RJ применяются в коммутаторах, концентраторах и маршрутизаторах многими ведущими производителями оборудования.



    Особенности

    • Размер и конструкция защелки аналогичны RJ-45
    • Дуплексный ферул
    • Низкая стоимость
    • Высокая плотность портов
    • Соответствие стандартам ISO/IEC 67754-18 и TIA/EIA 604-12
    • Низкие прямые потери

    Использование коннектора MT-RJ увеличивает плотность портов в два раза по сравнению со стандартными коннекторами и делает его идеальным для использования в приложениях типа fiber-to-the-desk. Данный тип разъема позволяет осуществить подключение дуплексных каналов оптической связи при помощи одного шнура, что позволяет сэкономить пространство при монтаже линий связи

    Область применения
    • Проводка в зданиях (горизонтальная и backbone)
    • Локальные сети (LAN) и FTT приложения
    • Телекоммуникационные сети

    Технические характеристики


    MPO - коннектор - MPO («Multi-fiber Push On») коннектор – малогабаритный соединитель, разработанный для ферул типа MT, имеющий размер обычного симплексного SC-соединителя.

    MPO (Multiple-Fibre Push-On/Pull-off) – многоволоконный оптический разъем, устанавливаемый в адаптер без вращения, прямым введением. MPO – название первой версии 12-волоконного разъема, которая затем была улучшена и переименована в MTP, хотя эти разъемы сохранили совместимость между собой.

    В МPO-коннекторе осуществляется совмещение полосок, содержащих 4, 8 или 12 оптических волокон. Прокладка и подключение волоконно-оптических кабелей с МPO коннекторами установленными производителем, не требуют применения специального инструмента и привлечения квалифицированного персонала, поскольку нет необходимости производить оконцовку кабеля. При этом обеспечиваются высокие характеристики соединения.

    Преимуществом данного коннектора (МРО) является объединение 12 волокон в одном коннекторе и соединение с компактным ленточным волокном, что значительно экономит место в патч-панелях и кроссовых шкафах.

    В стандартном MPO коннекторе терминируется 12 волокон. Последние разработки позволили увеличить количество волокон в коннекторе с таким интерфейсом до 72. Таким образом система MPO обеспечивает высочайшую плотность монтажа.

    МРО упрощенная технология подключения магистральных волоконно-оптических кабелей рlug-and-play («подключил и готово») представляет идеальное готовое решение проблемы инсталляции для небольших проектов при соединении нескольких зданий и реализации вертикальной разводки. Возможность выполнять множество подключений, имея несколько волокон в одном коннекторе, значительно ускоряет процесс инсталляции.

    Использование МРО коннектора экономит время и снижает вероятность повреждения хрупких оптических разъемов. MPO система также снижает риск попадания грязи в волокна адаптеров.


    Особенности

    • Объединение 12 волокон в одном коннекторе и соединение с компактным ленточным волокном
    • Адаптирован к VSR интерфейсу
    • Низкие потери
    • Обеспечение значительного пространства и экономии средств

    Область применения

    • Взаимосвязь с OE модулями
    • Gigabit Ethernet
    • Мультимедиа
    • Телекоммуникационные сети и системы

    Технические характеристики

    MTP - коннектор - усовершенствованная конструкция 12-волоконного разъема, первоначально носившего обозначение MPO (Мultiple-Fibre Push-On/Pull-off – многоволоконный оптический разъем, устанавливаемый в проходник без вращения, прямым введением). Улучшения затронули конструкцию разъема (разборный корпус, усовершенствованный наконечник) и состав материала, используемого для изготовления коннекторов.

    В результате разъемы MTP обладают существенно более высокими характеристиками передачи, чем их предшественники, хотя они по-прежнему совместимы между собой.

    Внимание: разъемы MTP делятся на типы male и female!

    Тип МТР в основном используется внутри помещений, например, в вычислительных центрах в корпоративных сетях, где используются распределительные шкафы и устройства параллельной оптики. Также МТР коннекторы широко используются в новых технологиях, таких как гибкие оптические мультиплексоры ввода/вывода (ROADM), т.е. там, где высокая плотность соединений крайне важна. Возможность выполнять множество подключений, имея несколько волокон в одном коннекторе, значительно ускоряет процесс инсталляции.


    Особенности

    • Объединение до 72 волокон в одном коннекторе и соединение с компактным ленточным волокном
    • Сильнейшая взаимосвязь МТ ферулы с мультиволокном, увеличенная плотность монтажа
    • Адаптирован к VSR интерфейсу
    • Соответствие Telcordia’s GR-326-Core, IEC стандартам
    • Низкие потери
    • Оптимальное сочетание компактности и надежности

    Область применения

    • Локальные сети LAN (включая FTTH and FTTD)
    • Gigabit Ethernet
    • Активное обрудование / интерфейс трансивера
    • Мультимедиа

    Технические характеристики


    SMA - коннектор - волоконно-оптические разъемы и SMA оптическая продукция широко используется в медицине, промышленности, там, где необходимо применение различных сенсоров, датчиков, а также в волоконно-оптических тестовых приложениях. SMA волоконно-оптический коннектор имеет компактный размер, высокую долговечность и надежность.

    Разъемы SMA волокна могут быть с керамическим наконечником или ферулой из нержавеющей стали SMA имеет две версии, SMA 905, SMA 906. Разница в том, что в волоконно-оптическом разъеме SMA 905 – обычная (straight) ферула, а волоконно-оптическом разъеме SMA 906 используются «step» наконечник для достижения более низких вносимых потерь. В стандартном волоконно-оптическом SMA коннекторе применяется 3.175 mm ферула.


    Особенности

    • Металлическая или керамическая ферула
    • Высокая температурная стабильность
    • Высокая износоустойчивость
    • Соответствие TIA / IEC
    • Соответствие ROHS

    Область применения

    • Телекоммуникационные сети и системы передачи данных
    • Локальные сети
    • Лазерные системы
    • Медицина/хирургия
    • Спектрометры

    Технические характеристики


    E-2000 - коннектор - волоконно-оптический разъем и E2000 продукция становятся все более распространенными в области коммуникаций.

    В коннекторах типа Е-2000 реализована одна из наиболее сложных конструкций.

    Подключение и отключение коннектора производится линейно (push-pull). Фиксирующий механизм открывается только при вытягивании коннектора за корпус с применением специальной вставки-ключа. Случайное выключение такого коннектора без использования ключа практически невозможно (то есть необходима нагрузка для разрушения защелки корпуса коннектора).

    Коннектор Е-2000 – пластиковый коннектор, с верхним замком. Как правило, используется в одномодовых сетях. Большее распространение имеет Е-2000/АРС, в связи с большим количеством оборудования для телевизионных систем, где необходима полировка АРС. Особенность стыковки данного коннектора с адаптером препятствует попаданию пыли на поверхность оптических элементов. Также обеспечивается достаточная жесткость крепления, устойчивость к вибрационным нагрузкам и высокая степень точности сведения световодов. Сечение корпуса – квадратное, что позволяет легко реализовать дуплексные коннекторы.


    Особенности

    • Безопасная передача высокоскоростных протоколов
    • Многослойная циркониевая ферула диаметром 2,5 мм
    • Автоматические пластмассовые шторки (spring loaded shutter), выполняющие функции заглушек при отключении адаптера и открывающиеся при включении
    • Конструкция типа push-pull locking (толчок-рывок с верхним замком)
    • Совместимость с европейскими (EN 186270) и международными (IEC 61754-151) стандартами, TIA/EIA 604-16

    Область применения

    • Локальные сети LAN
    • Современные DWDM приложения высокой мощности
    • Кабельное телевидение CATV
    • Метрология
    • Железные дороги
    • Промышленность
    Технические характеристики
    DIN - коннектор - Коннекторы типа DIN нашли применение в тестовой аппаратуре и телекоммуникационном оборудовании, кабельнном телевидении, LAN, WAN, MAN, а также в промышленности, медицине и в лазерных системах.

    Этот уникальный разъем обеспечивает превосходную производительность за счет своей конструкции.

    Стандартный керамический сердечник диаметром 2,5 мм выступает далеко за пределы корпуса. Пластмассовый корпус снабжен ключом, препятствующим вращению сердечника вокруг своей оси при вкручивании в адаптер.

    Особенности

    • Совместимость с DIN47256
    • Специальная конструкция керамической ферулы типа free-floating (свободное плавание)
    • Коррозионно-устойчивый корпус
    • Компактная конструкция
    • Низкие показатели прямых потерь и обратного отражения

    Технические характеристики

    Biconic - коннектор - с полимерным наконечником обеспечивает максимальную производительность для многомодовых и одномодовых приложений. Этот разъем волоконно-оптический "первого поколения" часто используется при восстановлении устаревшего установленного волоконно-оптического оборудования. Размер волокна 126мкм.
    Состоит из конусообразной полимерной манжеты, которая помогает выровнять волокна при подсоединении его к интерфейсу.
    Прочная и надежная конструкция позволяет использовать коннекторы такого типа в военных структурах и медицинских учреждениях.


    Технические характеристики

    ESCON - коннектор - (Enterprise Systems Connection) волоконный канальный интерфейс, обеспечивающий обмен информацией между сервером IBM zSeries и периферийными устройствами (либо другим сервером). Впервые применялся в серверах архитектурыESA/390. Впервые анонсирован компанией IBM в 1990 году. ESCON реализует полудуплексный режим передачи с использованием протоколов типа запрос-ответ.
    Физически ESCON канал состоит их двух волоконно-оптических кабелей, каждый из которых предназначен для передачи информации в одну сторону.
    Для подключения периферийного устройства используется соединение точка-точка (одиночное или через коммутатор ESCON).


    Технические характеристики

    Рост числа эксплуатируемых портов, скоростей и дальности передачи информации требует новых подходов к организации подключения портов оборудования и СКС. Один из подходов - использование разъемов типа LC, которые выпускаются в разнообразных конструктивных исполнениях. Однако не все они эффективны в условиях высокой плотности монтажа пассивных и активных портов.

    Разъем LC

    Оптический интерфейс типа LC (Lucent Connector) - один из самых широко используемых сегодня типов разъемных соединителей. Разъем был представлен рынку в 1996 г. компанией Lucent Technologies и получил признание специалистов благодаря ряду преимуществ, которые получает пользователь в реальных условиях эксплуатации конечного пассивного и активного оборудования наряду с использованием SFP-трансиверов. По оценкам аналитиков, на сегодня по всему миру установлено более 60 млн коннекторов LC. В настоящее время около 30 компаний официально обладают лицензией на производство данного типа интерфейса.

    Среди главных преимуществ оптического соединителя LC - возможность разместить дуплексный оптический порт на той же площади, что и медный порт RJ45 (рис. 1), к тому же в соединителе LC используется схожий механизм фиксации защелкой.

    В первоначальном варианте исполнения оптическая розетка LC имела посадочные размеры, равные размерам отверстия под медную розетку, что допускало «повторное использование» существующих медных коммутационных панелей и их комбинирование.

    До недавнего прошлого удельный вес оптической проводки в общем объеме кабельной системы составлял менее 10%, поскольку основные задачи подключения активного оборудования эффективно решались с помощью традиционных медножильных СКС различных категорий. Ситуация начала меняться с появлением приложений 10G Ethernet и развитием инфраструктуры сетей хранения данных, работающих по протоколу Fibre Channel, который требует более низкого уровня потерь в канале.

    Ограниченность доступных площадей в машинных залах ЦОДов и общий рост числа единиц активного оборудования на единицу площади зала привели к появлению более эффективного - с точки зрения размеров, энергопотребления и охлаждения - активного оборудования. В свою очередь это заставило производителей структурированных кабельных систем адаптировать свои решения для размещения большего количества пассивных оптических портов за счет внедрения новой малогабаритной дуплексной розетки LC (так называемый тип SC foot print), посадочные размеры которой совпадают с размерами стандартной симплексной розетки SC (рис. 2).

    Плотность или удобство

    Появление малогабаритной дуплексной розетки LC позволило повысить плотность монтажа за счет более тесного расположения портов на коммутационной оптической панели. Сегодня на одном стандартном юните высоты можно разместить до 48 дуплексных розеток LC. С точки зрения инфраструктуры ЦОДа это означает, например, возможность существенно сократить количество используемых юнитов в стойке с активным оборудованием, сделать коммутационное поле компактнее. Однако с эксплуатационной точки зрения остается нерешенным вопрос удобства обслуживания подключаемых оптических разъемов LC. Именно здесь большинству производителей СКС так и не удалось существенно продвинуться в технологическом плане.

    Удобство эксплуатации любого разъемного соединения в общем случае подразумевает, что можно получить свободный доступ к оптическому разъему, не затрагивая соседние, уже подключенные соединители. Эта проблема особенно критична в условиях высокой плотности монтажа, которая сегодня характерна для центральных коммутационных оптических кроссов, а также при подключении целого ряда типов сетевых коммутаторов или маршрутизаторов.

    Не секрет, что еще несколько лет назад специалисты отделов эксплуатации крайне негативно воспринимали интерфейс LC, ссылаясь на то, что он имеет крайне малые размеры в сравнении с привычным соединителем SC, что его сложно извлечь из розетки (часто производители СКС предлагали даже использовать специальный инструмент, облегчающий эту операцию), что образуется «борода» из перепутанных патчкордов, так как защелки разъемов все время цепляются за кабель, усложняя процесс извлечения оптического шнура.

    Поскольку плотность подключений в случае LC выше в два и более раза по сравнению с другими соединителями (например, SC), а конструктивное исполнение защелки разъема LC и медного разъема RJ45 реализовано сходным образом, то в условиях подключенных шнуров доступ к защелкам существенно ограничен (рис. 3, а). Думаю, большинство специалистов хорошо помнят лучший инструмент для обслуживания дуплексных подключений LC - обычный пинцет.

    Разработчики и производители оптических разъемов LC, приняв во внимание это ограничение, внесли конструктивные изменения в форму защелки (рис. 3, б). Разнообразные варианты исполнения, предлагаемые разными производителями, предполагают, например, создание дополнительной площадки для нажатия на защелку разъема (площадка является частью либо корпуса разъема, либо дуплексной клипсы), увеличение полезной рабочей площади защелки либо усложнение геометрии ее поверхности, чтобы нажатие на защелку разъема срабатывало более эффективно.

    Наличие дополнительной площадки упрощает доступ к защелкам разъема и уменьшает перепутывание оптических шнуров. С другой стороны, в силу особенностей деформации полимерного материала и малых размеров защелки невозможно обеспечить равномерный нажим на защелки в дуплексном варианте исполнения соединителя LC. Обычно это вызывает залипание дуплексного разъема при отключении, когда одна защелка сработала, а вторая нет. Наряду с дополнительными затратами времени и сил это может привести к разрушению корпуса разъема из-за несимметричной боковой нагрузки.

    Среди интересных, нестандартных решений, имеющихся на рынке, следует отметить конструктивное исполнение разъема LC с так называемой обращенной защелкой (рис. 4). Сохраняя полную совместимость с розетками стандартного исполнения, такая конструкция разъема обеспечивает хороший доступ к защелкам за счет увеличенной площадки, снижает вероятность перепутывания оптических шнуров из-за того, что кабель оптического шнура зацепится за защелку. Кроме того, в дуплексном исполнении благодаря конструкции используемой клипсы прикладываемое усилие равномерно распределяется на обе защелки.

    Гибкие хвостовики

    Один из альтернативных подходов, повышающих удобство обслуживания разъемных соединений LC в условиях высокой плотности монтажа, - использование укороченных гибких хвостовиков (рис. 5). Производители, предлагающие такие решения, сообщают о том, что реализуется удобный доступ к оптическим портам и что возможна безопасная выкладка коммутационных шнуров даже в условиях ограниченного пространства между плоскостью установки оборудования и дверью шкафа.

    Отметим, однако, что использование укороченного тела разъема и/или гибкого хвостовика тем не менее не решает вопрос удобства доступа к защелкам самого разъема.

    Конструкция LC-HD

    С точки зрения эксплуатации разъемных соединений представляет особый интерес возможность комбинировать высокую плотность подключений, свойственную интерфейсу LC, с вариантом фиксации push-pull интерфейса SC. В этом случае доступ к защелкам разъемов, особенно в дуплексном исполнении, вообще не требуется. На рынке сегодня представлена такая конструкция (рис. 6) под торговой маркой LC-HD (предмет действующего патента), где аббревиатура HD означает High Density.

    Производитель, сохранив полную совместимость со стандартными розетками LC и трансиверами SFP/SFP+, создал решение для организации высокой плотности подключений как на коммутационных панелях, так и на картах/лезвиях активного оборудования. Главная его особенность - использование специальной клипсы, благодаря которой вообще нет необходимости в доступе к защелкам разъемов.

    Предлагаемое конструктивное решение одинаково эффективно работает в случаях горизонтальной и вертикальной ориентации розеток LC или оптических трансиверов, например на лезвиях тяжелого многопортового коммутатора (рис. 7).

    Прикладывая к защелкам разъемов равномерное и симметричное усилие, пользователь может подключить или отключить дуплексный разъем от порта коммутатора практически вслепую - это типичная ситуация, например, при использовании лезвий с сверхплотным монтажом трансиверов.

    Немного о перспективах

    И в заключение хочется обратить внимание на особый вид оптического дуплексного интерфейса - mini-LC. Это решение возникло как следствие попытки увеличить плотность монтажа трансиверов на лезвии коммутатора. Характерной его особенностью является уменьшенное расстояние между геометрическими центрами разъемов - 5,25 мм вместо 6,25 мм для стандартного исполнения. Соответствующие изменения были внесены и в конструкцию трансиверов, которые получили название mini-SFP.

    По-видимому, практическое будущее такого решения пока неочевидно, хотя целый ряд производителей оптических разъемов заявил о доступности для заказа разъемов mini-LC и коммутационных шнуров на их основе. В любом случае данное решение не может быть адаптировано в рамках законченной кабельной системы, так как не выполняется требование совместимости и универсальности кабельной проводки по отношению к активному оборудованию различных вендоров в машинном зале ЦОДа.

    В целом же разработчики и производители пассивных компонентов находятся только в самом начале пути, и безусловно, новые интересные инженерные решения еще будут представлены вниманию рынка.