Меню
Бесплатно
Главная  /  Внутренняя отделка  /  Статическое давление в трубопроводе. Давление в движущейся жидкости

Статическое давление в трубопроводе. Давление в движущейся жидкости

Лекция 2. Потери давления в воздуховодах

План лекции. Массовый и объемный потоки воздуха. Закон Бернулли. Потери давления в горизонтальном и вертикальном воздуховодах: коэффициент гидравлического сопротивления, динамический коэффициент, число Рейнольдса. Потери давления в отводах, местных сопротивлениях, на разгон пылевоздушной смеси. Потери давления в высоконапорной сети. Мощность пневмотранспортной системы.

2. Пневматические параметры течения воздуха
2.1. Параметры воздушного потока

Под действием вентилятора в трубопроводе создается воздушный поток. Важными параметрами воздушного потока являются его скорость, давление, плотность, массовый и объемный расходы воздуха. Расходы воздуха объемный Q , м 3 /с, и массовый М , кг/с, связаны между собой следующим образом:

;
, (3)

где F – площадь поперечного сечения трубы, м 2 ;

v – скорость воздушного потока в заданном сечении, м/с;

ρ – плотность воздуха, кг/м 3 .

Давление в воздушном потоке различают статическое, динамическое и полное.

Статическим давлением Р ст принято называть давление частиц движущегося воздуха друг на друга и на стенки трубопровода. Статическое давление отражает потенциальную энергию воздушного потока в том сечении трубы, в котором оно измерено.

Динамическое давление воздушного потока Р дин , Па, характеризует его кинетическую энергию в сечении трубы, где оно измерено:

.

Полное давление воздушного потока определяет всю его энергию и равно сумме статического и динамического давлений, измеренных в одном и том же сечении трубы, Па:

Р = Р ст + Р д .

Отсчет давлений можно вести либо от абсолютного вакуума, либо относительно атмосферного давления. Если давление отсчитывается от нуля (абсолютного вакуума), то оно называется абсолютным Р . Если давление измерять относительно давления атмосферы, то это будет относительное давление Н .

Н = Н ст + Р д .

Атмосферное давление равно разности полных давлений абсолютного и относительного

Р атм = Р Н .

Давление воздуха измеряют Па (Н/м 2), мм водяного столба или мм ртутного столба:

1 мм вод. ст. = 9,81 Па; 1 мм рт. ст. = 133,322 Па. Нормальное состояние атмосферного воздуха соответствует следующим условиям: давление 101325 Па (760 мм рт. ст.) и температура 273К.

Плотность воздуха есть масса единицы объема воздуха. По уравнению Клайперона плотность чистого воздуха при температуре 20ºС

кг/м 3 .

где R – газовая постоянная, равная для воздуха 286,7 Дж/(кг  К); T – температура по шкале Кельвина.

Уравнение Бернулли. По условию неразрывности воздушного потока расход воздуха постоянен для любого сечения трубы. Для сечений 1, 2 и 3 (рис. 6) это условие можно записать так:

;

При изменении давления воздуха в пределах до 5000 Па плотность его остается практически постоянной. В связи с этим

;

Q 1 = Q 2 = Q 3 .

Изменение давления воздушного потока по длине трубы подчиняется закону Бернулли. Для сечений 1, 2 можно написать

где р 1,2 – потери давления, вызванные сопротивлением потока о стенки трубы на участке между сечениями 1 и 2, Па.

С уменьшением площади поперечного сечения 2 трубы скорость воздуха в этом сечении увеличится, так что объемный расход останется неизменным. Но с увеличением v 2 возрастет динамическое давление потока. Для того, чтобы равенство (5) выполнялось, статическое давление должно упасть ровно на столько, на сколько увеличится динамическое давление.

При увеличении площади сечения динамическое давление в сечении упадет, а статическое ровно на столько же увеличится. Полное же давление в сечении останется величиной неизменной.

2.2. Потери давления в горизонтальном воздуховоде

Потеря давления на трение пылевоздушного потока в прямом воздуховоде с учетом концентрации смеси, определяется по формуле Дарси-Вейсбаха, Па

, (6)

где l – длина прямолинейного участка трубопровода, м;

 - коэффициент гидравлического сопротивления (трения);

d

р дин – динамическое давление, исчисляемое по средней скорости воздуха и его плотности, Па;

К – комплексный коэффициент; для трасс с частыми поворотами К = 1,4; для трасс прямолинейных с небольшим количеством поворотов
, где d – диаметр трубопровода, м;

К тм – коэффициент, учитывающий вид транспортируемого материала, значения которого приведены ниже:

Коэффициент гидравлического сопротивления  в инженерных расчетах определяют по формуле А.Д. Альтшуля


, (7)

где К э – абсолютная эквивалентная шероховатость поверхности, К э = (0,0001… 0,00015) м;

d – внутренний диаметр трубы, м;

R е – число Рейнольдса.

Число Рейнольдса для воздуха

, (8)

где v – средняя скорость воздуха в трубе, м/с;

d – диаметр трубы, м;

 - плотность воздуха, кг/м 3 ;

1 – коэффициент динамической вязкости, Нс/м 2 ;

Значение динамического коэффициента вязкости для воздуха находят по формуле Милликена, Нс/м2

 1 = 17,11845  10 -6 + 49,3443  10 -9 t , (9)

где t – температура воздуха, С.

При t = 16 С  1 = 17,11845  10 -6 + 49,3443  10 -9 16 =17,910 -6 .

2.3. Потери давления в вертикальном воздуховоде

Потери давления при перемещении аэросмеси в вертикальном трубопроводе, Па:

, (10)

где - плотность воздуха, = 1,2 кг/м 3 ;

g = 9,81 м/с 2 ;

h – высота подъема транспортируемого материала, м.

При расчете аспирационных систем, в которых концентрация аэросмеси  0,2 кг/кг значение р под учитывают только при h  10 м. Для наклонного трубопровода h = l sin, где l – длина наклонного участка, м;  - угол наклона трубопровода.

2.4. Потери давления в отводах

В зависимости от ориентации отвода (поворота воздуховода на некоторый угол) в пространстве различают два вида отводов: вертикальные и горизонтальные.

Вертикальные отводы обозначают начальными буквами слов, отвечающих на вопросы по схеме: из какого трубопровода, куда и в какой трубопровод направляется аэросмесь. Различают следующие отводы:

– Г-ВВ – транспортируемый материал движется из горизонтального участка вверх в вертикальный участок трубопровода;

– Г-НВ – то же из горизонтального вниз в вертикальный участок;

– ВВ-Г – то же из вертикального вверх в горизонтальный;

– ВН-Г – то же из вертикального вниз в горизонтальный.

Горизонтальные отводы бывают только одного типа Г-Г.

В практике инженерных расчетов потерю давления в отводе сети находят по следующим формулам.

При значениях расходной концентрации  0,2 кг/кг

где
- сумма коэффициентов местного сопротивления отводов ветви (табл. 3) при R / d = 2, где R – радиус поворота осевой линии отвода; d – диаметр трубопровода; динамическое давление воздушного потока .

При значениях   0,2 кг/кг

где
- сумма условных коэффициентов, учитывающих потери давления на поворот и разгон материала за отводом.

Значения о усл находят по величине табличных т (табл. 4) с учетом коэффициента на угол поворота К п

о усл = т К п . (13)

Поправочные коэффициенты К п берут в зависимости от угла поворота отводов :

К п

Таблица 3

Коэффициенты местного сопротивления отводов о при R / d = 2

Конструкция отводов

Угол поворота, 

Отводы гнутые, штампованные, сварные из 5 звеньев и 2 стаканов

Уравнение Бернулли. Статическое и динамическое давления.

Идеальной называется несжимаемая и не имеющая внутреннего трения, или вязкости; стационарным или установившимся называется течение, при котором скорости частиц жидкости в каждой точке потока со временем не изменяются. Установившееся течение характеризуют линиями тока - воображаемыми линиями, совпадающими с траекториями частиц. Часть потока жидкости, ограниченная со всех сторон линиями тока, образует трубку тока или струю. Выделим трубку тока настолько узкую, что скорости частиц V в любом ее сечении S, перпендикулярном оси трубки, можно считать одинаковыми по всему сечению. Тогда объем жидкости, протекающий через любое сечение трубки в единицу времени остается постоянным, так как движение частиц в жидкости происходит только вдоль оси трубки: . Это соотношение назы­вается условием неразрывности струи. Отсюда следует, что и для реальной жидкости при установившемся течении по трубе переменного сечения количество Qжидкости, проте­кающее в единицу времени через любое сечение трубы, остается по­стоянным (Q = const) и средние скорости течения в различных сече­ниях трубы обратно пропорциональны площадям этих сечений: и т. д.

Выделим в потоке идеальной жидкости трубку тока, а в ней - достаточно малый объем жидкости массой , который при тече­нии жидкости перемещается из положения А в положение В.

Из-за малости объема можно считать, что все частицы жидкости в нем находятся в равных условиях: в положе­нии А имеют давление скорость и находятся на высоте h 1 от нуле­вого уровня; в положении В - соот­ветственно . Сечения трубки тока соответственно S 1 и S 2 .

Жидкость, находящаяся под дав­лением, обладает внутренней потен­циальной энергией (энергией давле­ния), за счет которой она может совершать работу. Этаэнергия W p измеряется произведением давления на объем V жидкости: . В данном случае перемещение массы жидкости происходит под действием разности сил давления в се­чениях Si и S 2 . Совершаемая при этом работа А р равняется разности по­тенциальных энергий давления в точках . Эта работа расходуется на работу по преодолению действия силы тяжес­ти и на изменение кинетической энергии массы

Жидкости:

Следовательно, А р = A h + A D

Перегруппировав члены уравнения, получим

Положения А и В выбраны произвольно, поэтому можно утверждать, что в любом месте вдоль трубки тока сохраняется условие

разделив это уравнение на , получим

где - плотность жидкости.

Это и есть уравнение Бернулли. Все члены уравнения, как легко убедиться, имеют размерность давления и называются: статистическим: гидростатическим: - динамическим. Тогда уравнение Бернулли можно сформулировать так:

при стационарном течении идеальной жидкости полное давление равное сумме статического, гидростатического и динамического давлений, остается величиной постоянной в любом поперечном сечении потока.

Для горизонтальной трубки тока гидростатическое давление ос­тается постоянным и может быть отнесено в правую часть уравнения, которое при этом принимает вид

статистическое давление обусловливает потенциальную энергию жидкос­ти (энергию давления), динамическое давление - кинетическую.

Из этого уравнения следует вывод, называемый правилом Бернулли:

статическое давление невязкой жидкости при течении по горизон­тальной трубе возрастает там, где скорость ее уменьшается, и на­оборот.

Вязкость жидкости

Реология - это наука о деформациях и текучести вещества. Под реологией крови (гемореологией) будем понимать изучение биофизических особенностей крови как вязкой жидкости. В реальной жидкости между молекулами действуют силы взаимного притяжения, обусловливающие внутреннее трение. Внутреннее трение, например, вызывает силу сопротивления при помешивании жидкости, замедление скорости падения брошенных в нее тел, а также при определенных условиях - ламинарное течение.

Ньютон установил, что сила F B внутреннего трения между двумя слоями жидкости, движущимися с различными скоростями, зависит от природы жидкости и прямо пропорциональна площади S соприкасающихся слоев и градиенту скорости dv/dz между ними F = Sdv/dz где - коэффициент пропорциональности, называемый коэффициентом вязкостиили просто вязкостью жидкости и зависящий от ее при­роды.

Сила F B действует касательно к поверхности соприкасающихся слоев жидкости и направлена так, что ускоряет слой, движущийся более медленно, замедляет слой, движущийся бо­лее быстро.

Градиент скорости в данном случае характери­зует быстроту изменения скорости между слоями жидкости, т. е. в направ­лении, перпендикулярном направлению течения жид­кости. Для конечных зна­чений он равен .

Единица коэффициента вязкости в ,в системе СГС - , эта единица называется пуазом (П). Соот­ношение между ними: .

На практике вязкость жидкости характеризуют относительной вязкостью , под которой понимают отношение коэффициента вяз­кости данной жидкости к коэффициенту вязкости воды при той же температуре:

У большинства жидкостей (вода, низкомолекулярные органические соединения, истинные растворы, расплавленные металлы и их соли) коэффициент вязкости зависит только от природы жидкости и темпе­ратуры (с повышением температуры коэффициент вязкости понижа­ется). Такие жидкости называются ньютоновскими.

У некоторых жидкостей, преимущественно высокомолекулярных (например, растворы полимеров) или представляющих дисперсные системы (суспензии и эмульсии), коэффициент вязкости зависит также от режима течения - давления и градиента скорости. При их увеличе­нии вязкость жидкости уменьшается вследствие нарушения внутренней структуры потока жидкости. Такие жидкости называются структурно вязкими или неньютоновскими. Их вязкость характеризуют так называемым условным коэффициентом вязкости, который относится к определенным условиям течения жидкости (давление, скорость).

Кровь представляет собой суспензию форменных элементов в бел­ковом растворе - плазме. Плазма – практически ньютоновская жидкость. Поскольку 93 % форменных элементов составляют эритроциты, то при упрощенном рассмотрении кровь – это суспензия эритроцитов в физиологическом растворе. Поэтому, строго говоря, кровь должна быть отнесена к неньютоновским жидкостям. Кроме того, при течении крови по сосудам наблюдается концентрация форменных элементов в цент­ральной части потока, где вязкость соответственно увеличивается. Но поскольку вязкость крови не так велика, этими явлениями пренебре­гают и считают ее коэффициент вязкости постоянной величиной.

Относительная вязкость крови в норме составляет 4,2-6. При патоло­гических условиях она может снижаться до 2-3 (при анемии) или повы­шаться до 15-20 (при полицитемии), что сказывается на скорости оседания эритроцитов (СОЭ). Изменение вязкости крови - одна из причин изменения скорости оседания эритроцитов (СОЭ). Вязкость крови имеет диагностическое значение. Некоторые инфекционные заболевания увеличивают вязкость, другие же, например брюшной тиф и туберкулез, - уменьшают.

Относительная вязкость сыво­ротки крови в норме 1,64-1,69 и при патологии 1,5-2,0. Как и у любой жидкости, вязкость крови возрастает при снижении температуры. При повышении жесткости эритроцитарной мембраны, например при атеросклерозе, вязкость крови также возрастает, что приводит к увеличению нагрузки на сердце. Вязкость крови неодинакова в широких и узких сосудах, причем влияние диаметра кровеносного сосуда на вязкость начинает сказываться при просвете менее 1 мм. В сосудах тоньше 0,5 мм вязкость уменьшается прямо пропорционально укорочению диаметра, поскольку в них эритроциты выстраиваются вдоль оси в цепочку наподобие змейки и окружены слоем плазмы, изолирующей «змейку» от сосудистой стенки.

Комментариев:

Основой проектирования любых инженерных сетей является расчет. Для того чтобы правильно сконструировать сеть приточных или вытяжных воздуховодов, необходимо знать параметры воздушного потока. В частности, требуется рассчитать скорость потока и потери давления в канале для правильного подбора мощности вентилятора.

В этом расчете немаловажную роль играет такой параметр, как динамическое давление на стенки воздуховода.

Поведение среды внутри воздухопровода

Вентилятор, создающий воздушный поток в приточном или вытяжном воздуховоде, сообщает этому потоку потенциальную энергию. В процессе движения в ограниченном пространстве трубы потенциальная энергия воздуха частично переходит в кинетическую. Этот процесс происходит в результате воздействия потока на стенки канала и называется динамическим давлением.

Кроме него существует и статическое давление, это воздействие молекул воздуха друг на друга в потоке, оно отражает его потенциальную энергию. Кинетическую энергию потока отражает показатель динамического воздействия, именно поэтому данный параметр участвует в расчетах .

При постоянном расходе воздуха сумма этих двух параметров постоянна и называется полным давлением. Оно может выражаться в абсолютных и относительных единицах. Точкой отсчета для абсолютного давления является полный вакуум, в то время как относительное считается начиная от атмосферного, то есть разница между ними — 1 Атм. Как правило, при расчете всех трубопроводов используется величина относительного (избыточного) воздействия.

Вернуться к оглавлению

Физический смысл параметра

Если рассмотреть прямые отрезки воздуховодов, сечения которых уменьшаются при постоянном расходе воздуха, то будет наблюдаться увеличение скорости потока. При этом динамическое давление в воздуховодах будет расти, а статическое — снижаться, величина полного воздействия останется неизменной. Соответственно, для прохождения потока через такое сужение (конфузор) ему следует изначально сообщить необходимое количество энергии, в противном случае может уменьшиться расход, что недопустимо. Рассчитав величину динамического воздействия, можно узнать количество потерь в этом конфузоре и правильно подобрать мощность вентиляционной установки.

Обратный процесс произойдет в случае увеличения сечения канала при постоянном расходе (диффузор). Скорость и динамическое воздействие начнут уменьшаться, кинетическая энергия потока перейдет в потенциальную. Если напор, развиваемый вентилятором, слишком велик, расход на участке и во всей системе может вырасти.

В зависимости от сложности схемы, вентиляционные системы имеют множество поворотов, тройников, сужений, клапанов и прочих элементов, называемых местными сопротивлениями. Динамическое воздействие в этих элементах возрастает в зависимости от угла атаки потока на внутреннюю стенку трубы. Некоторые детали систем вызывают значительное увеличение этого параметра, например, противопожарные клапаны, в которых на пути потока установлены одна или несколько заслонок. Это создает повышенное сопротивление потоку на участке, которое необходимо учитывать в расчете. Поэтому во всех вышеперечисленных случаях нужно знать величину динамического давления в канале.

Вернуться к оглавлению

Расчеты параметра по формулам

На прямом участке скорость движения воздуха в воздуховоде неизменна, постоянной остается и величина динамического воздействия. Последняя рассчитывается по формуле:

Рд = v2γ / 2g

В этой формуле:

  • Рд — динамическое давление в кгс/м2;
  • V — скорость движения воздуха в м/с;
  • γ — удельная масса воздуха на этом участке, кг/м3;
  • g — ускорение силы тяжести, равное 9.81 м/с2.

Получить значение динамического давления можно и в других единицах, в Паскалях. Для этого существует другая разновидность этой формулы:

Рд = ρ(v2 / 2)

Здесь ρ — плотность воздуха, кг/м3. Поскольку в вентиляционных системах нет условий для сжатия воздушной среды до такой степени, чтобы изменилась ее плотность, она принимается постоянной — 1.2 кг/м3.

Далее, следует рассмотреть, как участвует величина динамического воздействия в расчете каналов. Смысл этого расчета — определить потери во всей системе приточной либо вытяжной вентиляции для подбора напора вентилятора, его конструкции и мощности двигателя. Расчет потерь происходит в два этапа: сначала определяются потери на трение о стенки канала, потом высчитывается падение мощности воздушного потока в местных сопротивлениях. Параметр динамического давления участвует в расчете на обоих этапах.

Сопротивление трению на 1 м круглого канала рассчитывается по формуле:

R = (λ / d) Рд, где:

  • Рд — динамическое давление в кгс/м2 или Па;
  • λ — коэффициент сопротивления трению;
  • d — диаметр воздуховода в метрах.

Потери на трение определяются отдельно для каждого участка с различными диаметрами и расходами. Полученное значение R умножают на общую длину каналов расчетного диаметра, прибавляют потери на местных сопротивлениях и получают общее значение для всей системы:

HB = ∑(Rl + Z)

Здесь параметры:

  1. HB (кгс/м2) — общие потери в вентиляционной системе.
  2. R — потери на трение на 1 м канала круглого сечения.
  3. l (м) — длина участка.
  4. Z (кгс/м2) — потери в местных сопротивлениях (отводах, крестовинах, клапанах и так далее).

Вернуться к оглавлению

Определение параметров местных сопротивлений вентиляционной системы

В определении параметра Z также принимает участие величина динамического воздействия. Разница с прямым участком заключается в том, что в разных элементах системы поток меняет свое направление, разветвляется, сходится. При этом среда взаимодействует с внутренними стенками канала не по касательной, а под разными углами. Чтобы это учесть, в расчетную формулу можно ввести тригонометрическую функцию, но тут есть масса сложностей. Например, при прохождении простого отвода 90⁰ воздух поворачивает и нажимает на внутреннюю стенку как минимум под тремя разными углами (зависит от конструкции отвода). В системе воздуховодов присутствует масса более сложных элементов, как рассчитать потери в них? Для этого существует формула:

  1. Z = ∑ξ Рд.

Для того чтобы упростить процесс расчета, в формулу введен безразмерный коэффициент местного сопротивления. Для каждого элемента вентиляционной системы он разный и является справочной величиной. Значения коэффициентов были получены расчетами либо опытным путем. Многие заводы-производители, выпускающие вентиляционное оборудование, проводят собственные аэродинамические исследования и расчеты изделий. Их результаты, в том числе и коэффициент местного сопротивления элемента (например, противопожарного клапана), вносят в паспорт изделия или размещают в технической документации на своем сайте.

Для упрощения процесса вычисления потерь вентиляционных воздуховодов все значения динамического воздействия для разных скоростей также просчитаны и сведены в таблицы, из которых их можно просто выбирать и вставлять в формулы. В Таблице 1 приведены некоторые значения при самых применяемых на практике скоростях движения воздуха в воздуховодах.

Виды давления

Статическое давление

Статическое давление - это давление неподвижной жидкости. Статическое давление = уровень выше соответствующей точки измерения + начальное давление в расширительном баке.

Динамическое давление

Динамическое давление - это давление движущегося потока жидкости.

Давление нагнетания насоса

Рабочее давление

Давление, имеющееся в системе при работе насоса .

Допустимое рабочее давление

Максимальное значение рабочего давления, допускаемого из условий безопасности работы насоса и системы.

Давление - физическая величина, характеризующая интенсивность нормальных (перпендикулярных к поверхности) сил, с которыми одно тело действует на поверхность другого (например, фундамент здания на грунт, жидкость на стенки сосуда, газ в цилиндре двигателя на поршень и т. п.). Если силы распределены вдоль поверхности равномерно, то Давление р на любую часть поверхности равно р = f/s , где S - площадь этой части, F - сумма приложенных перпендикулярно к ней сил. При неравномерном распределении сил это равенство определяет среднее давление на данную площадку, а в пределе, при стремлении величины S к нулю, - давление в данной точке. В случае равномерного распределения сил давление во всех точках поверхности одинаково, а в случае неравномерного - изменяется от точки к точке.

Для непрерывной среды аналогично вводится понятие давление в каждой точке среды, играющее важную роль в механике жидкостей и газов. Давление в любой точке покоящейся жидкости по всем направлениям одинаково; это справедливо и для движущейся жидкости или газа, если их можно считать идеальными (лишёнными трения). В вязкой жидкости под давление в данной точке понимают среднее значение давление по трём взаимно перпендикулярным направлениям.

Давление играет важную роль в физических, химических, механических, биологических и др. явлениях.

Потеря давления

Потеря давления - снижение давления между входом и выходом элемента конструкции. К подобным элементам относятся трубопроводы и арматура . Потери возникают по причине завихрений и трения. Каждый трубопровод и арматура в зависимости от материала и степени шероховатости поверхности характеризуется собственным коэффициентом потерь . За соответствующей информацией следует обратиться к их изготовителям.

Единицы измерения давления

Давление является интенсивной физической величиной. Давление в системе СИ измеряется в паскалях; применяются также следующие единицы:

Давление

мм вод. ст.

мм рт. ст.

кг/см 2

кг/м 2

м вод. ст.

1 мм вод. ст.

1 мм рт. ст.

1 бар

Материал из ТеплоВики - энциклопедия отоплении

Виды давления

Статическое давление

Динамическое давление

Динамическое давление - это давление движущегося потока жидкости.

Давление нагнетания насоса

Это давление на выходе центробежного насоса во время его работы.

Перепад давления

Давление, развиваемое центробежным насосом для преодоления общего сопротивления системы. Оно измеряется между входом и выходом центробежного насоса.

Рабочее давление

Давление, имеющееся в системе при работе насоса.

Допустимое рабочее давление

Максимальное значение рабочего давления, допускаемого из условий безопасности работы насоса и системы.

Давление - физическая величина, характеризующая интенсивность нормальных (перпендикулярных к поверхности) сил, с которыми одно тело действует на поверхность другого (например, фундамент здания на грунт, жидкость на стенки сосуда, газ в цилиндре двигателя на поршень и т. п.). Если силы распределены вдоль поверхности равномерно, то Давление р на любую часть поверхности равно р = f/s, где S - площадь этой части, F - сумма приложенных перпендикулярно к ней сил. При неравномерном распределении сил это равенство определяет среднее давление на данную площадку, а в пределе, при стремлении величины S к нулю, - давление в данной точке. В случае равномерного распределения сил давление во всех точках поверхности одинаково, а в случае неравномерного - изменяется от точки к точке.

Для непрерывной среды аналогично вводится понятие давление в каждой точке среды, играющее важную роль в механике жидкостей и газов. Давление в любой точке покоящейся жидкости по всем направлениям одинаково; это справедливо и для движущейся жидкости или газа, если их можно считать идеальными (лишёнными трения). В вязкой жидкости под давление в данной точке понимают среднее значение давление по трём взаимно перпендикулярным направлениям.

Давление играет важную роль в физических, химических, механических, биологических и др. явлениях.

Потеря давления

Потеря давления - снижение давления между входом и выходом элемента конструкции. К подобным элементам относятся трубопроводы и арматура. Потери возникают по причине завихрений и трения. Каждый трубопровод и арматура в зависимости от материала и степени шероховатости поверхности характеризуется собственным коэффициентом потерь. За соответствующей информацией следует обратиться к их изготовителям.

Единицы измерения давления

Давление является интенсивной физической величиной. Давление в системе СИ измеряется в паскалях; применяются также следующие единицы:

Статическое давление это и есть атмосферное или как?

Слово «статическое» означает в прямом смысле - постоянное, неизменное во времени.

Когда ты качаешь насосом футбольный мяч, внутри насоса давление не статическое, а разное каждую секунду. А когда накачаешь, внутри мяча постоянное давление воздуха - статическое. И атмосферное давление - статическое в принципе, хотя если копнуть глубже, это не так, оно все-таки незначительно меняется в течение дней и даже часов. Короче говоря, ничего заумного тут нет. Статическое - значит постоянное, и больше ничего не значит.

Когда здороваешься с парнями, рраз! Ударяешь током из руки в руку. Ну бывало же у всех. Говорят «статическое электричество». Правильно! В твоем теле в этот момент накопился статический заряд (постоянный). Когда дотрагиваешься до другого человека - половина заряда переходит ему в виде искры.

Все, не буду больше грузить. Короче, «статический» = «постоянный», на все случаи жизни.

Товарищи, если вы не знаете ответа на вопрос, и тем более вообще не учили физику, не нужно копировать из энциклопедий статьи.

Статическое (от слова Ста́тика (от греч. στατός, «неподвижный» «постоянный»)) давление - постоянное во времени (неизменяемое) приложение силы, нормальной к поверхности взаимодействия между телами.

А статического давление - токого понятия я не встечал. И в шутку можно предположить что это связано с законами электро сил и притяжения эелктричества.

Электроста́тика - раздел физики изучающий электростатическое поле и электрические заряды.

Раздел механики, в котором изучаются условия равновесия механических систем под действием приложенных к ним сил и моментов.

Уравнение Бернулли. Статическое и динамическое давления

ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ г. СЕМЕЙ

Методическое пособие по теме:

Исследование реологических свойств биологических жидкостей.

Методы исследования кровообращения.

  1. Реологические свойства крови. Вязкость.
  2. Формула Ньютона.
  3. Число Рейнольдса.
  4. Ньютоновская и Неньютоновская жидкость
  5. Ламинарное течение.
  6. Турбулентное течение.
  7. Определение вязкости крови с помощью медицинского вискозиметра.
  8. Закон Пуазейля.
  9. Определение скорости кровотока.
  10. Полное сопротивление тканей организма. Физические основы реографии. Реоэнцефалография
  11. Физические основы баллистокардиографии.

Уравнение Бернулли. Статическое и динамическое давления.

Идеальной называется несжимаемая и не имеющая внутреннего трения, или вязкости; стационарным или установившимся называется течение, при котором скорости частиц жидкости в каждой точке потока со временем не изменяются. Установившееся течение характеризуют линиями тока - воображаемыми линиями, совпадающими с траекториями частиц. Часть потока жидкости, ограниченная со всех сторон линиями тока, образует трубку тока или струю. Выделим трубку тока настолько узкую, что скорости частиц V в любом ее сечении S, перпендикулярном оси трубки, можно считать одинаковыми по всему сечению. Тогда объем жидкости, протекающий через любое сечение трубки в единицу времени остается постоянным, так как движение частиц в жидкости происходит только вдоль оси трубки: . Это соотношение назы­вается условием неразрывности струи. Отсюда следует, что и для реальной жидкости при установившемся течении по трубе переменного сечения количество Qжидкости, проте­кающее в единицу времени через любое сечение трубы, остается по­стоянным (Q = const) и средние скорости течения в различных сече­ниях трубы обратно пропорциональны площадям этих сечений: и т. д.

Выделим в потоке идеальной жидкости трубку тока, а в ней - достаточно малый объем жидкости массой, который при тече­нии жидкости перемещается из положения А в положение В.

Из-за малости объема можно считать, что все частицы жидкости в нем находятся в равных условиях: в положе­нии А имеют давление скорость и находятся на высоте h 1 от нуле­вого уровня; в положении В - соот­ветственно . Сечения трубки тока соответственно S 1 и S 2 .

Жидкость, находящаяся под дав­лением, обладает внутренней потен­циальной энергией (энергией давле­ния), за счет которой она может совершать работу. Этаэнергия W p измеряется произведением давления на объем V жидкости: . В данном случае перемещение массы жидкости происходит под действием разности сил давления в се­чениях Si и S 2 . Совершаемая при этом работа А р равняется разности по­тенциальных энергий давления в точках . Эта работа расходуется на работу по преодолению действия силы тяжес­ти и на изменение кинетической энергии массы

Перегруппировав члены уравнения, получим

Положения А и В выбраны произвольно, поэтому можно утверждать, что в любом месте вдоль трубки тока сохраняется условие

разделив это уравнение на, получим

где - плотность жидкости.

Это и есть уравнение Бернулли. Все члены уравнения, как легко убедиться, имеют размерность давления и называются: статистическим: гидростатическим: - динамическим. Тогда уравнение Бернулли можно сформулировать так:

при стационарном течении идеальной жидкости полное давление равное сумме статического, гидростатического и динамического давлений, остается величиной постоянной в любом поперечном сечении потока.

Для горизонтальной трубки тока гидростатическое давление ос­тается постоянным и может быть отнесено в правую часть уравнения, которое при этом принимает вид

статистическое давление обусловливает потенциальную энергию жидкос­ти (энергию давления), динамическое давление - кинетическую.

Из этого уравнения следует вывод, называемый правилом Бернулли:

статическое давление невязкой жидкости при течении по горизон­тальной трубе возрастает там, где скорость ее уменьшается, и на­оборот.

что такое статическое давление?

Новости:

форум для специалистов по теплоснабжению

Автор Тема: что такое статическое давление? (Прочитанораз)

Быстрый ответ

В быстром ответе можно использовать BB-теги и смайлы.

Предупреждение: в данной теме не было сообщений более 120 дней.

Если не уверены, что хотите ответить, то лучше создайте новую тему.

Свежий номер журнала НТ
Новые темы Форума:
Новые записи в блогах:

© РосТепло.ru - Информационная система по теплоснабжению,

Испытание системы отопления

Системы отопления обязательно тестируют на устойчивость к давлению

Из этой статьи вы узнаете, что такое статическое и динамическое давление системы отопления, зачем оно нужно и чем отличается. Также будут рассмотрены причины его повышения и понижения и методы их устранения. Помимо этого, речь пойдет о том, каким давлением испытывают различные системы отопления и способы данной проверки.

Виды давления в отопительной системе

Выделяют два вида:

Что такое статическое давление системы отопления? Это то, которое создаётся под воздействием силы притяжения. Вода под собственным весом давит на стенки системы с силой пропорциональной высоте, на которую она поднимается. С 10 метров этот показатель равен 1 атмосфере. В статистических системах не задействуют нагнетатели потока, и теплоноситель циркулирует по трубам и радиаторам самотеком. Это открытые системы. Максимальное давление в открытой системе отопления составляет около 1,5 атмосферы. В современном строительстве такие методы практически не применяются, даже при монтаже автономных контуров загородных домов. Это связано с тем, что для такой схемы циркуляции надо применять трубы с большим диаметром. Это не эстетично и дорого.

Динамическое давление в системе отопления можно регулировать

Динамическое давление в закрытой системе отопления создается искусственным повышением скорости потока теплоносителя при помощи электрического насоса. Например, если речь идет о многоэтажках, или крупных магистралях. Хотя, теперь даже в частных домах при монтаже отопления используют насосы.

Важно! Речь идет об избыточном давлении без учета атмосферного.

Каждая из систем отопления имеет свой допустимый предел прочности. Иными словами, может выдержать разную нагрузку. Чтобы узнать какое рабочее давление в закрытой системе отопления, надо к статическому, создаваемому столбом воды, добавить динамическое, нагнетаемое насосами. Для правильной работы системы, показания манометра должны быть стабильными. Манометр – механический прибор, измеряющий силу, с которой вода движется в системе отопления. Он состоит из пружины, стрелки и шкалы. Манометры устанавливаются в ключевых местах. Благодаря им можно узнать какое рабочее давление в системе отопления, а также выявлять неисправности в трубопроводе во время диагностики.

Перепады давления

Чтобы компенсировать перепады, в контур встраивается дополнительное оборудование:

Скачки рабочего давления в системе отопления могут быть спровоцированы различными причинами. В процессе эксплуатации может наблюдаться повышение или понижение давления. Рассмотрим основные причины такого явления и будем разбираться, как с этим бороться.

Причины понижения

При понижении рабочего давления циркуляция воды может просто остановиться, так отключится нагреватель. Помимо этого, низкая скорость теплоносителя приведет к тому, что на отдаленные участи контура вода будет доходить с большими теплопотерями, или, вообще, не дойдет. Причинами такого явления может быть:

Чтобы найти место, где протекает вода надо обследовать каждый узел. Делать это следует очень внимательно. Бывают случаи, когда утечка настолько мизерна, что незаметна визуально. Также могут образоваться микроскопические трещины на теплоносителе.

Если насосы перестают качать воду по трубам, то норма давления в системе отопления не может быть соблюдена. Все насосы электрические, поэтому причиной может стать его обесточивание. В первую очередь, надо проверить его подпитку от электросети. Если все в порядке, возможно, сломался механизм. В этом случае насос придется заменить.

  • неисправность расширительного бачка;

Бачок компенсирует расширение воды при нагревании. Он состоит из двух камер, которые разделены резиновой мембраной. Одна камера с газом, вторая для воды. В газовой камере есть ниппель, через который можно подкачивать воздух обычным насосом. Падение давления может наблюдаться, если в газовой камере недостаточный объём воздуха или если порвалась мембрана. В первом случае надо открутить бачок, спустить с него воду и воздух, а потом накачать необходимое количество атмосфер. Во втором случае – только замена. Также причиной падения рабочего давления в системе отопления может быть недостаточный объём бачка. В этом случае необходимо установить дополнительный бак.

Причины повышения

Повышенное давление в открытой или закрытой системе отопления свидетельствует о ее неисправности. Почему это происходит:

Воздушная пробка может стать причиной изменения рабочего давления

Если в трубе есть воздух, он оказывает сильное сопротивление потоку теплоносителя, не пропуская его дальше. Таким образом, горячая вода просто не доходит до некоторых участков. Вследствие - холодные радиаторы и опасность размораживания. Для удаления воздушных пробок в вероятных местах их образования устанавливаются воздухоотводы.

Они автоматически выпускают воздух наружу. Также из-за воздушной пробки рабочее давление может повыситься в радиаторах отопления. В батареях нового образца, вверху, есть клапан, через который можно вручную выпустить воздух.

Могут забиться фильтры воды, а также труба. На ее внутренних стенках образуется налет, который уменьшает диаметр трубы. Проблема решается чисткой. Если не помогает, тогда замена.

Регулятор может частично или полностью перекрывать поток теплоносителя. Есть две причины, по которым он может дать сбой: не настроен или поломан. Соответственно, его нужно или настроить, или поменять.

Если в системе перекрыт кран, движение жидкости останавливается. Обычно такое происходит по халатности.

Испытания системы отопления давлением

Испытание системы отопления под давлением – это обязательное условие ввода ее в эксплуатацию. Система должна соответствовать проекту и быть вымытой. Нагреватель и расширительные бачки должны быть отсоединены. Испытания осуществляются двумя методами:

  1. водой – гидростатический метод;
  2. воздухом – манометрический (пневмонический) метод.

Можно выделить два вида гидростатического тестирования: холодное и горячее. Гидравлические испытания системы отопления под давлением осуществляют только в теплое время года. Этот метод предполагает заполнение контура холодной жидкостью полностью. Весь воздух удаляется. Затем при помощи компрессора нагнетается давление и выдерживается какое-то время. На следующем этапе жидкость нагревается.

Манометрические испытания проводятся путем нагнетания воздуха в систему отопления. Для этого применяют специальное оборудование. Опасность такого метода заключается в том, что слабые участки могут просто разлететься в разные стороны. Зато исключается риск затопления и размораживания.

Испытания проводятся как на всей системе сразу, так и на отдельных ее участках. Перед началом следует перекрыть краны, через которые вода и воздух могут выйти наружу.

Методы проверки различных систем отопления

Тестирование воздухом – испытательное давление системы отопления повышают до 1,5 бар, затем спускают до 1 бара и оставляют на пять минут. При этом потери не должны превышать 0,1 бар.

Тестирование водой – давление повышают не менее чем до 2 бар. Возможно и больше. Зависит от рабочего давления. Максимальное рабочее давление системы отопления надо умножить на 1,5. За пять минуть потери не должны превышать 0,2 бар.

Холодное гидростатическое тестирование – 15 минут с давлением 10 бар, потери не больше 0,1 бара. Горячее тестирование – поднятие температуры в контуре до 60 градусов на семь часов.

Испытывают водой, нагнетая 2,5 бара. Дополнительно проверяют водонагреватели (3-4 бара) и насосные установки.

Допустимое давление в системе отопления постепенно повышается до уровня выше рабочего на 1,25, но не меньше 16 бар.

По результатам тестирования составляется акт, который является документом, подтверждающим заявленные в нем эксплуатационные характеристики. К ним, в частности, относиться рабочее давление.

Разводка для системы обогрева двухэтажного до.

Какую систему отопления выбрать для загородно.

Группа безопасности в системе отопления

Перепады давления в системе отопления и их ре.

Статическое давление воздуха, закон Бернулли

Как и всякое движущееся тело, газ или воздух может производить работу, т. е. обладает некоторым запасом кинетической энергии (энергии движения) и потенциальной энергии (энергии давления).

Потенциальная энергия единицы объёма (1 см³) движущегося газа называется статическим давлением или просто давлением.

Статическое давление движущегося газа - это давление газа на поверхность (стенку), вдоль которой газ движется, т. е. давление, действующее перпенди­кулярно линиям тока.

Как меняется это давление с изменением скорости движения?

Дунем в пространство между двумя металлически­ми, слегка изогнутыми пластинками, подвешенными на проволочной рамке.

Пластинки плотно сойдутся между собой.

Пока пластинки висели спокойно, на них со всех сторон действовало равное давление. Как только мы начали дуть, между ними возникло падение статиче­ского давления (на стенки перпендикулярно струям тока) и наружное давление, оставшееся прежним, сдавило наши пластинки. То же самое мы увидим, ес­ли поместим этот прибор в потолок аэродинамической трубы (рис. 7).

Опыт с двумя металлическими пластинками в аэродинамической трубе

Здесь поток обдувает пластинки со всех сторон, но сама форма пластинок заставляет сжиматься струи между ними, а следовательно, и увеличивать их ско­рость в отношении окружающего потока. Опять полу­чилось падение статического давления в месте, где скорость потока увеличилась. Пластинки вновь плотно сжались между собой.

В трубку, оканчивающуюся круглым диском, жёст­ко прикреплённым к ней, подуем с силой изо рта.

Вторая лёгкая металлическая пластинка (незакреп­лённая), помещённая параллельно первой, подпрыгнет и прижмётся, совершая колебательные движения ря­дом с первой пластинкой. В этом случае, продувая струю воздуха между двумя параллельными пластин­ками, мы также создаём там падение статического давления (разрежение), куда и устремляется лёгкая пластинка под дейст­вием оставшегося прежним наружного давления (снизу).

падение статического давления

В металлической трубке, закрытой с од­ного конца, в стенке сделано тонкое отвер­стие. Начнём изо рта дуть в открытый конец трубки и аккуратно в эту тонкую струю (на расстоянии 3-4 см от отвер­стия) введём лёгкий пробковый шарик. Шарик немного подпрыгнет, но останется в воздушной струе, совер­шая в ней беспорядочные движения.

Скоростной напор подбросил шарик. Лобовое со­противление шарика в потоке не даёт ему падать вниз. Создавшееся сужение струй вокруг стенок ша­рика увеличивает их скорость, а вместе с тем умень­шает статическое давление. Большее давление, кото­рое окружает всю струю воздуха, не даёт шарику вы­скочить в сторону (рис. 9).

Лобовое со­противление шарика

Если же мы положим шарик в ямку (в раззенкованное отверстие), то сила воздушной струи его от­туда уже не вытолкнет, ибо между стенкой ямки и параллельной ей образующей шарика возникло паде­ние статического давления, ввиду увеличения скоро­сти потока (рис. 10).

падение статического давления в струях жидкостей и газов

Это явление - падение статического давления в струях жидкостей и газов - вытекает из закона Да­ниила Бернулли. Одно из следствий этого закона гласит: при увеличении скорости струи статическое давление в ней уменьшается.

Законом Бернулли объясняется:

Действие пульверизатора (рис. 11).

Принцип действия автомобильного и авиацион­ного карбюраторов (рис. 12).

Принцип действия автомобильного и авиацион­ного карбюраторов

Притяжение кораблей, идущих параллельным курсом (рис. 13).

Притяжение кораблей идущих параллельным курсом

Давление над крышей, в особенности с подвет­ренной стороны, меньше, чем под крышей (рис. 14), что приводит нередко, при сильном ветре, к срыву крыши вверх.