Меню
Бесплатно
Главная  /  Устройства  /  Струйная технология печати. В чем разница между струйным и лазерным принтером

Струйная технология печати. В чем разница между струйным и лазерным принтером

До какого-то периода слово «печать» ассоциировалось либо с работой типографии, либо с лазерными завсегдатаями больших офисов. Струйная печать отличалась тем, что представляла собой процесс перенесения картинки или текста за счет пластины дюз и жидкого красителя.

Казалось бы, понятие струйной печати стало входить в обиход только недавно, после того, как струйные принтеры стали доступны обычному пользователю. Однако, история их развития охватывает почти 200 лет.

Рисунок ниже иллюстрирует эволюцию струйной печати от самого ее зарождения до современности.

Этапы развития струйной печати

Теоретические разработки

Теоретические основы струйной технологии печати истоками уходят в 1833 год. Именно тогда Феликс Савар, французский физик и изобретатель, выявил интересную закономерность: в результате распыления жидкости через отверстия с микроскопическим диаметром (дюзы) формируются идеально ровные капли. И лишь через 45 лет, в 1878 году, этот феномен математически описал лорд Рейли, лауреат Нобелевской премии.

Однако ранее, в 1867 году, Уильям Томпсон запатентовал идею непрерывной подачи чернил (Continuous Ink Jet). Он использовал электростатические силы, чтобы контролировать распыление чернил и жидкого красителя на бумажный носитель. На основе этого принципа Уильям Томпсон сконструировал самопишущие приборы, необходимые для работы электрических телеграфов.

Непрерывная печать

Знаменательным для струйной технологии печати стал 1951 год — компания Siemens получила патент на струйный принтер, первый в своем роде. В его основе лежала технология непрерывной подачи чернил. Чуть позже многие мировые производители печатающей техники переняли эту технологию и продолжили ее совершенствование.

Предшественники современных струйных печатающих устройств были довольно громоздкими, оснащёнными различными баллонами, насосами и прочими подвижными частями, прихотливыми в использовании и, к тому же, стоили больших денег. Работали такие принтеры очень медленно, да и не без недостатков: они могли пропускать чернила при печати, что было не очень-то удобно и безопасно.

Печать по требованию

Процесс зародился в 60-х годах этого столетия, когда профессору из Стенфордского университета удалось получить одинаковые по объему и удалённые друг от друга на равном расстоянии чернильные капли. Для этого он использовал волны давления, производимые вследствие движения пьезокерамического элемента. Такая система называлась «Drop-on-demand», в переводе с английского «капли по требованию». Технология позволила отойти от использования сложной системы рециркуляции чернил, системы зарядки, а также исключить отклонения капель.

Впервые печать по требованию применили в 1977 году в печатающих устройствах PТ-80 компании Siemens, а спустя некоторое время (1978 год) в принтере Silonics. Позже данный способ печати продолжил свою эволюцию: технология развивалась и становилась основой все новых и новых моделей струйных принтеров для коммерческого использования.

Наиболее дорогостоящей деталью в принтере была, да и сейчас остается, печатающая головка. Её невозможно было «безболезненно» заменить, как это происходило с картриджем. Поэтому пользователи находили новые алгоритмы взаимодействия. Например, чтобы предотвратить засорение дюз печатающей головки пузырьками воздуха или остатками засохшей краски, принтер старались использовать даже когда в этом не было особой необходимости. И все для того, чтобы не допустить длительного простоя печатающего устройства.

Еще в 70-е годы ХХ века появились предпосылки цветной печати. Шведский профессор Херц нашел способ воспроизводить всевозможные оттенки серого благодаря методу регулирования плотности нанесения капель. Это позволило печатать не только текст, но и различные изображения, передавая градации серого цвета.

Пузырьковая печать

Технологией пузырьковой печати мы обязаны компании Canon. В конце 70-х годов ее специалисты явили миру технологию струйной печати, неизвестную ранее — «Bubble Jet» или «пузырьковую печать». Принцип работы этих струйных принтеров заключается в следующем: в дюзе размещен микроскопический термоэлемент, который мгновенно нагревается до 500оС как только на него воздействует ток. При нагреве чернила закипают, внутри камеры образуются воздушные пузырьки (bubbles), под действием которых из дюзы на бумагу выталкиваются равные объёмы чернил. Как только чернила перестают нагреваться и охлаждаются до прежней температуры, пузырьки лопаются, а в дюзу втягивается следующая порция чернил. Таким образом обеспечивается беспрерывная печать.

Принцип пузырьково-струйной технологии печати

Как только в 1981 году компания Canon представила пузырьково-струйную технологию на выставке Grand Fair, та сразу заинтересовала общественность. И уже в 1985 году свет увидел Canon BJ-80, первый монохромный пузырьковый принтер. Спустя 3 года появился Canon BJC-440, первый широкоформатный принтер, использующий ту же технологию. Он уже мог печатать в цвете с разрешением 400 dpi.

Расходы на печать с технологией пузырьково-струйной печати относительно невысоки. Однако стоимость обслуживания принтера возрастает оттого, что печатающая головка встроена в чернильные картриджи, а не в принтер. Но есть и обратная сторона медали: сохраняется работоспособность устройства в случае использования неоригинального картриджа.

Термическая печать

Эпоха термической печати началась к концу 90-х годов, хотя компании HP и Canon приступили к ее разработке еще в 1984 году. Все дело в том, что не удавалось добиться необходимого сочетания качества и стоимости печати, а также скорости работы. Чуть позже к гигантам индустрии присоединилась и компания Lexmark. В этом тандеме эти крупнейшие компании добились высокого разрешения печати и создали подобие современных принтеров.

Полученная в результате разработок технология стала именоваться «термической печатью» (thermal inkjet). Эту технологию использовала первая линейка струйных принтеров HP — ThinkJet.

Струйные принтеры HP THinkJet

Принцип термической печати заключается в увеличении объёма чернил при нагреве. Температура нагревательного элемента внутри печатающей головки повышалась под воздействием нагревательного элемента. Чернила, расположенные близко к нагревательному элементу, при нагреве начинают испаряться. Формируются пузырьки, которые выталкивают из дюзы определенное их количество. В результате понижения давления в печатающую головку поступает такой же объем чернил. Этот процесс повторяется с высокой цикличностью до 12 тысяч перезаправок в секунду. Печатающая головка на основе термоструйной технологии состоит из большого количества микроскопических дюз и эжекционных камер.

Компания HP выбрала непривычный курс — она изготовила сменную печатающую головку, которая является частью картриджа и выбрасывается без особых сожалений вместе с ним. Такой шаг решил проблему долговечности принтера.

Принцип работы термического принтера

Пузырьковые и термоструйные принтеры обладали приемлемой ценой, компактностью, работали бесшумно и обеспечивали широкий цветовой диапазон, благодаря чему заполонили рынок доступных печатающих устройств и практически вытеснили с рынка матричные принтеры.

Пьезоэлектрическая печать

Технология пьезоэлектрической системы печати (Piezoelectric Ink Jet) появилась в 1993 году благодаря компании Epson, которая первая стала применять ее в своих принтерах. Принцип пьезоэлектрической печати основан на свойстве пьезокристаллов изменять свой объём и форму под воздействием силы тока. В строении картриджа одной из стенок выступает пьезоэлектрическая пластина. Она выгибается под влиянием тока и тем самым уменьшает объём чернильной камеры. В результате определенный объем чернил выталкивается из дюзы наружу.

Принцип пьезоэлектрической технологии печати

Плюс стационарной печатающей головки в ее экономичности, ведь ее не приходится менять так же часто, как и картриджи. Однако есть небольшая вероятность, что при смене картриджа в печатающую головку может попасть воздух и закупорить дюзы, повлияв на качество печати.

Современные традиции

Развитие технологий в настоящее время сделала струйные принтеры еще популярней. Их приобретают и для офисного и для домашнего использования благодаря их доступной цене и компактности. Иногда пользователи покупают струйные принтеры для цветной печати как дополнение монохромным лазерным принтерам. Существует мнение, что лазерные устройства быстрее и дешевле справляются с печатью текстовых документов, а струйные — с цветными фотографиями.

В настоящее время стандартом разрешения печати современных струйных принтеров считается 4600х1200 dpi. Но уже существуют и такие устройства, что превосходят этот показатель. Из других способностей струйных принтеров можно отметить печать без полей, а так же встроенный ЖК-дисплей или порт для чтения карт памяти.

Преимущества струйных принтеров.

Самый основной козырь струйных печатающих устройств — это высокое качество цветной печати. Вы можете воссоздавать яркие и реалистичные фотографии с отличной прорисовкой мелких деталей и полутонов. Кроме этого, струйные принтеры практически бесшумны, не требуют длительного времени на разогрев, представлены в широком модельном ряде и доступны в разных модификациях.

Недостатки струйных принтеров.

Главная причина отказа от использования струйника — дороговизна оригинальных картриджей, недолговечность отпечатков из-за выцветания или растекания чернил при попадании жидкости, а также засорение печатающих головок. Хотя решения всех этих недостатков очень просты. Засорения можно побороть стандартной прочисткой головки, а отпечатки сделать более долговечными, используя пигментные чернила. А вот избежать переплаты за оригинальные картриджи помогут альтернативные расходные материалы и чернила, которые на данный момент достигли высоких показателей качества. Отличие от оригинальных чернил составляет не более 2-5%, благодаря чему разница результатов печати неразличима невооруженным глазом.

Много новостей из развития современных принтеров, МФУ и плоттеров можно почитать .


Струйная технология появилась в середине 1980-х как результат попытки избавиться от недостатков двух доминировавших в то время способов печати: матричной и лазерной (электрографической). Лазерная печать была неприемлемо дорогой, причем о цвете еще и не мечтали (да и в настоящее время, хотя цветные лазерники стали доступными, но в области фотоотпечатков не имеют никаких шансов обойти струйники). А струйная печать возникла как дешевая альтернатива для печати офисных документов, лишенная недостатков матричных принтеров - медленных, шумных и дававших отпечатки невысокого качества.

Идея, которая, видимо, почти одновременно (около 1985 года) пришла в голову инженерам компаний Hewlett-Packard и Canon, заключалась в том, чтобы заменить иголку, ударяющую в матричных принтерах по бумаге через красящий слой на ленте, каплей жидких чернил. Объем капли следовало рассчитать так, чтобы она не растекалась и создавала точку определенного диаметра. Реальную жизнь эта технология получила, когда придумали удобный способ формирования дозированной капли - термический.

Способ термической струйной печати фактически монополизирован компаниями Canon и Hewlett-Packard, которые владеют большинством патентов на эту технологию, остальные компании лишь лицензируют ее, внося свои небольшие изменения. При этом HP использует выражение "термический чернильно-струйный" (thermal ink-jet) способ печати, а Canon предпочитает термин "пузырьковый струйный" (bubble-jet).

Хотя между ними есть различия, но принципиально они идентичны.

На рис. 1 показан процесс термической струйной печати в виде условной кинограммы цикла работы форсунки (иногда их называют эжекторами). В стенку камеры встроен миниатюрный нагревательный элемент (выделен красным на верхнем кадре), который очень быстро нагревается до высокой температуры (500 °С). Чернила вскипают (второй кадр), в них образуется большой паровой пузырь (следующие два кадра) и резко растет давление - до 120 атмосфер, отчего чернила выталкиваются через сопло со скоростью более 12 м/с в виде капли объемом около 2 пиколитров (это две тысячные от миллиардной доли литра). Нагревательный элемент к этому моменту выключают, и пузырь вследствие падения давления схлопы вается (нижние кадры). Все происходит очень быстро - за несколько микросекунд. Чернила подаются в форсунку за счет капиллярных сил (что гораздо медленнее), и после заполнения форсунки новой порцией система готова к работе. Весь цикл занимает примерно 100 мс, то есть частота выброса капель составляет 10 кГц, а в современных принтерах - раза в два больше.


Такая автономно управляемая форсунка входит в состав печатающей головки, расположенной на движущейся поперек листа каретке, наподобие печатающего узла матричного принтера. При диаметре форсунки 10 мкм плотность размещения получается 2500 сопел на дюйм; в одной головке может быть от нескольких сотен до нескольких тысяч форсунок. В современных скоростных устройствах стали применять неподвижные головки - чтобы исключить самый медленный во всем этом процессе этап поперечного движения каретки. Например, HP выпускает высокопроизводительные фотокиоски, в которых головки составлены в блоки по всей ширине листа.

В принтерах Canon термический элемент расположен сбоку камеры (как на рис. 1), а у HP (и Lexmark) - сзади. Возможно, это различие обусловлено исходными идеями: согласно корпоративным легендам, инженер Canon уронил паяльник на шприц с краской (то есть шприц нагрелся сбоку), а исследователи из HP заимствовали принцип у электрочайника, у которого подогрев с торца. Так это или нет, боковое расположение позволяет Canon устанавливать два термических элемента на форсунку, что повышает быстродействие и управляемость размером капли, но усложняет и удорожает конструкцию.

Более дорогие "пузырьковые" головки Canon многоразовые и встроены в принтер. Головки HP проще в изготовлении, потому традиционно встраивались прямо в картридж и с ним же выбрасывались. Это гораздо удобнее, так как гарантирует качество печати (головка просто не успевает выработать ресурс) и высокую надежность узла. Однако при таком подходе совершенствование головок приводит к удорожанию картриджей, поэтому многие современные принтеры HP имеют отдельные головки, как у Epson или Canon. Так, Photosmart Pro B9180, сегодняшний флагман "домашних" фотопринтеров от HP, имеет заменяемые отдельные головки, а его более дешевый аналог Photosmart Pro B8353 - головки, встраиваемые в картридж.

Среди всех технологий создания изображения, свою популярность завоевал струйный способ печати.

Его применяют в принтерах, в том числе широкоформатных.

Преимуществом такой технологии является то, что капля краски формируется только в нужный момент, что позволяет получить высококачественные изображения.

Термическая струйная печать что это

В этой статье расскажем, термическая струйная печать что это, ее преимущества, принцип работы, и в каких случаях применяется.

Готовое изображение состоит из большого количества микроскопических точек краски различного цвета (цветная струйная термическая печать).

В момент, когда нужно нанести изображение, в микроскопической камере сопла находится краска, которую нужно каким-то образом вытолкнуть на поверхность запечатываемого материала (например, бумаги).

Термический способ печати заключается в том, что в камере находится нагревательный элемент, на который в момент печати поступает ток. Продолжительность одномоментного включения тока составляет малый период, до 2 миллионных доли секунды.

Под его действием элемент нагревается, температура краски увеличивается до 500º, увеличивается объем краски в сопле, что повышает давление в камере, из нее выталкивается нужна порция красителя. Есть информация, что в камере, в момент нагревания образуется давление больше 100 атмосфер, что достаточно много.

После этого образуется вакуум, который способствует втягиванию новой порции краски. Этот процесс повторяется по несколько тысяч раз в секунду.

Оборудование для термической струйной печати

Этот способ печати применяется в подавляющем большинстве струйных принтеров. Технология была представлена на рынок в начале 80-х годов прошлого века. Ведущими производителями являются компании Canon, HP, Lexmark.

Современное оборудование позволяет формировать капли размером до 35-40 мкм, что дает возможность получить высококачественное и детализированное изображение.

Как правило, в термических принтерах есть две печатающие головки. Одна предназначена для печатания черной краской, а другие для цветной печати (голубая, пурпурная и желтая краски).

В одной печатающей головке, в зависимости от модели, может быть до нескольких сотен сопел.

В зависимости от модели, головки могут быть неразрывно соединены с картриджами или встроенные в принтер, то есть многоразового пользования. Последний вариант дает возможность быть более уверенным в качестве печати, ведь этот элемент не успевает выработать свой ресурс. Но таким образом цена печати становится больше.

Преимущества и недостатки термической печати

Термическая струйная печать широко применяется в печатной технике, благодаря:

  • малошумность работы оборудования,
  • обеспечивает высокое качество и разрешение печати,
  • технология печати термическая струйная позволяет получить надежные печатающие головки,
  • стабильность работы принтеров на этой технологии,
  • высокая скорость печатания.

Недостатки термического печати:

Не всегда удается точно регулировать размер полученных капель,

В процессе работы могут образуются капли спутники, которые ухудшают качество полученного изображения,

Печатная головка иногда требует чистки,

Желательно выбирать специальную бумагу, который уменьшит растекания краски и коробление бумаги,

Дорогие картриджи с краской. Хотя некоторые рискуют и заказывают неоригинальные, которые немного дешевле.

Вывод

Струйная термальная печать дает возможность получить профессиональную печать по невысокой цене. Качество полученного изображения зависит от точности изготовления сопла, строения эжекционной камеры. Также, на получить изображения влияют характеристики используемого красителя (вязкость, поверхностное натяжение, способность к нагреву и испарения).

Надеемся, вам была интересна эта статья, которая дала ответ на вопрос: термическая струйная печать что это и в каких случаях применяется.


Основой любого процесса струйной печати является процесс создания капель красителя и переноса этих капель на бумагу или любой другой носитель, пригодный для струйной печати. Управление потоком капель позволяет добиться различной плотности и тональности изображения.
На сегодняшний день существует два различных подхода к созданию управляемого потока капель. Первый метод, основанный на создании непрерывного потока капель, так и называется - метод непрерывной струйной печати . Второй метод создания потока капель предусматривает возможность непосредственного управления процессом создания капли в нужный момент времени. Системы, использующие этот метод управления потоком капель, получили название системы импульсной струйной печати .


Непрерывная струйная печать



Краситель, находящийся под давлением, поступает в сопло и разделяется на капли путем создания быстрых колебаний давления, получаемые с помощью какого-либо электромеханического средства. Колебания давления вызывают соответствующую модуляцию диаметра и скорости выходящий из сопла струи красителя, которая разделяется на отдельные капли под воздействием сил поверхностного натяжения.
Этот метод позволяет достигать очень большой скорости создания капель: до 150 тыс. штук в секунду для коммерческих систем и до миллиона штук для специальных систем. Для управления потокам капель используется электростатическая система отклонения. Вылетающие из сопла капли проходят через заряженный электрод, напряжение на котором меняется в соответствии с управляющим сигналом. Поток капель попадает за тем в пространство между двумя отклоняющимися электродами, имеющими постоянную разность потенциалов. В зависимости от полученного ранее заряда отдельные капли изменяют свою траекторию по-разному. Этот эффект позволяет управлять положением печатаемой точки, так и ее наличием или отсутствием на бумаге. В последнем случае капля отклоняется настолько, что попадает в специальный улавливатель.
Подобные системы позволяют печатать точки диаметром от 20 микрон до одного миллиметра. Типичной является точка размером 100 микрон, что соответствует объему капли в 500 пиколитров. Основное применение такие системы нашли на рынке промышленной печати, в системах маркировки товаров, массовой печати этикеток, медицине и пр.

Импульсная струйная печать



Этот принцип создания потока капель предусматривает возможность непосредственного управления процессом создания капли в определенное время. В отличие от систем непрерывного действия, здесь отсутствует постоянное давление в объеме чернил, а при необходимости создания капли генерируется импульсы давления. Управляемые системы принципиально менее сложны в изготовлении, однако для их работы требуется устройство создания импульсов давления примерно втрое более мощно, чем для систем непрерывного действия. Производительность управляемых систем составляет до 20 тыс. капель в секунду для одного сопла, а диаметр капель - от 20 до 100 микрон, что соответствует объему от 5 до 500 пиколитров. В зависимости от способа создания импульса давления в объеме с чернилами различают пьезоэлектрическую и термическую струйную печать.
Для реализации пьезоэлектрического метода в каждое сопло установлен пьезоэлемент, связанный с чернильным каналом диафрагмой. Под воздействием электрического поля происходит деформация пьезоэлемента, благодаря которому сжимается и разжимается диафрагма, выдавливая каплю чернил через сопло. Подобный метод генерации капли используется в струйных принтерах Epson.
Положительным свойством таких технологий струйной печати является то, что пьезоэффект хорошо управляем электрическим полем, что дает возможность достаточно точно варьировать объемов получаемых капель, а значит и в достаточной степени влияет на размер получаемых пятен на бумаге. Тем не менее, практическое использование модуляции объема капель затруднено тем, что изменяется не только объём, но и скорость движения капли, что при движущейся головке вызывает ошибки позиционирования точки.
С другой стороны, производство печатающих головок для пьезоэлектрической технологии оказывается слишком дорогим в пересчете на одну головку, поэтому в принтерах Epson печатающая головка является частью принтера и по стоимости может составлять до 70% от общей стоимости всего принтера. Выход из строя такой головки требует серьезного сервисного обслуживания.




Для реализации термоструйного метода каждое из сопел оборудовано одним или несколькими нагревательными элементами, которые при пропускании через них тока за несколько микросекунд нагреваются до температуры около 600С. Возникающие при резком нагревании газовый пузырь выталкивает через выходное отверстие сопла порцию чернил, формирующих каплю. При прекращении действия тока нагревательный элемент остывает, пузырь разрушается, а на его место поступает очередная порция чернил из входного канала.
Процесс создания капель в термических печатающих головках после подачи импульса на резистор почти неуправляем и имеет пороговую зависимость объема испаряемого вещества от приложенной мощности, поэтому здесь динамическое управление объемом капели в отличие от пьзоэлектрической технологии весьма затруднительно.
Тем не менее, термические печатающие головки обладают самым высоким соотношением производительности и стоимости производства единицы продукции, поэтому термоструйная печатающая головка обычно является частью картриджа и при замене картриджа на новый автоматически происходи и смена печатающей головки. Однако, применение термических печатающих головок требует разработки специальных чернил, которые могут достаточно легко испаряться без возгорания и не подвержены разрушению при термическом ударе.

Печатающая головка Lexmark



Печатающая головка черного картриджа обычного разрешения 600 dpi для ранних моделей (Lexmark СJP 1020, 1000, 1100, 2030, 3000, 2050) имели 56 дюз, расположенных в два зигзагообразных ряда. Печатающая головка для цветных картриджей этих моделей имели 48 дюз разделенных на три группы по 16 дюз для каждого цвета (Cyan, Magenta, Yellow). Принтер Lexmark CJ 2070 использовал иную печатающую головку, которая содержала 104 монохромных дюзы и 96 цветных.
Для производства печатающих головок струйных принтеров Lexmark, начиная с 7000 серии используется печатающие головки, изготавливаемые с применением лазерной технологии прошивки дюз (Excimer, Excimer 2). Первые модели печатающих головок содержали 208 монохромных дюз и 192 цветных.
Для модели Z51 и старшей модели семейства Zx2 и Zx3 была разработана своя печатающая головка с 400 дюзами. В модели Z51 использовалась лишь половина дюз, а остальные работали в режиме горячего резерва, когда как в следующих моделях были одновременно задействованы все дюзы.
Младшие и средние модели семейства Zx2 используют картриджи, являющиеся модификацией стандартных картриджей высокого разрешения, а младшие и средние модели семейства Zx3, новые модели картриджей Bonsai.
Не оставляйте дюзы печатающей головки открытыми в течение продолжительного времени. Если дюзы оставить открытыми - чернила в них засыхают и засоряют каналы, что приводит к дефектам при печати. Картридж следует оставлять в принтере или в специальном боксе гараже »). Нежелательно также дотрагиваться до дюз и контактов руками, так как сальные выделения от кожи могут испортить поверхность.

Характеристики печатающей головки



Период формирования мениска:
Это период времени, необходимый для повторного заполнения камеры чернилами. Он определяет рабочую частоту печатающей головки (от 0 до 1200 Hz).





Скорость капли:
Низкая скорость приводит непрерывному расположению точки.
Высокая скорость приводит к появлению брызг и разводов.




Масса капли определяется:
Размером нагревающего элемента.
Диаметром сопла.
Обратным давлением.





Замечено, что в обычных струйных принтерах капля чернил, попадая на бумагу принимает форму маленького треугольника, поэтому линии при ближайшем рассмотрении выглядят зазубренными. Это связано с тем, что в полете капля деформируется, а при соприкосновении с бумагой - расплывается. Особенно это заметно в низком режиме при экономной печати. Lexmark предлагает принтеры с новой, прогрессивной технологией печати, при которой форма сопел и скорость движения головки сбалансированы так, что капля чернил дают пятна, как равномерные штрихи. Это позволяет сделать линии гладкими, а качество печати почти неотличимы от лазерной печати. Кроме того, такая форма пятна позволяет избежать белесых полос на отпечатке.


Что такое чернила?



Каждый производитель струйных принтеров разрабатывает и совершенствует свой состав чернил, который наиболее адаптирован к выпускаемой технике. У Lexmark основными компонентами чернил для струйных принтеров является:
-Деионизированная вода (85-95% общего объема)
-Пигмент или краситель
-Растворитель (для пигментов)
-Увлажнитель (Humectant)
-Поверхностно-активное вещество (Surfactant)
-Биоцид
-Буфер (стабилизация pH)

Пигмент или краситель . Чернила на основе пигментов (только черные) изготовлены из твердых частиц, находящихся в жидкости. При попадании таких чернил на бумагу жидкость испаряется и частично впитывается, а порошок прилипает к поверхности, не растекаясь по ней. Поэтому чернила на основе пигментов водостойкие, обладают слабым проникновением в волокна бумаги, но они чувствительны к свету.
Чернила на основе красителей - это, как правило, цветные чернила. Краситель растворим в воде и впитывается вместе с ней в толщу бумаги при высыхании. Такие чернила высыхают быстрее пигментных, светоустойчивы, но зато дают в среднем пятен неправильной формы больше, чем последние.
Увлажнитель. Концентрация увлажнителя влияет на вязкость чернил. Этот параметр должен быть оптимален для данного состава чернил и печатающей головки, совместно с которой они будут использоваться. Действительно, с одной стороны, чем больше вязкость, тем хуже чернила растекаются по поверхности бумаги, давая меньший размер точки и тем более четким будет изображение. С другой стороны, слишком большая вязкость приводит к затянутому времени формирования мениска, что ухудшает скорость печати. Обычно, вязкость чернил является ключевым параметром при определении геометрических каналов в печатающей головке.
Поверхностное натяжение влияет на смачиваемость чернилами всех поверхностей, с которыми они соприкасаются, начиная от резервуаров в картридже и кончая поверхностью бумаги. Слишком низкое статистическое поверхностное натяжение приводит к более быстрому высыханию чернил на поверхности бумаги, но при этом средний объем капли при выдавливании чернил из дюз оказывается завышенным. Слишком высокое поверхностное натяжение увеличивает время высыхания, а следовательно ухудшает стойкость изображения при печати.
Уровень кислотности (РН) низкая кислотность приводит к низкой растворимости компонент чернил в воде и как следствие – плохой водостойкости изображения Стандартным считается уровень кислотности в диапазоне от 7.0 до 9.0.
В нутрии картриджа имеются резервуары с чернилами, дюзы печатающей головки и электрические контакты.
Цветной картридж содержит 3 отдельных ячейки для чернил трех разных цветов. В монохромном картридже содержится только одна ячейка с черными чернилами.

Чернила и цвета

Правильная передача цвета изображения на бумагу является высоко технологичным процессом, требующим учета немалого количества факторов, включая субъективную оценку. В первую очередь цветовая передача изображения зависит от химического состава чернил и бумаги, архитектуры принтера.
Обязательным требованием к чернилам является очень тонкий спектральный состав, иначе получаемые при смешении цвета будут «грязными». После высыхания чернила должны оставаться прозрачными, иначе не будет естественного смешения цветов.
Немаловажным фактором является также устойчивость к выцветанию, экологическая чистота и нетоксичность.
Считается, что оптимальный состав чернил ужу известен. Практически у всех производителей они представляют взвесь очень мелких частиц минерального пигмента. С цветными чернилами дело обстоит хуже, поскольку очень трудно подобрать минеральные красители нужного спектрального состава.
В настоящее время процедуры цветопередачи базируются на так называемых цветовых таблицах, которые используются для преобразования цветового пространства, в котором было создано изображение-оригинал, в некоторое «деформированное» цветовое пространство, учитывающее особенности передачи цветов на бумаге чернилами. Обычно, отдельные цветовые таблицы строятся для каждого типа бумаги и оптимизированы для каждого отдельного типа чернил и печатающих головок.

Драйверы Lexmark



Драйверы принтеров Lexmark после установки готовы к печати с автоматическим режимом распознавания объектов, позволяющим получить хорошее качество изображения без предварительной настройки. Автоматический режим также позволяет добиться оптимального сочетания качества и скорости печати документа. Настройки драйвера на специальную бумагу или выбор цветовых таблиц для более контрастного или естественного тона изображения выполняется очень просто в разделе настроек драйвера «Качество документа» (Document Quality)
Драйверы Lexmark серии Color Fine 2 позволяют автоматически определять тип картриджа, тем самым заметно упрощая процедуру настройки всех систем на другой тип картриджа или смену старого на новый. Характерной особенностью драйверов этой серии является их возможность работать с изображением в стандартах sRGB и ICM.
Стандарт sRGB предлагает, что для описания цветного изображения используется аппаратно-независимое цветное пространство, встроенное в OC Microsoft или в средства работы с Internet. Используя стандартизованное RGB-описание цветового пространства UTI-R BT.709, этот стандарт позволяет минимизировать передачу вместе с изображением дополнительной системы информации, связанной с цветовым профилем оборудования, на котором это изображение создавалось. В системной части файла с изображением лишь дается ссылка на стандарт, в котором оно было создано, а положение-получатель активно используется описанием цветового пространства, представленным операционной системой.
Стандарт ICM позволяет более точно определить разнообразие устройств генераций и отображение цветных изображений посредством использования цветных профилей оборудования для каждого типа устройств, генерирующих изображение и отображающих устройств. Однако, такой подход подразумевает, что системная информация, связанная с профилем оборудования, на котором создано изображение предается в месте с этим изображением.

Фотопечать



Серьезной проблемой в струйной печати является правильная передача светлых тонов изображения. Дело в том, что обычные цветовые решения для струйной печати дают точки изображения насыщенного цвета, поэтому для получения бледных оттенков нужно наносить капли чернил достаточно редко. Это приводит к тому, что при передачи очень светлых тонов пятна располагаются так далеко друг от друга, что становится заметна зернистость изображения, а также возникает проблема с передачей в светлых тонах.
Одним из радикальных способов решения этой проблемы является использование дополнительных чернил светлых тонов. В этом случае темные тона получаются за счет заливки осветленными чернилами. Картридж с такими чернилами обычно становится вместо второго картриджа (черного) и содержит чернила осветленного Cyan, осветленного Magenta и черного. Светло желтый тон не используется, поскольку этот цвет воспринимается человеческим глазом без особой разницы как и желтый.

Вконтакте

Одноклассники

Технология термоструйной печати основана на свойстве чернил увеличиваться в объёме при нагревании. Разогретые чернила, увеличиваясь в объёме, выталкивают в сопла печатающей головки принтера микроскопические чернильные капли, которые формируют изображение на бумаге. В общем виде технология термоструйной печати представлена ниже.

Технология термоструйной печати

Термоструйная печать – это наиболее популярная технология струйной печати, которая используется при производстве 75 % струйных принтеров.

Удельный вес принтеров, использующих термоструйную технологию печати

Наибольший вклад в развитие технологии термоструйной печати внесли корпорации Canon и HP , которые в 70-х годах ХХ века независимо друг от друга разработали две технологии печати: Bubble Jet (Canon) и Thermal Inkjet (HP).

Технологии термоструйной печати

Технология термоструйной печати Bubble Jet была представлена на суд общественности в 1981 году на выставке «Grand Fair». В 1985 году с использованием инновационной технологии был выпущен легендарный монохромный принтер Canon BJ-80, в 1985 году – первый цветной принтер Canon BJC-440.

Схематичное изображение технологии струйной печати Bubble Jet

Суть технологии струйной печати Bubble Jet заключается в следующем. В каждое сопло печатающей головки встраивается терморезистор (нагреватель) для мгновенного разогрева чернил, которые при температуре свыше 500°С, испаряясь, образуют пузырь, выталкивающий каплю чернил наружу. Затем терморезистор отключается, чернила охлаждаются и пузырь исчезает, а зона пониженного давления затягивает новую порцию чернил.

Интересно, что чернила разогреваются до температуры 500°С всего лишь за 3 микросекунды, а капли вылетают из сопла со скоростью 60 км/ч. Ежесекундно в каждом сопле печатающей головки цикл нагревания и охлаждения чернил повторяется 18 тысяч раз.

Вторая технология струйной печати - Thermal Inkjet – начала разрабатываться компанией HP в 1984 году, но первый принтер ThinkJet, основанный на данной технологии печати, был внедрён в массовое производство значительно позднее.

Схематическое изображение технологии струйной печати Thermal Inkjet

Технология Thermal Inkjet основана на том же принципе печати, что и технология Bubble Jet, с той лишь разницей, что в принтерах, использующих технологию Bubble Jet, терморезисторы расположены в микроскопических соплах печатающей головки, а в принтерах, использующих технологию Thermal Inkjet, они находятся непосредственно за соплом.

Таким образом, технологии Bubble Jet и Thermal Inkjet различаются лишь в деталях.

Основными преимуществами термоструйной печати перед пьезоструйной являются отсутствие движущихся механизмов и стабильность работы. Наряду с этим термоструйная печать имеет один существенный недостаток: она не позволяет контролировать размер и форму чернильных капель. Кроме того, когда чернильные капли вылетают из сопла печатающей головки, вместе с ними вырываются капли-спутники (сателлиты), образующиеся при закипании чернил. Появление таких «спутников» может быть спровоцировано нестабильной вибрацией чернильной массы во время её выброса из сопла. Именно капли-спутники являются причиной образования нежелательного контура («чернильного тумана») вокруг отпечатка и смешения цветов в графических файлах.