Меню
Бесплатно
Главная  /  Цветы  /  Удельный расход тепловой энергии на отопление здания: общие понятия. Удельный расход тепла

Удельный расход тепловой энергии на отопление здания: общие понятия. Удельный расход тепла

Уважаемый Игорь Викторович!

Я запрашивал у ваших специалистов данные по определению нормативов на потребление тепла. Ответ был получен. Но также связался с МЭИ, где также дали ссылку на расчеты. Привожу её:

Борисов Константин Борисович.

Московский Энергетический Институт (Технический Университет)

Для расчета норматива потребления теплоты на отопление необходимо использовать следующий документ:

Постановление № 306 «Правила установления и определения нормативов потребления коммунальных услуг» (формула 6 - «Формула расчета норматива отопления»; таблица 7 - «Значение нормируемого удельного расхода тепловой энергии на отопление многоквартирного дома или жилого дома»).

Для определения оплаты за отопление для жилого помещения (квартиры) необходимо использовать следующий документ:

Постановление № 307 «Правила предоставления коммунальных услуг гражданам» (Приложение № 2 -«Расчет размера платы за коммунальные услуги», формула 1).

В принципе, сам расчет норматива потребления теплоты на отопление квартиры и определения отплаты за отопление не сложен.

Если хотите, давайте попробуем примерно (грубо) прикинуть основные цифры:

1) Определяется максимальная часовая отопительная тепловая нагрузка Вашей квартиры:

Qмакс = Qуд*Sкв = 74*74 = 5476 ккал/ч

Qуд = 74 ккал/ч - нормируемый удельный расход тепловой энергии на отопление 1 кв. м многоквартирного дома.

Значение Qуд принято по таблице 1 для зданий до 1999 года постройки, высотой (этажностью) 5-9 этажей при температуре наружного воздуха Тнро=-32 С (для города К).

Sкв= 74 кв. м - общая площадь помещений квартиры.

2) Вычисляется количество тепловой энергии, необходимое для отопления Вашей квартиры в течение года:

Qср = Qмакс×[(Тв-Тср.о)/(Тв-Тнро)]×Nо×24 = 5476×[(20-(-5,2))/(20-(-32))]×215*24=13 693 369 ккал = 13,693 Гкал

Тв= 20 С - нормативное значение температуры внутреннего воздуха в жилых помещениях (квартирах) здания;

Тср.о = -5,2 С - температура наружного воздуха, средняя за отопительный период (для города К);

Nо = 215 суток - продолжительность отопительного периода (для города К).

3) Рассчитывается норматив на отопление 1 кв. метра:

Норматив_отопления = Qср / (12×Sкв) = 13,693/(12×74) = 0,0154 Гкал/кв.м

4) Определяется плата за отопление квартиры по нормативу:

Ро = Sкв × Норматив_отопления × Тариф _тепло = 74 × 0,0154 × 1223,31 = 1394 руб

Данные взяты по г. Казань.

Следуя этому расчету и применительно конкретно к дому № 55 в п.Васьково,с введением параметров данного строения, получаем:

Архангельск

177 - 8 253 -4.4 273 -3.4

12124,2 × (20-(-8) / 20-(-45) × 273 × 24 = 14,622…./ (12= 72,6)=0.0168

0,0168-именно такой норматив получаем при расчете, причем учтены именно самые суровые климатические условия: температура в -45, длина отопительного периода в 273 дня.

Я прекрасно понимаю, что депутатов, не являющимися специалистами в области теплоснабжения, можно попросить ввести норматив 0,0263.

Но приводятся расчеты, в которых указывается, что норматив в 0,0387 единственно верный, и это вызывает очень большие сомнения.

Поэтому убедительно прошу пересчитать нормативы на теплоснабжение жилых домов №№ 54 и 55 в п. Васьково до соответствующих величин в 0,0168, т. к. в ближайшее время установка теплосчетчиков в это их жилых домах не планируется, а платить по 5300 рублей за теплоснабжение весьма накладно.

С уважением, Алексей Вениаминович Попов.

Комментарии (1)

Игорь Годзиш
министр ТЭК и ЖКХ Архангельской области
3 октября 2014 10:24

Уважаемый Алексей! Нормативы потребления коммунальных услуг рассчитываются в соответствии с Правилами установления и определения нормативов потребления коммунальных услуг, утвержденных постановлением Правительства Российской Федерации от 23 мая 2006 года № 306 (далее – Правила).

В соответствии с пунктом 11 Правил, нормативы устанавливаются для групп домов, имеющих аналогичные конструктивные и технические параметры. По этой причине расчет, приведенный в Вашем обращении, некорректен, так как норматив определяется для конкретной квартиры.

Кроме того, в приведенном Вами расчете неверно выбран нормируемый удельный расход тепловой энергии на отопление. Согласно техническому паспорту, представленному в министерство теплоснабжающей организацией, дом № 55 в пос.Васьково является 2-этажным.

В соответствии с таблицей 4 Правил, нормируемый удельный расход тепловой энергии для 2-этажных домов до 1999 года постройки при расчетной температуре наружного воздуха – 33 0С составит 139,2 ккал в час на 1 кв. м, а не 74.

Таким образом, даже с учетом менее суровых, чем в Вашем расчете климатических условий (продолжительность отопительного периода 250 дней, среднесуточная температура отопительного сезона - 4,5 0С и расчетная температура для проектирования отопления - 33 0С) расчетный норматив на отопление для 2-этажных домов в пос.Васьково составит 0,04632 Гкал/кв.м/мес. В соответствии с действующей редакцией Правил, расчет норматива произведен на отопительный период, а не на календарный год, как указано в Вашем расчете. Обращам Ваше внимание, что в соответствии с постановлением министерства ТЭК и ЖКХ Архангельской области от 24 июня 2013 года № 86-пн (с изменениями, внесенными постановлением министерства ТЭК и ЖКХ Архангельской области от 05 сентября 2014 года № 46-пн) действующий норматив на отопление для 2-этажных домов в пос.Васьково ниже расчетного (0,03654 Гкал/кв.м/мес.), во избежание превышения роста платы граждан утвержденного на тот момент предельного индекса.

Создавать систему отопления в собственном доме или даже в городской квартире – чрезвычайно ответственное занятие. Будет совершенно неразумным при этом приобретать котельное оборудование, как говорится, «на глазок», то есть без учета всех особенностей жилья. В этом вполне не исключено попадание в две крайности: или мощности котла будет недостаточно – оборудование станет работать «на полную катушку», без пауз, но так и не давать ожидаемого результата, либо, наоборот, будет приобретен излишне дорогой прибор, возможности которого останутся совершенно невостребованными.

Но и это еще не все. Мало правильно приобрести необходимый котел отопления – очень важно оптимально подобрать и грамотно расположить по помещениям приборы теплообмена – радиаторы, конвекторы или «теплые полы». И опять, полагаться только лишь на свою интуицию или «добрые советы» соседей – не самый разумный вариант. Одним словом, без определенных расчетов – не обойтись.

Конечно, в идеале, подобные теплотехнические вычисления должны проводить соответствующие специалисты, но это часто стоит немалых денег. А неужели неинтересно попытаться выполнить это самостоятельно? В настоящей публикации будет подробно показано, как выполняется расчет отопления по площади помещения, с учетом многих важных нюансов. По аналогии можно будет выполнить , встроенный в эту страницу, поможет выполнить необходимые вычисления. Методику нельзя назвать совершенно «безгрешной», однако, она все же позволяет получить результат с вполне приемлемой степенью точности.

Простейшие приемы расчета

Для того чтобы система отопления создавала в холодное время года комфортные условия проживания, она должна справляться с двумя основными задачами. Эти функции тесно связаны между собой, и разделение их – весьма условно.

  • Первое – это поддержание оптимального уровня температуры воздуха во всем объеме отапливаемого помещения. Безусловно, по высоте уровень температуры может несколько изменяться, но этот перепад не должен быть значительным. Вполне комфортными условиями считается усредненный показатель в +20 °С – именно такая температура, как правило, принимается за исходную в теплотехнических расчетах.

Иными словами, система отопления должна быть способной прогреть определенный объем воздуха.

Если уж подходить с полной точностью, то для отдельных помещений в жилых домах установлены стандарты необходимого микроклимата – они определены ГОСТ 30494-96. Выдержка из этого документа – в размещенной ниже таблице:

Предназначение помещения Температура воздуха, °С Относительная влажность, % Скорость движения воздуха, м/с
оптимальная допустимая оптимальная допустимая, max оптимальная, max допустимая, max
Для холодного времени года
Жилая комната 20÷22 18÷24 (20÷24) 45÷30 60 0.15 0.2
То же, но для жилых комнат в регионах с минимальными температурами от - 31 °С и ниже 21÷23 20÷24 (22÷24) 45÷30 60 0.15 0.2
Кухня 19÷21 18÷26 Н/Н Н/Н 0.15 0.2
Туалет 19÷21 18÷26 Н/Н Н/Н 0.15 0.2
Ванная, совмещенный санузел 24÷26 18÷26 Н/Н Н/Н 0.15 0.2
Помещения для отдыха и учебных занятий 20÷22 18÷24 45÷30 60 0.15 0.2
Межквартирный коридор 18÷20 16÷22 45÷30 60 Н/Н Н/Н
Вестибюль, лестничная клетка 16÷18 14÷20 Н/Н Н/Н Н/Н Н/Н
Кладовые 16÷18 12÷22 Н/Н Н/Н Н/Н Н/Н
Для теплого времени года (Норматив только для жилых помещений. Для остальных – не нормируется)
Жилая комната 22÷25 20÷28 60÷30 65 0.2 0.3
  • Второе – компенсирование потерь тепла через элементы конструкции здания.

Самый главный «противник» системы отопления — это теплопотери через строительные конструкции

Увы, теплопотери – это самый серьезный «соперник» любой системы отопления. Их можно свести к определенному минимуму, но даже при самой качественной термоизоляции полностью избавиться от них пока не получается. Утечки тепловой энергии идут по всем направлениям – примерное распределение их показано в таблице:

Элемент конструкции здания Примерное значение теплопотерь
Фундамент, полы по грунту или над неотапливаемыми подвальными (цокольными) помещениями от 5 до 10%
«Мостики холода» через плохо изолированные стыки строительных конструкций от 5 до 10%
Места ввода инженерных коммуникаций (канализация, водопровод, газовые трубы, электрокабели и т.п.) до 5%
Внешние стены, в зависимости от степени утепленности от 20 до 30%
Некачественные окна и внешние двери порядка 20÷25%, из них около 10% - через негерметизированные стыки между коробками и стеной, и за счет проветривания
Крыша до 20%
Вентиляция и дымоход до 25 ÷30%

Естественно, чтобы справиться с такими задачами, система отопления должна обладать определенной тепловой мощностью, причем этот потенциал не только должен соответствовать общим потребностям здания (квартиры), но и быть правильно распределенным по помещениям, в соответствии с их площадью и целым рядом других важных факторов.

Обычно расчет и ведется в направлении «от малого к большому». Проще говоря, просчитывается потребное количество тепловой энергии для каждого отапливаемого помещения, полученные значения суммируются, добавляется примерно 10% запаса (чтобы оборудование не работало на пределе своих возможностей) – и результат покажет, какой мощности необходим котел отопления. А значения по каждой комнате станут отправной точкой для подсчета необходимого количества радиаторов.

Самый упрощённый и наиболее часто применяемый в непрофессиональной среде метод – принять норму 100 Вт тепловой энергии на каждый квадратный метр площади:

Самый примитивный способ подсчета — соотношение 100 Вт/м²

Q = S × 100

Q – необходимая тепловая мощность для помещения;

S – площадь помещения (м²);

100 — удельная мощность на единицу площади (Вт/м²).

Например, комната 3.2 × 5,5 м

S = 3,2 × 5,5 = 17,6 м²

Q = 17,6 × 100 = 1760 Вт ≈ 1,8 кВт

Способ, очевидно, очень простой, но весьма несовершенный. Стоит сразу оговориться, что он условно применим только при стандартной высоте потолков – примерно 2.7 м (допустимо – в диапазоне от 2.5 до 3.0 м). С этой точки зрения, более точным станет расчет не от площади, а от объема помещения.

Понятно, что в этом случае значение удельной мощности рассчитано на кубический метр. Его принимают равным 41 Вт/м³ для железобетонного панельного дома, или 34 Вт/м³ — в кирпичном или выполненном из других материалов.

Q = S × h × 41 (или 34)

h – высота потолков (м);

41 или 34 – удельная мощность на единицу объема (Вт/м³).

Например, та же комната, в панельном доме, с высотой потолков в 3.2 м:

Q = 17,6 × 3,2 × 41 = 2309 Вт ≈ 2,3 кВт

Результат получается более точным, так как уже учитывает не только все линейные размеры помещения, но даже, в определенной степени, и особенности стен.

Но все же до настоящей точности он еще далек – многие нюансы оказываются «за скобками». Как выполнить более приближенные к реальным условиям расчеты – в следующем разделе публикации.

Возможно, вас заинтересует информация о том, что собой представляют

Проведение расчетов необходимой тепловой мощности с учетом особенностей помещений

Рассмотренные выше алгоритмы расчетов бывают полезны для первоначальной «прикидки», но вот полагаться на них полностью все же следует с очень большой осторожностью. Даже человеку, который ничего не понимает в строительной теплотехнике, наверняка могут показаться сомнительными указанные усредненные значения – не могут же они быть равными, скажем, для Краснодарского края и для Архангельской области. Кроме того, комната - комнате рознь: одна расположена на углу дома, то есть имеет две внешних стенки, а другая с трех сторон защищена от теплопотерь другими помещениями. Кроме того, в комнате может быть одно или несколько окон, как маленьких, так и весьма габаритных, порой – даже панорамного типа. Да и сами окна могут отличаться материалом изготовления и другими особенностями конструкции. И это далеко не полный перечень – просто такие особенности видны даже «невооруженным глазом».

Одним словом, нюансов, влияющих на теплопотери каждого конкретного помещения – достаточно много, и лучше не полениться, а провести более тщательный расчет. Поверьте, по предлагаемой в статье методике это будет сделать не так сложно.

Общие принципы и формула расчета

В основу расчетов будет положено все то же соотношение: 100 Вт на 1 квадратный метр. Но вот только сама формула «обрастает» немалым количеством разнообразных поправочных коэффициентов.

Q = (S × 100) × a × b× c × d × e × f × g × h × i × j × k × l × m

Латинские буквы, обозначающие коэффициенты, взяты совершенно произвольно, в алфавитном порядке, и не имеют отношения к каким-либо стандартно принятым в физике величинам. О значении каждого коэффициента будет рассказано отдельно.

  • «а» - коэффициент, учитывающий количество внешних стен в конкретной комнате.

Очевидно, что чем больше в помещении внешних стен, тем больше площадь, через которую происходит тепловые потери. Кроме того, наличие двух и более внешних стен означает еще и углы – чрезвычайно уязвимые места с точки зрения образования «мостиков холода». Коэффициент «а» внесет поправку на эту специфическую особенность комнаты.

Коэффициент принимают равным:

— внешних стен нет (внутреннее помещение): а = 0,8 ;

— внешняя стена одна : а = 1,0 ;

— внешних стен две : а = 1,2 ;

— внешних стен три: а = 1,4 .

  • «b» - коэффициент, учитывающий расположение внешних стен помещения относительно сторон света.

Возможно, вас заинтересует информация о том, какие бывают

Даже в самые холодные зимние дни солнечная энергия все же оказывает влияние на температурный баланс в здании. Вполне естественно, что та сторона дома, которая обращена на юг, получает определенный нагрев от солнечных лучей, и теплопотери через нее ниже.

А вот стены и окна, обращённые на север, Солнца «не видят» никогда. Восточная часть дома, хотя и «прихватывает» утренние солнечные лучи, какого-либо действенного нагрева от них все же не получает.

Исходя из этого, вводим коэффициент «b»:

— внешние стены комнаты смотрят на Север или Восток : b = 1,1 ;

— внешние стены помещения ориентированы на Юг или Запад : b = 1,0 .

  • «с» - коэффициент, учитывающий расположение помещения относительно зимней «розы ветров»

Возможно, эта поправка не столь обязательна для домов, расположенных на защищенных от ветров участках. Но иногда преобладающие зимние ветры способны внести свои «жесткие коррективы» в тепловой баланс здания. Естественно, что наветренная сторона, то есть «подставленная» ветру, будет терять значительно больше тела, по сравнению с подветренной, противоположной.

По результатам многолетних метеонаблюдений в любом регионе составляется так называемая «роза ветров» - графическая схема, показывающая преобладающие направления ветра в зимнее и летнее время года. Эту информацию можно получить в местной гидрометеослужбе. Впрочем, многие жители и сами, без метеорологов, прекрасно знают, откуда преимущественно дуют ветра зимой, и с какой стороны дома обычно наметает наиболее глубокие сугробы.

Если есть желание провести расчеты с более высокой точностью, то можно включить в формулу и поправочный коэффициент «с», приняв его равным:

— наветренная сторона дома: с = 1,2 ;

— подветренные стены дома: с = 1,0 ;

— стена, расположенные параллельно направлению ветра: с = 1,1 .

  • «d» - поправочный коэффициент, учитывающий особенности климатических условий региона постройки дома

Естественно, количество теплопотерь через все строительные конструкции здания будет очень сильно зависеть от уровня зимних температур. Вполне понятно, что в течение зимы показатели термометра «пляшут» в определенном диапазоне, но для каждого региона имеется усредненный показатель самых низких температур, свойственных наиболее холодной пятидневке года (обычно это свойственно январю). Для примера – ниже размещена карта-схема территории России, на которой цветами показаны примерные значения.

Обычно это значение несложно уточнить в региональной метеослужбе, но можно, в принципе, ориентироваться и на свои собственные наблюдения.

Итак, коэффициент «d», учитывающий особенности климата региона, для наших расчетом в принимаем равным:

— от – 35 °С и ниже: d = 1,5 ;

— от – 30 °С до – 34 °С: d = 1,3 ;

— от – 25 °С до – 29 °С: d = 1,2 ;

— от – 20 °С до – 24 °С: d = 1,1 ;

— от – 15 °С до – 19 °С: d = 1,0 ;

— от – 10 °С до – 14 °С: d = 0,9 ;

— не холоднее – 10 °С: d = 0,7 .

  • «е» - коэффициент, учитывающий степень утепленности внешних стен.

Суммарное значение тепловых потерь здания напрямую связано со степенью утепленности всех строительных конструкций. Одним из «лидеров» по теплопотерям являются стены. Стало быть, значение тепловой мощности, необходимое для поддержания комфортных условий проживания в помещении, находится в зависимости от качества их термоизоляции.

Значение коэффициента для наших расчетов можно принять следующее:

— внешние стены не имеют утепления: е = 1,27 ;

— средняя степень утепления – стены в два кирпича или предусмотрена их поверхностная термоизоляция другими утеплителями: е = 1,0 ;

— утепление проведено качественно, на основании проведенных теплотехнических расчетов: е = 0,85 .

Ниже по ходу настоящей публикации будут даны рекомендации о том, как можно определить степень утепленности стен и иных конструкций здания.

  • коэффициент «f» - поправка на высоту потолков

Потолки, особенно в частных домах, могут иметь различную высоту. Стало быть, и тепловая мощность на прогрев того или иного помещения одинаковой площади будет различаться еще и по этому параметру.

Не будет большой ошибкой принять следующие значения поправочного коэффициента «f»:

— высота потолков до 2.7 м: f = 1,0 ;

— высота потоков от 2,8 до 3,0 м: f = 1,05 ;

— высота потолков от 3,1 до 3,5 м: f = 1,1 ;

— высота потолков от 3,6 до 4,0 м: f = 1,15 ;

— высота потолков более 4,1 м: f = 1,2 .

  • « g» - коэффициент, учитывающий тип пола или помещение, расположенное под перекрытием.

Как было показано выше, пол является одним из существенных источников теплопотерь. Значит, необходимо внести некоторые корректировки в расчет и на эту особенность конкретного помещения. Поправочный коэффициент «g» можно принять равным:

— холодный пол по грунту или над неотапливаемым помещением (например, подвальным или цокольным): g = 1,4 ;

— утепленный пол по грунту или над неотапливаемым помещением: g = 1,2 ;

— снизу расположено отапливаемое помещение: g = 1,0 .

  • « h» - коэффициент, учитывающий тип помещения, расположенного сверху.

Нагретый системой отопления воздух всегда поднимается вверх, и если потолок в помещении холодный, то неизбежны повышенные теплопотери, которые потребуют увеличения необходимой тепловой мощности. Введём коэффициент «h», учитывающий и эту особенность рассчитываемого помещения:

— сверху расположен «холодный» чердак: h = 1,0 ;

— сверху расположен утепленный чердак или иное утепленное помещение: h = 0,9 ;

— сверху расположено любое отапливаемое помещение: h = 0,8 .

  • « i» - коэффициент, учитывающий особенности конструкции окон

Окна – один из «магистральных маршрутов» течек тепла. Естественно, многое в этом вопросе зависит от качества самой оконной конструкции. Старые деревянные рамы, которые раньше повсеместно устанавливались во всех домах, по степени своей термоизоляции существенно уступают современным многокамерным системам со стеклопакетами.

Без слов понятно, что термоизоляционные качества этих окон — существенно различаются

Но и между ПВЗХ-окнами нет полного единообразия. Например, двухкамерный стеклопакет (с тремя стеклами) будет намного более «теплым» чем однокамерный.

Значит, необходимо ввести определенный коэффициент «i», учитывающий тип установленных в комнате окон:

— стандартные деревянные окна с обычным двойным остеклением: i = 1,27 ;

— современные оконные системы с однокамерным стеклопакетом: i = 1,0 ;

— современные оконные системы с двухкамерным или трехкамерным стеклопакетом, в том числе и с аргоновым заполнением: i = 0,85 .

  • « j» - поправочный коэффициент на общую площадь остекления помещения

Какими бы качественными окна ни были, полностью избежать теплопотерь через них все равно не удастся. Но вполне понятно, что никак нельзя сравнивать маленькое окошко с панорамным остеклением чуть ли ни на всю стену.

Потребуется для начала найти соотношение площадей всех окон в комнате и самого помещения:

х = ∑ S ок / S п

S ок суммарная площадь окон в помещении;

S п – площадь помещения.

В зависимости от полученного значения и определяется поправочный коэффициент «j»:

— х = 0 ÷ 0,1 → j = 0,8 ;

— х = 0,11 ÷ 0,2 → j = 0,9 ;

— х = 0,21 ÷ 0,3 → j = 1,0 ;

— х = 0,31 ÷ 0,4 → j = 1,1 ;

— х = 0,41 ÷ 0,5 → j = 1,2 ;

  • « k» - коэффициент, дающий поправку на наличие входной двери

Дверь на улицу или на неотапливаемый балкон — это всегда дополнительная «лазейка» для холода

Дверь на улицу или на открытый балкон способна внести свои коррективы в тепловой баланс помещения – каждое ее открытие сопровождается проникновением в помещение немалого объема холодного воздуха. Поэтому имеет смысл учесть и ее наличие – для этого введем коэффициент «k», который примем равным:

— двери нет: k = 1,0 ;

— одна дверь на улицу или на балкон: k = 1,3 ;

— две двери на улицу или на балкон: k = 1,7 .

  • « l» - возможные поправки на схему подключения радиаторов отопления

Возможно, кому-то это покажется несущественной мелочью, но все же – почему бы сразу не учесть планируемую схему подключения радиаторов отопления. Дело в том, что их теплоотдача, а значит, и участие в поддержании определенного температурного баланса в помещении, достаточно заметно меняется при разных типах врезки труб подачи и «обратки».

Иллюстрация Тип врезки радиатора Значение коэффициента «l»
Подключение по диагонали: подача сверху, «обратка» снизу l = 1.0
Подключение с одной стороны: подача сверху, «обратка» снизу l = 1.03
Двухстороннее подключение: и подача, и «обратка» снизу l = 1.13
Подключение по диагонали: подача снизу, «обратка» сверху l = 1.25
Подключение с одной стороны: подача снизу, «обратка» сверху l = 1.28
Одностороннее подключение, и подача, и «обратка» снизу l = 1.28
  • « m» - поправочный коэффициент на особенности места установки радиаторов отопления

И, наконец, последний коэффициент, который также связан с особенностями подключения радиаторов отопления. Наверное, понятно, что если батарея установлена открыто, ничем не загораживается сверху и с фасадной части, то она будет давать максимальную теплоотдачу. Однако, такая установка возможна далеко не всегда – чаще радиаторы частично скрываются подоконниками. Возможны и другие варианты. Кроме того, некоторые хозяева, стараясь вписать приоры отопления в создаваемый интерьерный ансамбль, скрывают их полностью или частично декоративными экранами – это тоже существенно отражается на тепловой отдаче.

Если есть определенные «наметки», как и где будут монтироваться радиаторы, это также можно учесть при проведении расчетов, введя специальный коэффициент «m»:

Иллюстрация Особенности установки радиаторов Значение коэффициента "m"
Радиатор расположен на стене открыто или не перекрывается сверху подоконником m = 0,9
Радиатор сверху перекрыт подоконником или полкой m = 1,0
Радиатор сверху перекрыт выступающей стеновой нишей m = 1,07
Радиатор сверху прикрыт подоконником (нишей), а с лицевой части - декоративным экраном m = 1,12
Радиатор полностью заключен в декоративный кожух m = 1,2

Итак, с формулой расчета ясность есть. Наверняка, кто-то из читателей сразу возьмется за голову – мол, слишком сложно и громоздко. Однако, если к делу подойти системно, упорядочено, то никакой сложности нет и в помине.

У любого хорошего хозяина жилья обязательно есть подробный графический план своих «владений» с проставленными размерами, и обычно – сориентированный по сторонам света. Климатические особенности региона уточнить несложно. Останется лишь пройтись по всем помещениям с рулеткой, уточнить некоторые нюансы по каждой комнате. Особенности жилья - «соседство по вертикали» сверху и снизу, расположение входных дверей, предполагаемую или уже имеющуюся схему установки радиаторов отопления – никто, кроме хозяев, лучше не знает.

Рекомендуется сразу составить рабочую таблицу, куда занести все необходимые данные по каждому помещению. В нее же будет заноситься и результат вычислений. Ну а сами вычисления поможет провести встроенный калькулятор, в котором уже «заложены» все упомянутые выше коэффициенты и соотношения.

Если какие-то данные получить не удалось, то можно их, конечно, в расчет не принимать, но в этом случае калькулятор «по умолчанию» подсчитает результат с учетом наименее благоприятных условий.

Можно рассмотреть на примере. Имеем план дома (взят совершенно произвольный).

Регион с уровнем минимальных температур в пределах -20 ÷ 25 °С. Преобладание зимних ветров = северо-восточные. Дом одноэтажный, с утепленным чердаком. Утепленные полы по грунту. Выбрана оптимальное диагональное подключение радиаторов, которые будут устанавливаться под подоконниками.

Составляем таблицу примерно такого типа:

Помещение, его площадь, высота потолка. Утепленность пола и "соседство" сверху и снизу Количество внешних стен и их основное расположение относительно сторон света и "розы ветров". Степень утепления стен Количество, тип и размер окон Наличие входных дверей (на улицу или на балкон) Требуемая тепловая мощность (с учетом 10% резерва)
Площадь 78,5 м² 10,87 кВт ≈ 11 кВт
1. Прихожая. 3,18 м². Потолок 2.8 м. Утеленный пол по грунту. Сверху - утепленный чердак. Одна, Юг, средняя степень утепления. Подветренная сторона Нет Одна 0,52 кВт
2. Холл. 6,2 м². Потолок 2.9 м. Утепленный пол по грунту. Сверху - утепленный чердак Нет Нет Нет 0,62 кВт
3. Кухня-столовая. 14,9 м². Потолок 2.9 м. Хорошо утепленный пол по грунту. Свеху - утепленный чердак Две. Юг-Запад. Средняя степень утепления. Подветренная сторона Два, однокамерный стеклопакет, 1200 × 900 мм Нет 2.22 кВт
4. Детская комната. 18,3 м². Потолок 2.8 м. Хорошо утепленный пол по грунту. Сверху - утепленный чердак Две, Север - Запад. Высокая степень утепления. Наветренная Два, двухкамерный стеклопакет, 1400 × 1000 мм Нет 2,6 кВт
5. Спальная. 13,8 м². Потолок 2.8 м. Хорошо утепленный пол по грунту. Сверху - утепленный чердак Две, Север, Восток. Высокая степень утепления. Наветренная сторона Одно, двухкамерный стеклопакет, 1400 × 1000 мм Нет 1,73 кВт
6. Гостиная. 18,0 м². Потолок 2.8 м. Хорошо утепленный пол. Сверху -утепленный чердак Две, Восток, юг. Высокая степень утепления. Параллельно направлению ветра Четыре, двухкамерный стеклопакет, 1500 × 1200 мм Нет 2,59 кВт
7. Санузел совмещенный. 4,12 м². Потолок 2.8 м. Хорошо утепленный пол. Сверху -утепленный чердак. Одна, Север. Высокая степень утепления. Наветренная сторона Одно. Деревянная рама с двойным остеклением. 400 × 500 мм Нет 0,59 кВт
ИТОГО:

Затем, пользуясь размешенным ниже калькулятором производим расчет для каждого помещения (уже с учетом 10% резерва). С использованием рекомендуемого приложения это не займет много времени. После этого останется просуммировать полученные значения по каждой комнате – это и будет необходимая суммарная мощность системы отопления.

Результат по каждой комнате, кстати, поможет правильно выбрать требуемое количество радиаторов отопления – останется только разделить на удельную тепловую мощность одной секции и округлить в большую сторону.

Для определения расчетного расхода тепла на отопление здания можно пользоваться формулой

Q = q от * V зд (t вн – t н) * 10 -3 , кВт,

где q от – удельная тепловая характеристика здания, Вт/м 3 о С

V зд – общий наружный объем здания, м 3 .

Удельная тепловая характеристика здания находится по формуле

q от = P/S  1/Rст + ρ (1/Rок – 1/Rст)] + 1/h (0,9 *1/Rпл + 0,6 *1/Rпт) ,

где P, S, h - периметр, площадь, высота здания, м

ρ – степень остекленности здания, равная отношению общей площади световых проемов к площади вертикальных ограждений здания, ρ = F ост / Fверт.огр.

Rст, Rок, Rпл, Rпт – сопротивление теплопередаче стен, окон, пола, потолка.

Величина удельной тепловой характеристики определяет средние теплопотери 1м 3 здания, отнесенные к расчетной разнице температур, равной 1 о С.

Характеристикой q от удобно пользоваться для теплотехнической оценки возможных конструктивно-планировочных решений здания.

По рассчитанному расходу тепла подбирают котел системы отопления (Приложение 1) и выполняется его установка в помещении котельной с учетом норм проектирования (Приложение 2).

3. Тепловой баланс помещений

В зданиях и помещениях с постоянным тепловым режимом сопоставляют теплопотери и теплопоступления в расчетном режиме. Для жилых и общественных зданий принимают, что в помещениях теплоисточники отсутствуют, и тепловая мощность системы отопления должна возместить потери тепла через наружные ограждения.

Теплопотери через ограждающие конструкции помещения складываются из теплопотерь через отдельные ограждения Q, определенные с округлением до 10 Вт по формуле:

Q = F * 1/R *(t вн – tн) * (1 + β) * n Вт, где

F – расчетная площадь ограждения, м 2 (правила обмера ограждений см. Приложение 3)

R – сопротивление теплопередаче ограждающей конструкции, м 2 о С/Вт

t вн – температура помещения, 0 С

t н V – расчетная наружная температура наиболее холодной пятидневки, 0 С

β – добавочные потери теплоты в долях от основных потерь,

n – коэффициент, принимаемый в зависимости от положения наружной поверхности ограждающих конструкций к наружному воздуху

Расчеты теплопотерь сводятся в таблицу (см. Приложение 4)

Добавочные теплопотери β

1. Добавка на ориентацию – для всех вертикальных ограждений

С, СВ, В, СЗ - 0,1

2. Добавка в угловых помещениях общественных и производственных зданий (имеющих две и более наружные стены) принимаются для всех вертикальных ограждений в размере β = 0,15.

3. Добавка на поступление холодного воздуха через входы в здание (эксплуатируемые постоянно) принимается

    для двойных дверей с тамбуром между ними 0,27 Н

    то же без тамбура 0,34 Н

    для одинарных дверей 0,22 Н

где Н – высота здания в м.

Значения коэффициента n

Ограждающие конструкции

Наружные стены

Перекрытия над холодными подвалами, сообщающимися с наружным воздухом, перекрытия чердачные

Перекрытия над неотапливаемыми подвалами со световыми проемами в стенах

Перекрытия над неотапливаемыми подвалами без световых проемов в стенах

Стены, отделяющие от неотапливаемых помещений, сообщающиеся с наружным воздухом

Стены, отделяющие от неотапливаемых помещений, не сообщающиеся с наружным воздухом

q 0р = d 0р (i 1 – i" отб) = 3,12*(3302 - 439,4) = 8938 кДж/(кВт ч).

Термический к. п. д. регенеративного цикла по формуле (17)

При отсутствии регенеративного подогрева термический к. п. д.

Удельный расход пара и теплоты при отсутствии регенерации соответственно составит

кг/(кВт*ч).

q 0 = d 0 (i 1 - i’ 2) = 2,98*(3302 - 121,4) = 9452 кДж/(кВт ч).

Легко видеть, что удельный расход пара без регенерации меньше, чем при регенеративном подогреве. Однако эта величина не характеризует экономичности процесса. Показателем последней является или термический к. п. д., или удельный расход теплоты, который при наличии регенерации всегда меньше удельного расхода теплоты, чем при конденсационном режиме без регенерации.

Улучшение термического к. п. д. вследствие регенерации составит

26. Турбина мощностью 24 МВт работает при параметрах пара: р 1 = 2,6 МПа; t 1 = 420° С, р 2 = 0,004 МПа. Для подогрева питательной воды из турбины отбирается пар при р 0 = 0,12 МПа.

Определить термический к. п. д. и удельный расход пара. Определить также улучшение термического к. п. д. в сравнении с такой же установкой, но работающей без регенеративного подогрева.

Отв. η t р = 0,38; d = 3,32 кг/(кВт ч); η t = 0,361; 100 = 5,26%.

Рис. 22.

27. Из паровой турбины мощностью N = 25 000 кВт, работающей при р 1 = 9 МПа, t 1 = 480° С, р 2 = = 0.004 МПа, производится два отбора: один при р отб1 = 1 МПа и другой при р отб2 = 0,12 МПа (рис. 22).

Определить термический к. п. д. установки, улучшение термического к. п. д. по сравнению с циклом Ренкина и часовой расход пара через каждый отбор.

По диаграмме is (рис. 23) и по таблицам находим: i 1 = 3334 кДж/кг, i отб1 = = 2772 кДж/кг; i отб2 = 2416 кДж/кг; i 2 = 1980 кДж/кг; i отб1 = 762,7 кДж/кг; i’ отб2 = =439,4 кДж/кг; i" = 121,4 кДж/кг

Определяем расход пара на подогрев питательной воды. Для этого находим α 1 и α 2 по формулам (18) и (19):

,

Полезная работа 1 кг пара по формуле (20)

l оп = i 1 - i 2 - α 1 (i отб 1 - i 2) - α 2 (i отб 2 - i 2);

l оп = 3334 – 1980 - 0,138*(2772 - 1980) - 0,119*(2416 - 1980) = 1192,8 кДж/кг.

Следовательно, удельный расход пара

кг/(кВт*ч)

а полный часовой расход пара на турбину

D 0 = N * d 0 = 25 000*3,02 = 75 500 кг/ч.

Из этого количества расходуется на первый отбор

D отб 1 = Do*α 1 = 75 500*0,138 = 10 420 кг/ч;

на второй отбор

D отб2 = D 0 *α 2 = 75 500*0,119 = 8985 кг/ч

и поступает в конденсатор

D K = D отб1 - D отб2 = 75 500 - 10 420 - 8985 = 56 095 кг/ч.

Термический к.п.д. регенеративного цикла по формуле (21)

Термический к. п. д. цикла Ренкина при тех же начальных и конечных параметрах

Улучшение, термического к. п. д. регенеративного цикла по сравнению с циклом без регенерации составляет

28 . Турбогенератор работает при параметрах пара р 1 = 9 МПа, t 1 = 535 0 С и p 2 = = 0,0035 МПа. Для подогрева питательной воды имеются два отбора: один при р отб1 = = 0,7 МПа и другой при р отб2 = 0,12 МПа.

Определить термический к. п. д. регенеративного цикла и сравнить его с циклом без регенерации.

Отв. η t р = 0,471; η t = 0,432; 100 = 9,03%.

29 . Паро-ртутная турбина мощностью 10 000 кВт работает при следующих параметрах; р Нg1 = 0,8 МПа; пар-сухой насыщенный; р Hg 2 = 0,01 МПа. Получающийся в конденсаторе-испарителе ртутной турбины сухой насыщенный водяной пар поступает в пароперегреватель, где его температура повышается до 450°С, и затем направляется в пароводяную турбину, работающую при конечном давлении р 2 = 0,004 МПа.

Определить термический к. п. д. бинарного цикла, термический к. п. д. пароводяной турбины, улучшение к. п. д. от применения бинарного цикла, а также мощность пароводяной турбины.

По диаграмме is ртутного пара и таблице ртутного насыщенного пара находим:

i Hg 1 = 360,5 кДж/кг; i Hg2 = 259,5 кДж/кг.

Полезная работа 1 кг ртутного пара

i 0 Hg = 360,5 - 259,5 = 101 кДж/кг.

Удельный расход ртутного пара в турбине

кг/(кВт*ч).

Полный расход ртутного пара на турбине составит

D 0 = N 0 Hg = 10 000*35,7 = 357 000 кг/ч.

Из таблицы ртутного пара видно, что температура насыщения при p Hg 2 = 0,01 МПа составляет t Hg н = 249,6С. Принимаем температуру насыщенного водяного пара такой же; это определяет давление водяного пара:

р 1 = 4 МПа (t Н2ОН = 250,33° С).

Вода поступает в ртутный конденсатор с температурой насыщения при давлении в конденсаторе р 2 = =0,004 МПа. Ее энтальпия при этом i Н2О2 = 121,4 кДж/кг. Энтальпия водяного пара i’ Н2О2 = 2801 кДж/кг. Таким образом, каждый килограмм воды в конденсаторе получает

i = I ’’ Н2О1 – i’ Н2О2 = 2801 - 121,4 = 2679,6 кДж/кг.

Количество воды, которое может быть пропущено через ртутный конденсатор, определяется из уравнения

D 0Hg (i Hg2 – i’ Hg2 ) = D 0H2O *∆i

Подставляя в это уравнение соответствующие значения, получаем

кг/ч.

Таким образом, на 1 кг водяного пара приходится ртутного пара

кг.

Для пароводяной турбины, пользуясь диаграммой is и таблицами водяного пара, получаем

i 1 = 3329 кДж/кг; i 2 = 2093 кДж/кг; i" 2 = 121,4 кДж/кг.

Полезная работа 1 кг водяного пара

i он2О = 3329 - 2093 = 1235 кДж/кг.

Полезная работа 11,9 кг ртутного пара

i 0 Hg = 11,9l 0 Hg = 11,9*101 = 1202 кДж.

Полезная работа обоих рабочих тел в цикле на 1 кг водяного пара

l 0 =l 0 H 2 O +l 0 Hg = 1235 + 1202 = 2437 кДж/кг.

Подведенная теплота на цикл:

для подогрева и испарения 11,9 кг ртути

11,9*(360,5 - 34,5) = 3879 кДж;

для перегрева водяного пара

3329 - 2801 = 528 кДж.

Всего подведенной теплоты на цикл

3879 + 528 = 4407 кДж.

Термический к. п. д. бинарного цикла

.

Термический к. п. д. цикла Реикнна для водяного пара

Улучшение термического к. п. д. от введения добавочного ртутного цикла

Мощность пароводяной турбины

Суммарная мощность установки

N = N Hg + N н2 O = 10 000 +12 260 = 22 260 кВт.

30 . Пароводяная установка мощностью 5000 кВт работает по циклу Ренкина. Начальные параметры: р 1 = 3 МПа и t 1 = 450° С. Давление в конденсаторе р 2 = 0,004 МПа.

Определить к. п. д. цикла, если к нему присоединить ртутный цикл, высший температурный предел которого будет таким же, как и у цикла с водяным паром.

Отв. η t б = 53,8%; η t Н2О = 37,8%; 100=42,3%.