Меню
Бесплатно
Главная  /  Мытье  /  Видимый свет. Длина волны

Видимый свет. Длина волны

  • 3. Основные характеристики цвета (цветовой тон, насыщенность, светлота). Тело цветового охвата Оствальда (Мансела).
  • 4. Метамеризм цвета и трёхкомпонентная теория цветового зрения. Зональные диаграммы. 7. Зональная диаграмма как способ оценки цвета. Определение характеристик цвета по зональной диаграмме.
  • 5. Аддитивный синтез цвета. Законы аддитивности цвета.
  • 6. Способы аддитивного синтеза цвета. Цветовое уравнение.
  • 8. Субтрактивный способ цветообразования и его использование в кинотехнологии. Привести примеры. Система субтрактивных светофильтров.
  • 9. Система оценки цветности по степени отличия от "белого" (система lb-cc). Цветофотографический баланс кинопленки и "Баланс белого" у видеокамеры.
  • 10. Анализ цветности осветительных приборов с помощью колориметра. Подбор корректирующих осветительных светофильтров.
  • 11. Способы оценки цветофотографических характеристик светофильтров.
  • 12. Осветительные компенсационные светофильтры.
  • 13. Колориметры: существующие конструкции и принципы действия. Особенности использования трёхзональных колориметров.
  • 14. Колориметр "Minolta Color Meter 2" - его возможности, технические характеристики, особенности использования.
  • Вопрос 2
  • 1. Способы оценки цветопередачи киноплёнок:
  • 2. Визуальный способ оценки цветопередачи в кино и видеотехнологии.
  • 3. Оценка цветопередачи по плотностям негатива. Переход от зональных коэффициентов отражения цветного объекта к плотностям в негативе. Относительная зональная диаграмма плотностей.
  • 4. Методики практических испытаний цветных киноплёнок. Определение реального баланса пленки. Способы приведение пленки к стандартному балансу.
  • 5. Цветные и серые шкалы. Назначение шкал, требования к ним, особенности использования.
  • 6. Цветофотографический баланс кинопленки. Возможные причины его отсутствия и способы его достижения.
  • 9. Способы снижения насыщенности цвета в киноизображении.
  • 10. Цветовоспроизведение в стандартном двуступенном кинопроцессе и в видеотехнологии.
  • 11. Цветоискажения, вызванные различием спектральных чувствительностей глаза и плёнки (видеокамеры).
  • 12. Наиболее распространённые цветоискажения у современных цветных киноплёнок.
  • 14. Съёмка в интерьере с люминесцентными лампами: пути и средства достижения цветофотографического баланса.
  • Вопрос 3 (задачи и практические задания)
  • 1. Длина световой волны и цвет. Цветовой круг. График мко.

    СПЕКТРАЛЬНЫЙ СОСТАВ СВЕТА

    Оптическая область спектра электромагнитные излучений состоит из трех участков: невидимых ультрафиолетовых излучений (длина волн 10-400 нм), видимых световых излучений (длина волн 400-750 нм), воспринимаемых глазом как свет и невидимых инфракрасных излучений (длина волн 740 нм - 1-2 мм).

    Световые излучения, воздействующие на глаз и вызывающие ощущение цвета, подразделяют на простые (монохроматические) и сложные. Излучение с определенной длиной волны называют монохроматическим.

    Простые излучения не могут быть разложены ни на какие другие цвета.

    Спектр - последовательность монохроматических излучений, каждому из которых соответствует определенная длина волны электромагнитного колебания.

    При разложении белого света призмой в непрерывный спектр цвета в нем постепенно переходят один в другой. Принято считать, что в некоторых границах длин волн (нм) излучения имеют следующие цвета:

    390-440 – фиолетовый

    440-480 - синий

    480-510 – голубой

    510-550 – зеленый

    550-575 - желто-зеленый

    575-585 - желтый

    585-620 – оранжевый

    630-770 – красный

    Глаз человека обладает наибольшей чувствительностью к желто-зеленому излучению с длиной волны около 555 нм.

    Различают три зоны излучения: сине-фиолетовая (длина волн 400-500 нм), зеленая (длина 500-600 нм) и красная (длина 600-680 нм). Эти зоны спектра являются также зонами преимущественной спектральной чувствительности приемников глаза и трех слоев цветной фотопленки. Свет, излучаемый обычными источниками, а также свет, отраженный от несветящихся тел, всегда имеет сложный спектральный состав, т. е. - состоит из суммы различных монохроматических излучений. Спектральный состав света - важнейшая характеристика освещения. Он непосредственно влияет на светопередачу при съемке на цветные фотографические материалы.

    Ньютон сделал первый шаг к измерению цвета – систематезировал цвет по цветовому тону, построив цветовой круг

    Кроме того, Ньютон проводил опыты по сложению излучений разного цвета, введя понятия основных и дополнительных цветов. Он экспериментально установил, что любой цвет может быть получен, как сумма излучений трёх цветов – синего, зелёного и красного – названных им основными цветами . Это утверждение легло в основу цветового уравнения, где цвет представляется суммой излучений трёх основных цветов (К, З, С) , взятых в определённой пропорции:

    Ц = кК + зЗ + сС,

    Где с, з, к – коэффициенты, соответствующие смешиваемым интенсивностям излучений синего, зелёного и красного цвета. В зарубежной литературе эти значения интенсивностей обозначают соответственно R , G , B .

    Цветовой круг – схема, систематизирующая цвет по цветовому тону. В спектре цвета плавно переходят один в другой, однако в спектре отсутствуют пурпурные, лиловые, малиновые тона. При этом в фиолетовом цвете мы явно чувствуем присутствие красного цвета. Поэтому Исаак Ньютон расположил все цветовые тона по мере схожести друг с другом по кругу. Ньютон расположил цвета так, чтобы друг против друга лежали взаимодополнительные цвета. В дальнейшем цветовой круг несколько видоизменялся

    (Цветовой круг Гёте, Цветовой круг Манселла и др.), где условие взаимодополнительности противоположных тонов не соблюдается.

    Следующим этапом в развитии колориметрии полте тела цветового охвата Оствальда стал график МКО (Международной комиссии по освещению). Необходимость в его создании была вызвана тем, что не все насыщенные цвета можно получить из трёх основных цветов. Некоторые цвета, получаемые сложением основных цветов, имеют меньшую насыщенность, чем чистые спектральные цвета. И для того, чтобы действительно любой цвет можно было получить аддитивным способом, исходные основные цвета должны иметь насыщенность более 100%, то есть насыщеннее спектральных цветов. Реально таких цветов быть не может, но как математические абстракции такие цвета были введены. Их назвалиX, Y, Z – красный, зелёный и синий соответственно.

    Фактически график МКО – это видоизменённый цветовой круг, на котором размещены цвета 100% насыщенности. К центру насыщенность падает до 0. График МКО часто используют для указания цветности излучения различных источников света.

    Кроме графика МКО в настоящее время применяются и другие колориметрические системы, например Lab . Величина L определяет яркость цвета, а – близость цвета к красному или зелёному цветовому тону, b – близость цвета к синему или жёлтому.

    Надо отметить, что ни одна из существующих колориметрических систем не отражают в полной мере все феномены цветового зрения. Поэтому колориметрические системы продолжают развиваться и совершенствоваться.

    В природе не существует цветов как таковых. Каждый оттенок, который мы видим, задает та или иная длина волны. образуется под воздействием самых длинных волн и представляет собой одну из двух граней видимого спектра.

    О природе цвета

    Возникновение того или иного цвета можно объяснить благодаря законам физики. Все цвета и оттенки являются результатами обработки мозгом информации, поступающей через глаза в форме световых волн различной длины. При отсутствии волн люди видят а при единовременном воздействии всего спектра - белый.

    Цвета предметов определяются способностью их поверхностей поглощать волны определенной длины и отталкивать все остальные. Также имеет значение освещенность: чем ярче свет, тем интенсивнее отражаются волны, и тем ярче выглядит объект.

    Люди способны различать более ста тысяч цветов. Любимые многими алые, бордовые и вишневые оттенки образуются самыми длинными волнами. Однако чтобы человеческий глаз мог увидеть красный цвет, не должна превышать 700 нанометров. За этим порогом начинается невидимый для людей инфракрасный спектр. Противоположная граница, отделяющая фиолетовые оттенки от ультрафиолетового спектра, находится на уровне около 400 нм.

    Цветовой спектр

    Спектр цветов как некоторая их совокупность, распределенная в порядке возрастания длины волны, был открыт Ньютоном в ходе проведения его знаменитых экспериментов с призмой. Именно он выделил 7 явно различимых цветов, а среди них - 3 основных. Красный цвет относится и к различимым, и к основным. Все оттенки, которые различают люди - это видимая область обширного электромагнитного спектра. Таким образом, цвет - это электромагнитная волна определенной длины, не короче 400, но не длиннее 700 нм.

    Ньютон заметил, что пучки света разных цветов имели разные степени преломления. Если выражаться более корректно, то стекло преломляло их по-разному. Максимальной скорости прохождения лучей через вещество и, как следствие, наименьшей преломляемости способствовала наибольшая длина волны. Красный цвет является видимым отображением наименее преломляемых лучей.

    Волны, образующие красный цвет

    Электромагнитная волна характеризуется такими параметрами, как длина, частота и Под длиной волны (λ) принято понимать наименьшее расстояние между ее точками, которые колеблются в одинаковых фазах. Основные единицы измерения длины волн:

    • микрон (1/1000000 метра);
    • миллимикрон, или нанометр (1/1000 микрона);
    • ангстрем (1/10 миллимикрона).

    Максимально возможная длина волны красного цвета равна 780 ммк (7800 ангстрем) при прохождении через вакуум. Минимальная длина волны этого спектра - 625 ммк (6250 ангстрем).

    Другой существенный показатель - частота колебаний. Она взаимосвязана с длиной, поэтому волна может быть задана любой из этих величин. Частота волн красного цвета находится в пределах от 400 до 480 Гц. Энергия фотонов при этом образует диапазон от 1,68 до 1,98 эВ.

    Температура красного цвета

    Оттенки, которые человек подсознательно воспринимает как теплые либо холодные, с научной точки зрения, как правило, имеют противоположный температурный режим. Цвета, ассоциируемые с солнечным светом - красный, оранжевый, желтый - принято рассматривать как теплые, а противоположные им - как холодные.

    Однако теория излучения доказывает обратное: у красных оттенков намного ниже, чем у синих. На деле это легко подтвердить: горячие молодые звезды имеют а угасающие - красный; металл при раскаливании сначала становится красным, затем желтым, а после - белым.

    Согласно закону Вина, существует обратная взаимосвязь между степенью нагрева волны и ее длиной. Чем сильнее нагревается объект, тем большая мощность приходится на излучения из области коротких волн, и наоборот. Остается лишь вспомнить, где в видимом спектре существует наибольшая длина волны: красный цвет занимает позицию, контрастную синим тонам, и является наименее теплым.

    Оттенки красного

    В зависимости от конкретного значения, которое имеет длина волны, красный цвет приобретает различные оттенки: алый, малиновый, бордовый, кирпичный, вишневый и т. д.

    Оттенок характеризуется 4 параметрами. Это такие, как:

    1. Тон - место, которое цвет занимает в спектре среди 7 видимых цветов. Длина электромагнитной волны задает именно тон.
    2. Яркость - определяется силой излучения энергии определенного цветового тона. Предельное снижение яркости приводит к тому, что человек увидит черный цвет. При постепенном повышении яркости появится за ним - бордовый, после - алый, а при максимальном повышении энергии - ярко-красный.
    3. Светлость - характеризует близость оттенка к белому. Белый цвет - это результат смешивания волн различных спектров. При последовательном наращивании этого эффекта красный цвет превратится в малиновый, после - в розовый, затем - в светло-розовый и, наконец, в белый.
    4. Насыщенность - определяет удаленность цвета от серого. Серый цвет по своей природе - это три основных цвета, смешанные в разных количествах при понижении яркости излучения света до 50%.

    Видимый свет — это энергия той части спектра электромагнитного излучения, которую мы способны воспринимать глазами, то есть видеть. Вот так все просто.

    Длина волны видимого света

    А теперь сложнее. Длины волн света в видимой области спектра лежат в диапазоне от 380 до 780 нм. Что это значит? Это значит, что волны эти очень короткие и высокочастотные, а «нм» — это нанометр. Один такой нанометр равен 10 -9 метрам. А если человеческим языком, то это одна миллиардная часть метра. То есть метр — это десять дециметров, сто сантиметров, тысяча миллиметров или… Внимание! Один миллиард нанометров .

    Как мы видим цвета в пределах видимого спектра света

    Наши глаза не только могут воспринимать эти крошечные волны, но и различать их длины в пределах спектра. Вот так мы и видим цвет — как часть видимого спектра света. Красный свет, один из трех основных цветов света, имеет длину волны примерно 650 нм. Зеленый (второй основной) — приблизительно 510 нм. И, наконец, третий — синий — 475 нм (или около того). Видимый свет от Солнца — это своеобразный коктейль, в котором эти три цвета смешаны.

    Почему небо голубое, а трава зеленая?

    Вообще-то это два вопроса, а не один. И поэтому мы дадим два разных, но связанных между собой ответа. Мы видим ясное небо в полдень голубым, потому что короткие волны света более эффективно рассеиваются при столкновении с молекулами газа в атмосфере, чем длинные. Так что голубизна, которую мы видим в небе — это синий свет, рассеянный и многократно отраженный молекулами атмосферы.

    Но на восходе и закате небо может приобретать красноватый цвет. Да, и такое бывает, поверьте. Это происходит потому, что когда Солнце находится близко к горизонту, свету, чтобы достичь нас, приходится проделать более долгий путь через гораздо более плотный слой атмосферы (к тому же еще и довольно пыльный), чем когда Солнце находится в зените. Все короткие волны поглощаются, и нам остается довольствоваться длинными, отвечающими за красную часть спектра.

    А вот с травой все слегка по-другому. Она выглядит зеленой, потому что поглощает все длины волн, кроме зеленых. Зеленые ей, видите ли, не по душе, поэтому она их отражает обратно нам в глаза. По этой же причине любой объект имеет свой цвет — мы видим ту часть спектра света, которую он не смог поглотить. Черные предметы выглядят черными, потому что поглощают все длины волн, практически ничего при этом не отражая, а белые — наоборот, отражают весь видимый спектр света. Это также объясняет, почему черное нагревается на солнце гораздо сильнее, чем белое.

    Небо голубое, трава зеленая, собака — друг человека

    А что там — за видимой областью спектра?

    По мере того, как волны становятся короче, цвет меняется от красного к синему, доходит до фиолетового и, наконец, видимый свет исчезает. Но сам свет не исчез — а перешел в область спектра, которая называется ультрафиолетом . Хоть эту часть спектра света мы уже не воспринимаем, но именно она заставляет светиться люминесцентные лампы, некоторые виды светодиодов, а также всякие прикольные светящиеся в темноте штучки. Дальше уже идут рентгеновское и гамма-излучение, с которыми лучше дел не иметь вообще.

    С другого конца области спектра видимого света, там где заканчивается красный цвет, начинается инфракрасное излучение, которое скорее тепло, чем свет. Вполне может вас поджарить. Затем идет микроволновое излучение (очень опасное для яиц), а еще дальше — то, что мы привыкли называть радиоволнами. У них длины уже измеряются сантиметрами, метрами и даже километрами.

    И как это все относится к освещению?

    Очень относится! С тех пор как мы узнали многое про спектр видимого света и про то, как мы его воспринимаем, производители светового оборудования постоянно работают над улучшением качества для удовлетворения наших ежесекундно растущих потребностей. Так появились лампы «полного спектра», свет которых почти неотличим от естественного. Цвет света стали , чтобы иметь реальные цифры для сравнения и маркетинговых трюков. Стали выпускаться специальные лампы для различных нужд: например, лампы для выращивания комнатных растений , дающие больше ультрафиолета и света из красной области спектра для лучшего роста и цветения, или «тепловые лампы» различных видов, которые обосновались в бытовых обогревателях, тостерах, и гриле в «Шаурме от Ашота».

    В 1676 году сэр Исаак Ньютон с помощью трёхгранной призмы разложил белый солнечный свет на цветовой спектр.
    Различные цвета создаются световыми волнами, которые представляют собой определённый род электро­магнитной энергии.
    Человеческий глаз может воспринимать свет только при длине волн от 400 до 700 миллимикрон: 1 миллимикрон или 1 мт = 1/1 000 000 мм.

    Длина волн, соответствующая отдельным цветам спект­ра, и соответствующие частоты (число колебаний в се­кунду) для каждого призматического цвета имеют свои характеристики.

    Каждый цвет спектра характеризуется своей длиной волны, то есть он может быть совершенно точно задан длиной волны или частотой колебаний. Световые волны сами по себе не имеют цвета. Цвет возникает лишь при восприятии этих волн человеческим глазом и мозгом. Каким образом он распознаёт эти волны до настоящего времени ещё полностью не известно. Мы только знаем, что различные цвета возникают в результате количест­венных различий светочувствительности.

    Остается исследовать важный вопрос о корпусном цвете предметов. Если мы, например, поставим фильтр, про­пускающий красный цвет, и фильтр, пропускающий зе­лёный, перед дуговой лампой, то оба фильтра вместе дадут чёрный цвет или темноту. Красный цвет поглоща­ет все лучи спектра, кроме лучей в том интервале, кото­рый отвечает красному цвету, а зелёный фильтр задер­живает все цвета, кроме зелёного. Таким образом, не пропускается ни один луч, и мы получаем темноту. По­глощаемые в физическом эксперименте цвета называ­ются также вычитаемыми.

    Цвет предметов возникает, главным образом, в процес­се поглощения волн. Красный сосуд выглядит красным потому, что он поглощает все остальные цвета светового луча и отражает только красный. Когда мы говорим: «эта чашка красная», то мы на самом деле имеем в виду, что молекулярный состав поверхно­сти чашки таков, что он поглощает все световые лучи, кроме красных. Чашка сама по себе не имеет никакого цвета, цвет создаётся при её освещении. Если красная бумага (поверхность, поглощающая все лучи кроме красного) освещается зелёным светом, то бумага покажется нам чёрной, потому что зелёный цвет не содержит лучей, отвечающих красному цвету, кото­рые могли быть отражены нашей бумагой. Все живописные краски являются пигментными или ве­щественными. Это впитывающие (поглощающие) крас­ки, и при их смешивании следует руководствоваться правилами вычитания. Когда дополнительные краски или комбинации, содержащие три основных цвета - жёлтый, красный и синий - смешиваются в определён­ной пропорции, то результатом будет чёрный, в то вре­мя как аналогичная смесь невещественных цветов, по­лученных в ньютоновском эксперименте с призмой дает в результате белый цвет, поскольку здесь объединение цветов базируется на принципе сложения, а не вычита­ния.

    Два цвета, объединение которых даёт белый цвет, назы­ваются дополнительными цветами. Если мы удалим из спектра один цвет, например, зелё­ный, и посредством линзы соберём оставшиеся цвета - красный, оранжевый, жёлтый, синий и фиолетовый, - то полученный нами смешанный цвет окажется крас­ным, то есть цветом дополнительным по отношению к удалённому нами зелёному. Если мы удалим жёлтый цвет, - то оставшиеся цвета - красный, оранжевый, зе­лёный, синий и фиолетовый - дадут нам фиолетовый цвет, то есть цвет, дополнительный к жёлтому. Каждый цвет является дополнительным по отношению к смеси всех остальных цветов спектра. В смешанном цвете мы не можем увидеть отдельные его составляющие.