Меню
Бесплатно
Главная  /  Внутренняя отделка  /  Аккумуляторная батарея история до наших дней. Развитие аккумуляторных батарей

Аккумуляторная батарея история до наших дней. Развитие аккумуляторных батарей

Сегодня мы отправимся в увлекательную историю развития аккумуляторов, батарей и элементов питания.

Человечество никогда не стояло на месте. С древних времен наших предков интересовал целый спектр всевозможных физических и химических явлений. Ученые постоянно открывали что-то новое. Такое ноу-хау, как правило, сперва напрочь отрицалось наукой, затем о нем забывали, а спустя несколько десятилетий, уже забытого всеми ученого восхваляли и называли «человеком, который изменил мир». Наверняка вы читаете эти строки с устройства, работающего от розетки или имеющего в своем распоряжении один из важнейших элементоваккумулятор . И если бы 2 700 лет назад древнегреческий философ Фалес не обратил внимание на взаимодействие шерсти и янтаря, если бы в 1600 году не был введен термин электричество, а в 1800 Аллесандро Вольта не заинтересовался пластинами из цинка и меди, возможно современный мир был намного скучнее.

С чего все началось

Наука средневековья – весьма спорное и запутанное явление. Тем не менее, именно существование целого ряда схоластических теорий породило такое понятие, как научно-технический прогресс. До появления первых аккумуляторов пройдет еще более 2,5 тысяч лет, а пока в солнечной Греции дочь философа Фалеса безуспешно пытается очистить янтарное веретено от мелких частичек ворса, ниток и пыли. Как оказалось, смахнуть их не так-то просто.

Во время правления английской королевы Елизаветы I (1533 – 1603) ее лейб-медик Вильям Гильберт Колчестерский всерьез заинтересовался устройством компаса, магнитами, янтарем и прочими драгоценными камнями, которые после натирания мехом притягивали к себе мелкие частички пергамента. Становилось понятным, что несмотря на определенную схожесть, магнетизм и электричество (термин, введенный самим Гильбертом) имеют совершенно разную природу. Магнит способен притягивать исключительно железо, в то время как электричество, вызванное трением, способно к притяжению частичек неметалического происхождения.

Понятие «притяжение» в средневековье относили к категории «магнитов» . Все дополняющие друг-друга явления, вроде ветра и мельницы, солнца и тепла, мужчины и женщины относили к магнитам. Ненависти собак и кошек, друзей и врагов, льда и огня приписывали категорию «феамидов» , а в магнетизме это понятие подтверждалось северным и южным полюсами магнита. С появлением электричества «магниты» и «феамиды» станут знакомы по маркировкам «плюс» и «минус» , которые можно найти на любом аккумуляторе.

В последующих опытах бургомистра Отто Фон Герике в качестве источника электричества использовался шар из серы . Во время вращения его придерживали руками, а скапливающийся электрический заряд передавался металлическому бруску, который в последствии назовут «лейденской банкой» – главный атрибут престижной средневековой лаборатории, который и стал прообразом современного аккумулятора.

После введения понятия электричество в 1600 году и вплоть до начала XIX века по Европе прокатилась буря опытов, связанных с изучением материалов, способных вызывать так называемый «универсальный временный магнетизм». Тем временем во Франции проводил свои эксперимент ученый, имя которого навсегда осталось нераздельно связанным с любым электрическим прибором.

Великий Вольт

Желая понять природу электричества и в прямом смысле слова «почувствовать его вкус», Алессандро Вольта экспериментировал с монетами, изготовленными из разных металлов . Положив одну из них на язык, а другую под, и соединив их проволокой, Вольта отмечал присутствие характерного кисловатого привкуса . Так острота вкусовых рецепторов человека привела к открытию гальванического электричества , явления, которое еще в середине XVIII века описывал итальянский врач, анатом и физик Луиджи Гальвани , проводя опыты по препарированию лягушек.

Следующим шагом стало конструирование первой электрической батареи , принцип работы которой заключался в погружении медных и цинковых пластин , соединенных последовательно, в раствор кислоты. Изобретение первого химического источника тока, полученного в лабораторных условиях, принято датировать 1798 годом, а его автором стал Аллесандро Вольта.

В течение последующих пяти лет в области исследования гальванических батарей начнется настоящий ажиотаж. 1801 год ознаменовался появлением кратковременного источника питания . Проводя опыты, Готеро (франц. физик), используя воду, платиновые электроды и ток, доказал, что даже после прекращения подачи тока, электроды продолжают излучать электричество. Два года спустя, немецкий химик Иоганн Риттер , заменив платиновые электроды на медные и сформировав из них цепочку пластин, переложенных кусками сукна, сконструировал первый вторичный элемент питания – иными словами, первую аккумуляторную батарею, способную сперва накапливать заряд, а потом постепенного его отдавать без участия «гальванической подпитки».

Пятьдесят медных кружков, смоченной в соленом растворе сукно и вольтов столб положили начало эры аккумуляторов с возможностью многократного цикла заряд-разряд. Появляется новая наука – электрохимия . Начатые в 1854 году немецким врачом Вильгельмом Зингстеденом опыты по использованию свинцовых электродов и их поведению в серной кислоте, спустя пять лет вылились в знаменательное открытие французского инженера Гастона Планте . В 1859 году Планте проводил исследования с листовым свинцом, свернутым в трубочку и разделенным полосами сукна. При погружении в подкисленную воду и под действием тока, свинцовые пластины покрывались активным действующим слоем. Многократное пропускание тока приводило к постепенному росту емкости первой свинцово-кислотной батареи , но рутинное осуществление этого трудоемкого процесса (на изготовление требовалось около 500 часов) приводило к росту конечной стоимости аккумулятора. Более того, потенциальный заряд аккумулятора был сравнительно невелик.

Наследие Зингстедена и Планте будет усовершенствовано через 23 года ученным Камиллом Фором , пересмотревшим процесс изготовления используемых в аккумуляторе пластин. Ускорить формирование активного слоя стало возможным благодаря покрытию пластин окислами свинца . Под действием тока вещество превращалось в перекись, а полученные окислы приобретали пористое строение , способствующее аккумулированию газов на электродах.

Параллельно с разработкой и совершенствованием свинцово-кислотных батарей велась работа и над построением «влажных» элементов Лекланше и их преемников угольно-цинковых аккумуляторов , предложенных в 1888 году Карлом Гасснером и использующихся вплоть до сегодняшнего дня.

В течение длительного периода времени аккумуляторы, электрохимия и все, что было связано с использованием кислых сред, пластин и гальванического электричества будоражило умы исключительно ограниченного круга – ученых, физиков, химиков и врачей. Ситуация кардинально изменилась с появлением в 1827 году динамо-машины – первого электрического генератора постоянного тока. Эволюция генераторов, в свою очередь, подталкивала развитие аккумуляторов и батарей. Узкопрофильные опыты Вольта наконец начали получать промышленное применение.

Промышленная эра аккумуляторов

В 1896 году на территории США, в штате Колумбия открывается компания National Carbon Company (NCC). NCC становится первым предприятием специализацией которого становится серийное производство сухих элементов и батарей . В последующие сто лет Национальную Угольную компанию ждет две стадии ребрендинга: сперва NCC станет Eveready , а сегодня мы знаем ее под именем Energizer .

Предложенный Фором метод заполнения пластин в течение продолжительного времени будет являться основой для построения практически любого типа аккумулятора. В поисках альтернативы морально устаревшему (еще по меркам конца XIX века) свинцово-кислотному аккумулятору и попытках решить две основных проблемы этого некогда революционного источника питания (огромный размер и малоэффективная емкость), в 1901 году легендарный изобретатель Томас Эдисон и Вальдмар Юнгнер одновременно патентуют несвинцовый тип батарей: никель-кадмиевых и никель-железных .

Батарея Юнгнера состояла из положительной пластины, изготовленной из никеля. В качестве отрицательной использовался лист кадмия. Значительное повышение емкости, многократное снижение веса и неприхотливость к регулярности подзарядки не смогли выдержать практического применения в связи с дороговизной процесса изготовления никель-кадмиемых аккумуляторов. Достойной заменой стал предложенный Эдисоном никель-железный элемент, который получил имя щелочного аккумулятора .

Развитие эры электричества, появление мощных промышленных генераторов, трансформаторов и глобальная электрификация приводит к резкому росту популярности портативных элементов питания. Щелочные батареи начинают использовать в корабле- и машиностроении, в транспорте и на электростанциях. На улицах появляются первые электромобили, а конструкторы уже успели сформировать принципы построения аккумуляторных батарей с различным вольтажом.

В поисках идеального корпуса

Опыты с электричеством и попытки построения первых батарей нераздельно были связаны с использованием кислоты или кислой водной среды. Любая жидкость для успешного проведения эксперимента требует соответствующий сосуд, а сбор аккумулятора – свой собственный корпус.

В течение продолжительного времени корпус аккумуляторов изготавливался из дерева . Увы, реакции, происходящие в моменты окисления электродов, и кислотная среда батарей приводили к быстрому разрушению органической оболочки. Дерево заменяют на эбонит – каучук с большим содержанием серы, обладающий высокими электроизоляционными свойствами.

Общепринятым стандартом, использующимся при построении составных аккумуляторов начала XX века, было формирование батареи из нескольких элементов, рабочее напряжение которого составляло 2,2 вольта . Первые «пальчиковые батареи» появились еще в далеком 1907 году. С тех пор внешне они мало в чем изменились. Аккумулятор с напряжением в 6 вольт (три элемента по 2,2 В) оставался эталонным при производстве автомобилей вплоть до начала 50-х годов. Элементы на 12 и 24 Вольта имели более узкую специализацию. В первой половине прошлого века об эстетике в машиностроении никто не задумывался, поэтому любой аккумулятор выглядел весьма неряшливо. Эбонитовый корпус с напичканными элементами и грубыми торчащими перемычками намертво заливался мастикой.

Изобретение немецких ученых Шлехта и Аккермана и демонстрация в 1932 году процесса изготовления прессованных пластин для аккумуляторов не могло не повлиять на внешний вид батарей. В 1941 году в производство корпусов вмешивается австрийская компания Baren , проводившая серию экспериментов по разработке синтетических материалов. Через шесть лет француз Нойман предлагает конструкцию герметичного никель-кадмиевого аккумулятора . Параллельно с этим вся промышленность переходит на батареи с напряжением в 12 вольт , а синтетически полученный американской компанией Johnson Controls полипропилен становится основой для изготовления корпуса любых аккумуляторов. Они стали легче, практичнее, перестали бояться ударов и строгих ограничений при подзарядке.

Настоящее и обозримое будущее

Дальнейшее развитие индустрии аккумуляторных батарей движется настолько стремительно, что проследить за той чередой открытий, которые пришлись на последние пятьдесят лет практически невозможно. На сегодняшний день существует более 30 разновидностей аккумуляторов при построении которых используются два различных электрода, чем и определяется их название: никель-цинковые, литий-титанатные, цинк-хлорные. Среди этого обилия в быту мы сталкиваемся лишь с несколькими.

Причина, по которой мобильные устройства начали свою стремительную эволюцию лишь с начала 90-х годов XX века и за последние 35 лет превратились из громоздких и неповоротливых «чемоданов» в ультракомпактные плоские коробочки, кроется именно в элементах питания.

В 1991 году компания Sony выпускает первый литий-ионный аккумулятор . Этот тип портативных батарей пришел на смену некогда широко использовавшимся никель-кадмиевым (Ni-Cd) и никель-металлгидридным (Ni-MH), изобретенных еще в начале прошлого века.

Литий-ионные аккумуляторы имеют целый ряд преимуществ: они заряжаются на порядок быстрее никелевых, имеют более продолжительный срок эксплуатации и большой запас емкости. Li-ion-аккумуляторы получили широкое распространение в сфере портативной электроники, а предложенные инженерами решения позволили не только значительно увеличить максимальные токи разряда, сделавшие возможным использование этого типа аккумуляторов и в среде мощного оборудования, но и обеспечить внушительный рост емкости.

А сегодня расскажем о воображаемых — с гигантской удельной ёмкостью и мгновенной зарядкой. Новости о подобных разработках появляются с завидной регулярностью, но будущее пока не наступило, и мы всё ещё пользуемся появившимися в начале позапрошлого десятилетия литий-ионными аккумуляторами, либо их чуть более совершенными литий-полимерными аналогами. Так в чём же дело, в технологических трудностях, неправильной интерпретации слов учёных или чём-то другом? Попробуем разобраться.

В погоне за скоростью зарядки

Один из параметров аккумуляторов, который учёные и крупные компании постоянно стараются улучшить — скорость зарядки. Однако бесконечно увеличивать её не получится даже не в силу химических законов протекающих в аккумуляторах реакций (тем более, что разработчики алюминий-ионных батарей уже заявили, что такой тип аккумуляторов может быть полностью заряжен всего за секунду), а из-за физических ограничений. Пусть у нас есть смартфон с батареей ёмкостью 3000 мАч и поддержкой быстрой зарядки. Полностью зарядить такой гаджет можно в течение часа силой тока в среднем 3 А (в среднем потому, что напряжение при заряде изменяется). Однако если мы хотим получить полный заряд всего за одну минуту, потребуется сила тока уже в 180 А без учёта различных потерь. Для заряда устройства таким током потребуется провод диаметром около 9 мм — в два раза толще самого смартфона. Да и силу тока 180 А при напряжении около 5 В обычное зарядное устройство выдать не сможет: владельцам смартфонов понадобится импульсный преобразователь тока вроде того, что изображён на фотографии ниже.

Альтернатива увеличению силы тока — увеличение напряжения. Но оно, как правило, фиксированное, и для литий-ионный батарей составляет 3,7 В. Конечно, его можно превышать — зарядка по технологии Quick Charge 3.0 идёт с напряжением до 20 В, но попытка зарядить батарею напряжением около 220 В ни к чему хорошему не приведёт, и решить эту проблему в ближайшее время не представляется возможным. Современные элементы питания просто не могут использовать такое напряжение.

Вечные аккумуляторы

Разумеется, речь сейчас пойдёт не о «вечном двигателе», а об аккумуляторах с долгим сроком службы. Современные литий-ионные батареи для смартфонов способны выдержать максимум пару лет активного использования устройств, после чего их ёмкость неуклонно падает. Владельцам смартфонов со съёмными аккумуляторами повезло немного больше, чем другим, но и в этом случае стоит убедиться, что аккумулятор был произведён недавно: литий-ионные батарей деградируют даже тогда, когда не используются.

Своё решение этой проблемы предложили учёные Стэнфордского университета: покрыть электроды существующих типов литий-ионных аккумуляторов полимерным материалом с добавлением наночастиц графита. По задумке учёных, это позволит защитить электроды, которые неизбежно покрываются микротрещинами в процессе эксплуатации, а те же микротрещины в полимерном материале будут затягиваться самостоятельно. Принцип действия такого материала похож на технологию, применённую в смартфоне LG G Flex с самовосстанавливающейся задней крышкой.

Переход в третье измерение

В 2013 году появилось сообщение о разработке исследователями университета штата Иллинойс нового типа литий-ионных аккумуляторов. Учёные заявили, что удельная мощность таких элементов питания составит до 1000 мВт/(см*мм), в то время как удельная мощность обычных литий-ионных батарей колеблется между 10-100 мВт/(см*мм). Были использованы именно такие единицы измерения, поскольку речь идёт о достаточно небольших структурах толщиной в десятки нанометров.

Вместо плоских анода и катода, применяемых в традиционных Li-Ion батарей, учёные предложили использовать объёмные структуры: кристаллическую решётку из сульфида никеля на пористом никеле в качестве анода и литий-диоксид марганца на пористом никеле в качестве катода.

Несмотря на все сомнения, вызванные отсутствием в первых пресс-релизах точных параметров новых аккумуляторов, а также не представленные до сих пор прототипы, новый тип батарей всё же реален. Подтверждением тому служат несколько научных статей на эту тему, опубликованных за последние два года. Тем не менее, если такие батареи и станут доступны для конечных потребителей, произойдёт это очень нескоро.

Зарядка через экран

Учёные и инженеры пытаются продлить жизнь наших гаджетов не только поиском новых типов аккумуляторов или увеличением их энергоэффективности, но и довольно необычными способами. Исследователи университета штата Мичиган предложили встроить прозрачные солнечные панели прямо в экран. Поскольку принцип работы таких панелей основан на поглощении ими солнечного излучения, чтобы сделать их прозрачными, учёным пришлось пойти на хитрость: материал панелей нового типа поглощает только невидимое излучение (инфракрасное и ультрафиолетовое), после чего фотоны, отражаясь от широких граней стекла, поглощаются узкими полосками солнечных панелей традиционного типа, находящихся по его краям.

Главным препятствием для внедрения такой технологии является низкий КПД таких панелей — всего 1% против 25% традиционных солнечных панелей. Сейчас учёные ищут способы увеличить КПД хотя бы до 5%, но быстрого решения этой проблемы вряд ли стоит ожидать. К слову, похожую технологию недавно запатентовала компания Apple, но пока неизвестно, где именно в своих устройствах производитель расположит солнечные панели.

До этого мы под словами «батарея» и «аккумулятор» мы подразумевали перезаряжаемый элемент питания, но некоторые исследователи считают, что в гаджетах вполне можно использовать одноразовые источники напряжения. В качестве батареек, которые могли бы работать без подзарядки или другого обслуживания несколько лет (а то и несколько десятков лет) учёные университета штата Миссури предложили использовать РИТЭГ — радиоизотопные термоэлектрические генераторы. Принцип действия РИТЭГ основан на преобразовании выделяющегося в процессе радиораспада тепла в электричество. Многим такие установки известны по использованию в космосе и труднодоступных местах на Земле, но в США миниатюрные радиоизотопные батарейки также применялись в кардиостимуляторах.

Работа над улучшенным типом таких батарей ведётся с 2009 года и даже были показаны прототипы таких элементов питания. Но увидеть радиоизотопные батарейки в смартфонах в ближайшей перспективе мы не сможем: они дороги в производстве, и, к тому же, многие страны имеют строгие ограничения на производство и оборот радиоактивных материалов.

В качестве одноразовых батареек также можно использовать и водородные элементы, но их в смартфонах использовать не получится. Водородные батареи расходуются довольно быстро: хотя ваш гаджет и будет работать от одного картриджа дольше, чем от одного заряда обычной батареи, их придётся периодически менять. Впрочем, это не мешает использовать водородные батареи в электромобилях и даже внешних аккумуляторах: пока это не массовые устройства, но уже и не прототипы. Да и компания Apple, по слухам, уже разрабатывает систему дозаправки картриджей водородом без их замены для использования в будущих iPhone.

Идея о том, что на основе графена можно создать аккумулятор с высокой удельной ёмкостью, была выдвинута ещё в 2012 году. И вот, в начале этого года в Испании было объявлено о начале строительства компанией Graphenano завода по производству графен-полимерых аккумуляторов для электромобилей. Новый тип батарей почти в четыре раза дешевле в производстве, чем традиционные литий-полимерные аккумуляторы, имеет удельную ёмкость 600 Втч/кг, а зарядить такую батарею на 50 кВтч можно будет всего за 8 минут. Правда, как мы говорили в самом начале, для этого потребуется мощность около 1 МВт, поэтому подобный показатель достижим лишь в теории. Когда именно завод начнёт выпускать первые графен-полимерные батареи не сообщается, но вполне возможно, что среди покупателей его продукции будет Volkswagen. Концерн уже заявил о планах выпуска электромобилей с пробегом до 700 километров от одного заряда аккумуляторов к 2018 году.

Что касается мобильных устройств, то пока применению в них графен-полимерных аккумуляторов мешают большие габариты таких батарей. Будем надеяться, что исследования в этой области продолжатся, ведь графен-полимерные аккумуляторы — один из наиболее перспективных типов аккумуляторов, которые могут появиться уже в ближайшие годы.

Так всё же, почему, несмотря на весь оптимизм учёных и регулярно появляющиеся новости о прорывах в области сохранения электроэнергии, мы сейчас наблюдаем застой? В первую очередь, дело в наших завышенных ожиданиях, которые только подогреваются журналистами. Мы хотим верить, что вот-вот и произойдёт революция в мире аккумуляторов, и мы получим батарейку с зарядкой менее, чем за минуту, и практически неограниченным сроком службы, от которой современный смартфон с восьмиядерным процессором будет работать минимум неделю. Но таких прорывов, увы, не бывает. Вводу в массовое производство любой новой технологии предшествуют долгие годы научных исследований, испытаний образцов, разработка новых материалов и технологических процессов и другая работа, занимающая достаточно много времени. В конце концов, тем же литий-ионным аккумуляторам понадобилось около пяти лет, чтобы из инженерных образцов превратиться в готовые устройства, которые можно использовать в телефонах.

Поэтому, нам остаётся только запасаться терпением и не воспринимать новости о новых элементах питания близко к сердцу. По крайней мере, пока не появятся новости об их запуске в массовое производство, когда не останется никаких сомнений о жизнеспособности новой технологии.

Клиентская база – база данных компании о всех ее актуальных и потенциальных клиентах (юридических лицах и индивидуальных предпринимателях) во всех , содержащая необходимую информацию для осуществления деловых отношений. Наличие клиентской базы позволяет осуществлять продажи на регулярной основе, анализировать эффективность существующей системы сбыта, выстраивать стратегию и тактику дальнейшего развития бизнеса компании.

В компаниях сферы FMCG выделяют следующие виды клиентской базы:

  1. Общая клиентская база (ОКБ) – база данных клиентов, которые по роду своей деятельности потенциально способны закупать товар компании. Формируется в процессе территорий и других методов анализа рыночной среды. Является основным видом клиентской базы, на основе которой создаются все остальные.
  2. Активная клиентская база (АКБ) – база данных клиентов, которые в отчетном периоде закупили товар как минимум один раз (продолжительность отчетного периода определяется максимальным сроком оборачиваемости товара, в большинстве компаний FMCG отчетным периодом является месяц). АКБ является составной частью ОКБ, содержит не только паспортные данные клиентов, но и историю совершенных продаж.
  3. Неактивная клиентская база (НКБ) – база данных клиентов, которые по роду своей деятельности потенциально способны закупать товар компании, но в отчетном периоде ни разу этого не сделали. Внутри НКБ возможно выделение:
  • Перечня клиентов, которые ранее закупали товар компании, но перестали это делать по каким-либо причинам («спящие» клиенты);
  • Перечня клиентов, которые ранее не закупали товар компании, но готовы это начать делать при определенных условиях;
  • Перечня клиентов, которые ранее не закупали товар компании, и не готовы начать это делать в силу каких-либо объективных или субъективных причин.
  1. Маршрутная клиентская база (МКБ) – база данных клиентов, посещение которых осуществляется в соответствии с регулярными полевых сотрудников. Имеет отношение к розничному , обслуживаемому . Как правило, включает в себя АКБ данного канала сбыта и небольшую, наиболее перспективную часть НКБ с целью поддержания отношений и возобновления сотрудничества.

Иногда в связи с разного рода частными задачами возможно выделение дополнительных видов клиентской базы, например, перечня новых клиентов, перечня клиентов с хроническими проблемами в оплате товара, перечня клиентов, попадающих под условия проведения трейд-маркетинговых акций, и т.д.

Находясь на маршруте с одним из торговых представителей, территориальный менеджер попросил показать ему потенциальные торговые точки на территории. Торговый представитель отвез его в одну из таких точек. Территориальный менеджер решил продемонстрировать, как правильно подключать потенциальные точки, и провел показательную продажу идеи сотрудничества, живописно расписав клиенту все конкурентные преимущества своей компании. Когда в конце территориальный менеджер поинтересовался у клиента, с кем из поставщиков он сейчас работает, получил ответ «Как с кем? С вами…» На немой вопрос в глазах ошарашенного территориального менеджера торговый представитель ответил: «Ну так вы же просили показать потенциальные торговые точки, а у этой еще о-о-очень большой потенциал…»

Как известно, существует множество разных аббревиатур. Многие из них понятны с первого взгляда, так как они расшифровываются только в единственном варианте. Однако встречаются и такие сокращения, которые трудно разгадать, особенно если они обозначают сразу несколько вещей. Например, аббревиатура АКБ - это термин, который одновременно относится к абсолютно разным сферам и расшифровывается также по-разному. Стоит подробнее рассмотреть, в каких же сферах используется это сокращение и что оно обозначает.

Как расшифровать АКБ

Как уже говорилось выше, существует несколько вариантов трактовки сокращения. Этому вопросу действительно стоит уделить внимание, поскольку, встретившись с такой аббревиатурой в жизни, лучше точно понимать, о чем все-таки идет речь. Итак, теперь нужно обозначить основные направления, где используется подобное сокращение.

Во-первых, АКБ - это В более узком смысле - автомобильная то есть разновидность электрических аккумуляторов, которые используются на автомобильном транспорте.

Во-вторых, АКБ - это акционерный коммерческий банк. Такой банк - это кредитная организация, которая осуществляет банковские операции и обслуживает широкий круг лиц (как физических, так и юридических).

Таким образом, становится более понятно, в каких сферах можно рассматривать эту аббревиатуру.

АКБ в технической сфере

Итак, стоит подробнее рассмотреть термин АКБ в свете автомобильной тематики. Автомобильная получила широкое распространение с развитием автомобильной промышленности. Она нужна в качестве дополнительного источника электроэнергии при неработающем двигателе, а также для его запуска.

Такой аккумулятор имеет свои характеристики, которые в основном определяются напряжением. Существует несколько разновидностей автомобильной аккумуляторной батареи:

  • 6 Вольт.

Автомобили с таким аккумулятором производились до конца 1940 годов. Сейчас аккумуляторы с напряжением 6 Вольт используются только на легкой мототехнике.

  • 12 Вольт.

В настоящее время такая аккумуляторная батарея используется на всех легковых автомобилях, а также на грузовых автомобилях и автобусах, имеющих бензиновый двигатель. Помимо этого, большинство мотоциклов имеют аккумуляторы с напряжением 12 Вольт.

  • 24 Вольт.

Аккумуляторы с напряжением 24 Вольт применяются в троллейбусах, трамваях, грузовых автомобилях с дизельными двигателями и, что особенно интересно, на военной технике с дизельными двигателями.

Емкость АКБ: небольшой обзор

Конечно же, как и у любой батареи, у автомобильного аккумулятора есть понятие емкости. Это еще одна важная характеристика аккумулятора, которая определяет его основные свойства. Емкость АКБ измеряется в таких единицах, как ампер-часы.

Значение емкости, которое представлено на аккумуляторе, показывает, каким током батарея будет разряжаться равномерно до конечного напряжения при цикле разряда, составляющем 20 или 10 часов.

Еще одна особенность, связанная с емкостью - чем больше повышаются разрядные токи, тем стремительнее уменьшается время разряда.

Теперь стоит рассмотреть, как выбирается подходящая емкость аккумулятора. Она подбирается с учетом нескольких параметров:

  • объем двигателя (чем больше объем, тем большая требуется емкость);
  • условия эксплуатации (чем холоднее погодные условия в регионе, тем большая должна быть емкость);
  • тип двигателя (для дизельного двигателя емкость аккумулятора должна быть больше, чем для бензинового при их одинаковом объеме).

Типы автомобильного аккумулятора

У автомобильной АКБ существует масса дополнительных характеристик, которые существенно влияют на ее тип.

Первая характеристика - это размер аккумулятора. История развития автомобильной техники показала, что во многих случаях при разработке новой модели или даже марки автомобилей часто приходилось создавать специальный новый аккумулятор. В связи с этим был разработан целый комплекс документации. В настоящее время производится несколько видов батарей, они заметно различаются у японских и европейских производителей.

Вторая характеристика - это диаметр контактных клемм. Размер различается в разных аккумуляторах. Существует 2 разработанных стандарта: тип Euro - type 1 и Asia - type 3. В первом случае их размеры: 19,5 мм у «плюсовой» и 17,9 мм у «минусовой». Размеры клеммы АКБ во втором типе: 12,7 мм у «плюсовой» и 11,1 мм у «минусовой».

Третий важный параметр - это тип аккумулятора. По большей части применяется свинцово-кислотный.

Еще одна характеристика, о которой стоит поговорить отдельно - это необходимость обслуживания аккумулятора.

Обслуживание аккумулятора - как часто оно необходимо

Многих людей волнует вопрос Что не удивительно, ведь АКБ - это действительно сложная система, которая иногда требует специального ухода.

Таким образом, можно выделить 2 больших группы аккумуляторов:

  • обслуживаемые;
  • необслуживаемые.

Обслуживаемые - это более простые по строению аккумуляторы, которым периодически нужен контроль состояния электролита. Также время от времени требуется зарядка АКБ. Она осуществляется по специально разработанной технологии, посредством использования стационарного зарядного устройства. На крупных предприятиях такие действия производят прошедшие подготовку работники. Для этих целей существуют даже целые зарядные станции. Таким образом, зарядка АКБ - необходимый процесс для ее функционирования.

Теперь стоит обратиться ко второй группе - необслуживаемым аккумуляторам. Если судить только по их названию, то можно подумать, что таким АКБ вовсе не нужен уход. Однако это не совсем так, на аккумуляторах подобного типа также необходимо контролировать такие факторы, как плотность электролита, герметичность самого корпуса батареи и другие.

Итак, АКБ - это довольно сложная деталь, которая выполняет важную роль в функционировании автотехники.

АКБ в банковской системе

Теперь пришло время рассмотреть аббревиатуру АКБ с другой точки зрения. Как уже говорилось в начале статьи, АКБ - банк (кредитное учреждение), который осуществляет различные банковские операции. Такие учреждения выполняют следующие операции: платежные, расчетные, на рынке ценных бумаг и различные посреднические.

АКБ получают свою прибыль в результате того, что процентные ставки по выданным ими кредитам заметно превышают ставки по вкладам. Такая прибыль называется маржой.

Слово «коммерческий», которое входит в аббревиатуру, означает, что главная цель деятельности АКБ - получение прибыли.

Однако существуют банковские организации, которые специализируются больше на каких-либо отдельных предоставляемых услугах.

Акционерные коммерческие банки в России

Таких организаций в России действительно много. Если обратиться к истории, то первым частным АКБ в нашей стране стал Санкт-Петербургский частный коммерческий банк. Затем подобная форма организации стала активно развиваться. Однако конец такому многообразию банковских организаций был положен в 1917 году, когда все банки были национализированы.

Сейчас же в России действует множество АКБ. Среди них можно услышать очень известные названия, например:

  • АКБ «Банк Москвы».
  • АКБ «Авангард».
  • АКБ «Абсолют Банк».
  • АКБ «Связь-банк».
  • АКБ «Промсвязьбанк» и многие другие.

Другие значения аббревиатуры АКБ

Помимо уже рассмотренных банковской и технической сфер, иногда это сокращение используется и в области продаж. Здесь АКБ - это активная клиентская база. Во многих организациях по ней составляется целый план, который охватывает расширение базы и дальнейшую работу с ней. Цель такой работы - повышение уровня продаж какой-либо компании.

Аккумулятор служит для накопления электрической энергии, выступая автономным источником электропитания. В основу действия аккумулятора положена обратимость химических процессов, которые происходят внутри него. Именно эта особенность позволяет использовать устройство многократно и циклически (постоянный заряд и разряд). Разряженный аккумулятор заряжают методом пропускания электрического тока в таком направлении, которое противоположно направлению тока при разряде аккумулятора. АКБ в процессе работы мотора заряжается от генератора прямо в подкапотном пространстве автомобиля.

Аккумуляторная батарея имеет корпус. В данном корпусе расположены перегородки, разделяющие батарею на ячейки (банки). Аккумулятор на 12 вольт, который чаще всего устанавливается на легковых автомобилях, включает в себя 6 ячеек. В каждой банке имеются небольшие блоки, которые соединены друг с другом.

В отдельном блоке имеются положительные и отрицательные электроды. Указанные электроды представляют собой пластины (решетки), которые изготовлены из свинца (на примере свинцового аккумулятора). Данные пластины покрыты особым активным составом. Между пластинами с положительными и отрицательными полюсами также находится разделитель (сепаратор). Сепараторы изготовлены из материалов, которые не пропускают электрический ток.

Правильная зарядка автомобильного аккумулятора зарядным устройством. Проверка перед зарядкой, каким током заряжать аккумулятор. Как зарядить АКБ без ЗУ.

  • Когда нужно заряжать необслуживаемый автомобильный аккумулятор. Как заряжать необслуживаемую АКБ зарядным устройством: сила тока, время зарядки. Советы.
  • Как измеряется плотность электролита в АКБ, от чего зависит данный показатель. Доступные способы повышения плотности в "банках" аккумулятора своими руками.