Меню
Бесплатно
Главная  /  Пластиковые панели  /  Расчет потерь теплоты и кпд-брутто котельном агрегате. Отличие КПД брутто от КПД нетто котельной установки

Расчет потерь теплоты и кпд-брутто котельном агрегате. Отличие КПД брутто от КПД нетто котельной установки

КПД котельного агрегата называется отношение полезной теплоты, пошедшей на выработку пара (горячей воды), к располагаемой теплоте (теплоте, поступившей в котельный агрегат). Не вся полезная теплота, выработанная котлом, направляется потребителям, часть ее расходуется на собственные нужды (привод насосов, тягодутьевых устройств, расходы теплоты на подогрев воды вне котла, ее деаэрации и др.). в связи с этим различают КПД агрегата по выработанной теплоте (КПД брутто) и КПД агрегата по теплоте, отпущенной потребителю (КПД нетто).

КПД брутто может быть определен по формуле:

КПД нетто определяется по обратному балансу как:

Современные методы повышения КПД котельной установки.

Увеличить мощность парового котла можно, принимая следующие меры:

§ ограничивая объём воздуха, находящегося в камере горения, установка перегородок;

§ используя системы утилизации тепла отходящих газов;

§ используя конденсационные или традиционные экономайзеры (нагреватели питающей воды);

§ выполнив теплоизоляцию стенок котла;

§ проведя предварительный нагрев нагнетаемого в камеру горения воздуха;

§ регулярно продувая котёл;

§ наладив рекуперацию («улавливание») конденсата.

Методы повышения КПД теплового цикла ТЭС.

Для повышения КПД используется технологическая схема комбинированного производства электроэнергии и тепла, отпускаемого потребителям для производственных нужд или для теплофикации и горячего водоснабжения. С этой целью в турбинах производится отбор пара необходимых параметров после соответствующих ступеней. При этом через конденсатор проходит гораздо меньше пара, что позволяет повысить КПД до 60…65 %.

Повышение КПД может быть достигнуто и за счет подъема параметров острого пара. По оценкам специалистов повышение температуры пара до 600 о С позволит увеличить КПД примерно на 5 %, а подъем давления до 30 МПа – на 3…4%. Правда, для этого потребуется металл с более высокими показателями прочности.

Чем определяется оптимальность режима работы парового котла.

Температура газов в поворотной камере, давление воздуха за воздухоподогревателем, сопротивление воздухоподогревателя, расход воздуха на мельницы.

Влияние режимов работы вспомогательного оборудования на экономичность работы котельной установки.

Для нормальной и бесперебойной работы котельных установок требуется, чтобы топливо к ним подавалось непрерывно. Процесс подачи топлива складывается из двух основных этапов: 1) подача топлива от места его добычи на склады, расположенные вблизи котельной; 2) подача топлива со складов непосредственно в котельные помещения.

Любые нарушения режимов работы вспомогательного оборудования парового котла, такие как системы пылеприготовления, подготовки воды, тягодутьевые машины и т.д. оказывают существенное влияние выработку паровым котлом пара требуемых параметров.

Влияние шлакования поверхностей нагрева на режимы работы котельного агрегата.

Интенсивное загрязнение или шлакование поверхностей нагрева влекут за собой подъем температуры газов на выходе из топки и, как следствие этого, дополнительное загрязнение (шлакование) последующих поверхностей нагрева котла, появление повышенных неравномерностей по температуре и скорости газов в отдельных пакетах и змеевиках, повышение температуры перегретого пара и металла труб пароперегревателя, повышение сопротивления газового тракта котла и снижение его экономических показателей.

Современные технологии сжигания топлива.

Вихревое сжигание топлива, слоевое сжигание.

Кислородное топливо. Основной принцип состоит в том, что из воздуха выделяется кислород, который смешивается с угольной пылью и сжигается. При сжигании угля в чистом кислороде, не происходит образование оксидов азота. После нескольких ступеней очистки в д.г. остается только СО2.

Среди основных технологий сжигания топлива следует выделить низкотемпературную технологию сжигания, технологию с кольцевой топкой, использование водоугольного топлива и ПГУ с внутрицикловой газификацией угля.

За счёт чего в конденсаторе турбин увеличивается КПД ТЭС

Коэффициент полезного действия турбины можно увеличить, повысив температуру и давление пара, поступающего в турбину, или снизив температуру и давление насыщенного пара на выходе из турбины. Последнее достигается путем конденсации выходящего из турбины пара, которая происходит в установленном для этой цели конденсаторе при подаче в него охлаждающей воды.

Существует 2 метода определения КПД:

По прямому балансу;

По обратному балансу.

Определение КПД котла как отношение полезно затраченной теплоты к располагаемой теплоте топлива – это определение его по прямому балансу:

КПД котла можно определить и по обратному балансу – через тепловые потери. Для установившегося теплового состояния получаем

. (4.2)

КПД котла, определяемый по формулам (1) или (2), не учитывает электрической энергии и теплоты на собственные нужды. Такой КПД котла называют КПД брутто и обозначают или .

Если потребление энергии в единицу времени на указанное вспомогательное оборудование составляет , МДж, а удельные затраты топлива на выработку электроэнергии в, кг/МДж, то КПД котельной установки с учетом потребления энергии вспомогательным оборудованием (КПД нетто), %,

. (4.3)

Иногда называют энергетическим КПД котельной установки.

Для котельных установок промышленных предприятий затраты энергии на собственные нужды составляют около 4% вырабатываемой энергии.

Расход топлива определяется:

Определение расхода топлива связано с большой погрешностью, поэтому КПД по прямому балансу характеризуется низкой точностью. Данный метод используется для испытаний существующего котла.

Метод по обратному балансу характеризуется большей точностью, используется при эксплуатации и проектировании котла. При этом Q 3 и Q 4 определяется по рекомендации и из справочников. Q 5 определяется по графику. Q 6 – рассчитывается (редко учитывается), и по существу определение по обратному балансу сводится к определению Q 2 , которое зависит от температуры уходящих газов.

КПД брутто зависит от типа и мощности котла, т.е. производительности, вида сжигаемого топлива, конструкции топки. На КПД влияет также режим работы котла и чистота поверхностей нагрева.

При наличии механического недожога часть топлива не сгорает (q 4), а значит не расходует воздуха, не образует продуктов сгорания и не выделяет теплоты, поэтому при расчете котла пользуются расчетным расходом топлива

. (4.5)

КПД брутто учитывает только тепловые потери.


Рисунок 4.1 - Изменение КПД котла с изменением нагрузки

5 ОПРЕДЕЛЕНИЕ ПОТЕРЬ ТЕПЛОТЫ В КОТЕЛЬНОМ АГРЕГАТЕ.

СПОСОБЫ СНИЖЕНИЯ ПОТЕРЬ ТЕПЛОТЫ

5.1 Потеря теплоты с уходящими газами

Потеря теплоты с уходящими газами Q у.г возникает из-за того, что физическая теплота (энтальпия) газов, покидающих котел, превышает физическую теплоту поступающих в котел воздуха и топлива.

Если пренебречь малым значением энтальпии топлива, а также теплотой золы, содержащейся в уходящих газах, потеря теплоты с уходящими газами, МДж/кг, подсчитывается по формуле:

Q 2 = J ч.г - J в; (5.8)

где – энтальпия холодного воздуха при a=1;

100-q 4 – доля сгоревшего топлива;

a у.г – коэффициент избытка воздуха в уходящих газах.

Если температура окружающей среды равна нулю (t х.в =0), то потеря теплоты с уходящими газами равна энтальпии уходящих газов Q у.г =J у.г.

Потеря теплоты с уходящими газами занимает обычно основное место среди тепловых потерь котла, составляя 5-12 % располагаемой теплоты топлива, и определяется объемом и составом продуктов сгорания, существенно зависящих от балластных составляющих топлива и от температуры уходящих газов:

Отношение , характеризующее качество топлива, показывает относительный выход газообразных продуктов сгорания (при a=1) на единицу теплоты сгорания топлива и зависит от содержания в нем балластных составляющих:

– для твердого и жидкого топлива: влаги W Р и золы А Р;

– для газообразного топлива: N 2 , CO 2 , O 2 .

C увеличением содержания в топливе балластных составляющих и, следовательно, , потеря теплоты с уходящими газами соответственно возрастает.

Одним из возможных направлений снижения потери теплоты с уходящими газами является уменьшение коэффициента избытка воздуха в уходящих газах a у.г, который зависит от коэффициента расхода воздуха в топке a Т и балластного воздуха, присосанного в газоходы котла, находящиеся обычно под разрежением

a у.г = a Т + Da . (5.10)

В котлах, работающих под давлением, присосы воздуха отсутствуют.

С уменьшением a Т потеря теплоты Q у.г снижается, однако при этом в связи с уменьшением количества воздуха, подаваемого в топочную камеру, возможно появление другой потери – от химической неполноты сгорания Q 3 .

Оптимальное значение a Т выбирается с учетом достижения минимального значения q у.г + q 3 .

Уменьшение a Т зависит от рода сжигаемого топлива и типа топочного устройства. При более благоприятных условиях контактирования топлива и воздуха избыток воздуха a Т, необходимый для достижения наиболее полного горения, может быть уменьшен.

Балластный воздух в продуктах сгорания помимо увеличения потери теплоты Q у.г приводит также к дополнительным затратам электроэнергии на дымосос.

Важнейшим фактором, влияющим на Q у.г, является температура уходящих газов t у.г. Её снижение достигается установкой в хвостовой части котла теплоиспользующих элементов (экономайзера, воздухоподогревателя). Чем ниже температура уходящих газов и соответственно меньше температурный напор Dt между газами и нагреваемым рабочим телом, тем большая площадь поверхности Н требуется для такого же охлаждения газа. Повышение t у.г приводит к увеличению потери с Q у.г и к дополнительным затратам топлива DB. В связи с этим оптимальная t у.г определяется на основе технико-экономических расчетов при сопоставлении годовых затрат для теплоиспользующих элементов и топлива для различных значений t х.г.

На рис.4 можно выделить область температур (от до ), в которой расчетные затраты отличаются незначительно. Это дает основание для выбора в качестве наиболее целесообразной температуры , при которой начальные капитальные затраты будут меньше.

Существуют ограничительные факторы при выборе оптимальной :

а) низкотемпературная коррозия хвостовых поверхностей;

б) при 0 C возможна конденсации водяных паров и соединение их с окислами серы;

в) выбор зависит от температуры питательной воды, температуры воздуха на входе в воздушный подогреватель и других факторов;

г) загрязнение поверхности нагрева. Это приводит к снижению коэффициента теплопередачи и к повышению .

При определении потери теплоты с уходящими газами учитывают уменьшение объема газов

. (5.11)

5.2 Потеря теплоты от химической неполноты сгорания

Потеря теплоты от химической неполноты сгорания Q 3 возникает при неполном сгорании топлива в пределах топочной камеры котла и появления в продуктах сгорания горючих газообразных составляющих CO, H 2 , CH 4 , C m H n … Догорание же этих горючих газов за пределами топки практически невозможно из-за относительно низкой их температуры.

Химическая неполнота сгорания топлива может явиться следствием:

общего недостатка воздуха;

– плохого смесеобразования;

– малых размеров топочной камеры;

– низкой температуры в топочной камере;

– высокой температуры.

При достаточном для полного сгорания топлива качестве воздуха и хорошем смесеобразовании q 3 зависит от объемной плотности тепловыделения в топке

Оптимальное отношение , при котором потеря q 3 имеет минимальное значение, зависит от вида топлива, способа его сжигания и конструкции топки. Для современных топочных устройств потеря теплоты от q 3 составляет 0÷2 % при q v =0,1÷0,3 МВт/м 3 .

Для снижения потери теплоты от q 3 в топочной камере стремятся повысить температурный уровень, применяя, в частности, подогрев воздуха, а также всемерно улучшая перемешивание компонентов горения.

Курсовая работа

на тему: «Определение КПД котельного агрегата нетто»

Задание на курсовую работу (проект)

1. Определение КПД котельного агрегата брутто
по данным испытаний

Коэффициент полезного действия котельного агрегата брутто определяется по обратному балансу, %.

а) Потери тепла от механического недожога определяются по формуле , %

где
=0,1% – зольность топлива на рабочую массу;

– доля золы топлива в шлаке и провале;

– доля золы топлива в уносе;

Содержание горючих в шлаке;

-содержание горючих в уносе;

Для мазута
;

– располагаемое тепло на 1 кг твердого или жидкого топлива, кДж/кг

Для технических расчетов определяется как
=38799,4+209,34=39008,74 кДж/кг

где
=38799,4 кДж/кг – низшая теплота сгорания топлива

– физическое тепло топлива, кДж/кг,

=2,326*90=209,34 кДж/кг,

где
– теплоемкость топлива

– температура топлива, о С.

=
кДж/кгּК

где
=3,0% – влажность топлива на рабочую массу

– теплоемкость сухой массы топлива, Дж/кгּК.

Теплоемкость мазута при температуре t определяется

при t1,89+0,0053t, кДж/кгּК

при t1,3+0,0112t, кДж/кгּК

Температура подогретого мазута принимается равной

Следовательно, при
,
1,89+0,0053*90=2,367 кДж/кгּК

б) Потери тепла с уходящими газами определяется, %

= %

где = 39008,74 – кДж/кг – располагаемое тепло на 1 кг твердого топлива,

- энтальпия уходящих газов при соответствующем коэффициенте избытка воздуха
и температуре
, кДж/кг,

2620,47 + (1,3167–1)*2321,97 = 3355,84 кДж/кг

Значения = 2620,47 кДж/кг, = 2321,97 кДж/кг

КДж/кг кДж/кг

=1,1667+0,15=1,3167 кДж/кг

где
;

=
коэффициент избытка воздуха на выходе из топки;

3,0% – содержание кислорода на выходе из топки

=
кДж/кг

в) Потери тепла от химического недожога, %

,
,
- содержание в уходящих газах продуктов неполного сгорания топлива, %

где – объем сухих газов

=14,296–1,408=12,888 м 3 /кг

где - объем дымовых газов

1,563+8,09+1,408+(1,3167–1)*10,214=14,296 м 3 /кг

где
- объем трехатомных газов

0,0186*(83,0+0,375*2,8)=1,563м 3 /кг

где теоретический объем азота

0,79*10,214+0,08*0,3=8,09 м 3 /кг

где
– теоретически необходимый для полного сгорания топлива объем воздуха,

0,0889 (83,0+0,375*2,8)+0,265*10,4–0,0333*0,4=10,214 м 3 /кг

где
– объем водяных паров

1,356+0,016 (1,3167–1)*10,214=1,408 м 3 /кг

где
– теоретический объем водяных паров

0,111*10,4+0,0124*3,0+0,0161*10,214=1,356 м 3 /кг

г) Потери тепла от наружного охлаждения q 5 определяем по рис. 1.

Рис. 1. Потери тепла от наружного охлаждения

1 – котельный агрегат (с хвостовыми поверхностями); 2 – собственно котел (без хвостовых поверхностей).

д) Потери с физическим теплом шлаков для твердого топлива, %

Для мазута

Коэффициент полезного действия котельного агрегата брутто

100 – (5,186+0,596+0,02+0,65+0)=93,548%

2. Определяем часовой расход топлива, подаваемого в топку котельного агрегата, кг/ч

=
кг/ч =3,8 кг/с

где - тепло полезно-использованное в котельном агрегате

160000 (3476,9–924,24)+0,05*160000 (1491,3–924,24)=499155200 кДж/час

где =160000 кг/час – паропроизводительность котельного агрегата

– величина непрерывной продувки, принимаем
;

=1491,3 кДж/кг – энтальпия продувочной воды

=3476,9 кДж/кг-энтальпия перегретого пара

=924,24 кДж/кг – энтальпия питательной воды

Энтальпия перегретого пара i 0 определяется по давлению Р 0 =10 МПа и температуре t 0 =540С

Энтальпия питательной воды определяется по температуре питательной воды =215 о С и давлению
=13 МПа.

Для барабанных котельных агрегатов
=1,3*10=13 МПа

Энтальпия продувочной воды определяется по давлению в барабане
=1,2*10=12 МПа

3. Определение удельного расхода условного топлива на выработанный ГДж (Гкал) тепла

Удельный расход условного топлива на выработанный ГДж (Гкал) тепла определяется по формуле:

где – расход условного топлива, кгут/ч:

где – теплотворная способность топлива, кДж/кг;

– тепло полезно использованное в котельном агрегате, кДж/ч.

4. Температура точки росы определяется по формуле:

где
=
– приведенная сернистость в рабочей массе топлива

- температура, при которой происходит конденсация водяных паров, находящихся в составе дымовых газов, 0 С.

Парциальное давление водяных паров:

=
атм=0,0098 МПа

5. Определение мощности электродвигателя тягодутьевых машин (дутьевого вентилятора и дымососа)

Мощность электродвигателя дутьевого вентилятора и дымососа определяется по формуле, кВт

где = 1,2 – коэффициент запаса мощности;

= 68% – коэффициент полезного действия электродвигателя;

Q – расчетная подача тягодутьевой машины, м 3 /c.

– напор, развиваемый тягодутьевой машиной.

а) Расчетная подача дутьевого вентилятора

1,1*3,799*10,214 (1,1667–0,02+0,03–0,03)
65,87 м 3 /с

где
- коэффициент запаса;

=718*13,6*9,8=95695 Па – барометрическое давление

- расчетный расход топлива

= 3,8 (1–0,01*0,02)=3,799 кг/с

=1,1667 – коэффициент избытка воздуха на выходе из топки;

0,02,
=0,03,
=0,03 – присосы воздуха в газоходах котельного агрегата

Напор дутьевого вентилятора
1,6кПа

=

б) Расчетная подача дымососа

где = 1,1 – коэффициент запаса;

- коэффициент избытка воздуха за дымососом

Для мазута

- температура дымовых газов за дымососом

Для мазута

Напор дымососа
1,4кПа

=
238,3 кВт

6. Определяем мощность электродвигателя питательного насоса

Расчетная подача питательного насоса

=1,2*0,053 м 3 /с

где =44,44 – паропроизводительность котельного агрегата

1,2 – коэффициент запаса по производительности котельного агрегата

ρ – плотность воды, кг/м 3 ,
=833,33 кг/
; =0,0012/кг

Мощность электродвигателя питательного насоса, КВт:

=
=861,25 КВт

где

=13 МПа. – напор питательного насоса.

7. КПД котельного агрегата нетто
, который учитывает затраты электроэнергии на собственные нужды определяется по формуле:

=
%

где В=3,8 кг/с=13,68 т/ч – расход топлива

Q 1 =138654,2 Дж/с – тепло полезно использованное в котельном агрегате

W сн – расход электроэнергии на собственный нужды в котельном цехе

W сн = N дв + N дс + N пн + W р + W пл +W зу = 186+238,3+861,25=1285,55 кВт

где N дв =186 кВт – мощность дутьевого вентилятора;

N дс =238,3 кВт – мощность дымососа;

N пн =861,25 кВт – мощность питательного насоса;

8. Определим на сколько не точно определен расход топлива, подаваемого в топку котельного агрегата, если термопара показывает температуру острого пара (t o ) за котлом на 10 0 С выше

По условию задания изменим температуру острого пара:), точки измерения давления (Р), разряжения (S), отбора проб топлива (ОПТ), уноса (ОПУ), золы (ОПЗ) и т.д. и т.п.

Рис. 2. Типовая схема размещения точек измерений при балансовых испытаниях барабанного газомазутного котла:

Q рц – расход газообразных продуктов сгорания на рециркуляцию; G np – расход продувочной воды, С с – солесодержание питательной, котловой воды и насыщенного пара; К ф – калорифер; ДРГдымосос рециркуляции газов; t в, t пв, t п, t вп – температура воздуха, питательной воды, пара, воды на впрыск; υ – температура газообразных продуктов сгорания; р – давление; s – разряжение; Q – расход воздуха; G пв, G вп, D п – расходы питательной воды, воды на впрыск и свежего пара; R x анализ газов; ОПТ, ОПУ – отборы проб топлива, уноса; Э сн – расход электроэнергии на собственные нужды; Д – дымосос; ДВ – дутьевой вентилятор.

Список литературы

    Трембовля В.И., Фигнер Е.Я., Авдеева А.А. Тепломеханические испытания котельных установок. – М.: Энергия, 1991. -416 с.

    Тепловой расчет котельных агрегатов. Нормативный метод / Под. ред. А.В. Кузнецова и др. – М.: Энергия, 1973. – 296 с.

    Парилов В.А., Ушаков С.Г. Испытания и наладка паровых котлов. – М.: Энергоатомиздат, 1986. – 320 с.

    Кемельман Д.Н., Эскин Н.Б. Наладка котельных установок. Справочник. – М.: Энергоатомиздат. 1989. -320 с.

    Справочное пособие теплоэнергетика электрических станций./ Под. ред. А.М. Леонкова, Б.В. Яковлева. – Минск, Беларусь, 1974. – 368 с.

  1. Перевод на природный газ котла ДКВР 20/13 котельной Речицкого пивзавода

    Дипломная работа >> Физика

    Теплового баланса котельного агрегата служит для определения часового расхода топлива на котельный агрегат . В настоящем разделе... и т. п. К экономическим показателям работы котельной установки относятся КПД брутто и нетто , удельный расход условного топлива...

  2. Общая энергетика. Энергетические ресурсы земли и их использование

    Книга >> Промышленность, производство

    Ее под определенным давлением (см. т.4 на рис. 2.1) в нагревательные трубы котельного агрегата КА. В... расхода на собственные нужды) и КПД КЭС нетто (с учётом расходов на собственные... турбиной, МПа 4,32 5,88 6,46 КПД (нетто ), % 29,7 31,7 31,3 Реакторы с...

  3. Индивидуальное задание по изучению оборудования и процессов теплоэнергетических установок

    Реферат >> Физика

    Работающего на неперегретом паре. 2. Определение КПД котла Мгновенный КПД котла – это соотношение полезной... степень его технического совершенства, а КПД -нетто - коммерческую экономичность. Для котельного агрегата

Тепловой баланс котельного агрегата устанавливает равенство между поступающим в агрегат количеством теплоты и его расходом. На основании теплового баланса определяется расход топлива и вычисляется коэффициент полезного действия, эффективность работы котельного агрегата.

В котельном агрегате химически связанная энергия топлива в процессе горения преобразуется в физическую теплоту горючих продуктов сгорания. Эта теплота расходуется на нагревания воды. Вследствие неизбежных потерь при передаче теплоты и преобразования энергии вырабатываемый продукт (вода) воспринимает только часть теплоты. Другую часть составляют потери, которые зависят от эффективности организации процессов преобразования энергии (сжигания топлива) и передачи теплоты вырабатываемому продукту.

Уравнение теплового баланса для установившегося теплового состояния агрегата:

(37)
(38)

где – располагаемая теплота, ;

– полезно использованная теплота, ;

Суммарные потери, ;

– потери теплоты с уходящими газами, ;

– потери теплоты от химического недожога, ;

– потери теплоты от механической неполноты сгорания, ;

– потери теплоты в окружающую среду, ;

– потери теплоты с физической теплотой шлаков .

Левая приходная часть уравнения теплового баланса (38) является суммой следующих величин:

(39)

где – теплота, вносимая в котлоагрегат с воздухом на 1 топлива; эта теплота учитывается тогда, когда воздух нагревается вне котельного агрегата (например, в паровых или электрических калориферах, устанавливаемых до воздухоподогревателя); если воздух нагревается только в воздухонагревателе, то, теплота не учитывается, так как она возвращается в топку агрегата;

– теплота, вносимая с паром для распыления мазута (форсуночный пар);

– физическая теплота 1 топлива.

Т.к. предварительный подогрев воздуха и топлива отсутствует и пар для распыления топлива не используется, то формула (39) принимает вид:

Коэффициентом полезного действия водогрейного котла называют отношение полезной теплоты, израсходованной на выработку горячей воды, к располагаемой теплоте котла. Не вся полезная теплота, выработанная котельным агрегатом, направляется потребителям, часть теплоты расходуется на собственные нужды. С учетом этого различают КПД котла по выработанной теплоте (КПД-брутто) и по отпущенной теплоте (КПД-нетто).По разности выработанной и отпущенной теплоты определяется расход на собственные нужды.

В итоге КПД-брутто котла характеризует степень его технического совершенства, а КПД-нетто – коммерческую экономичность. КПД-брутто котельного агрегата определяется по уравнению прямого баланса:

где – относительные потери теплоты с уходящими газами, от химической неполноты сгорания топлива, от наружного охлаждения.

Относительные потери теплоты с уходящими газами определяются по формуле:

– потери теплоты от механической неполноты сгорания (учитывается только при сжигании твердого и жидкого топлива), %

6.1.4 Расчет количества топлива, сжигаемого в котельном агрегате

Общий расчет топлива, подаваемого в топку котельного агрегата:

где – расход воды через котельный агрегат, кг/с;

– энтальпия горячей и холодной воды (на выходе и входе водогрейного котла) , кДж/кг

Таким образом,

Список использованных источников

1. Строительная климатология. СНиП 23-01-99.

2. Котельные установки. СНиП II-35-76.

3. Энергетическая эффективность жилых и общественных зданий. Нормативы по энергопотреблению и теплозащите. ТСН 23-341-2002 Рязанской области Администрация Рязанской области г. Рязань – 2002.

4. Тепловые сети. СНиП 2.04.07-86.

5. Тепловой расчет котельных установок. Методические указания для выполнения расчетной работы №1. Мордовский государственный университет им.Н.П.Орагева. Саранск, 2005.

6. Эстеркин Р.И. Котельные установки. Курсовое и дипломное проектирование: Учеб. пособ. Для техникумов. – Л.: Энергоатомиздат. Ленингр. Отд-ние, 1989.

7. Выбор и расчет теплообменников. Учебное пособие. Пензенский государственный университет. Пенза, 2001.

8. Роддатис К.Ф. Котельные установки. Учебное пособие для студентов неэнергетических специальностей вузов. – М.: «Энергия», 1977.

9. Роддатис К.Ф., Полтарецкий А.Н. Справочник по котельным установкам малой производительности. – М.: Энергоатомиздат, 1989.

10. Бузников Е.Ф., Роддатис К.Ф., Берзиньш Э.Я.. Производственные и отопительные котельные 2-е изд. – М.: Энергоатомиздат, 1984.

11. Справочник эксплуатационника газифицированных котельных. Л.Я.Порецкий, Р.Р.Рыбаков, Е.Б.Столпнер и др. – 2-е изд., перераб. и доб. - Л.: Недра,1988.

12. Александров А.А., Григорьев Б.А. Таблицы теплофизических свойств воды и водяного пара: Справочник. Рек. Гос. службой стандартных справочных данных. ГСССД Р-776-98 – М.: Издательство МЭИ. 1999.

13. Сайт компании «Виссманн» www.viessmann.ru

14. Сайт компании «Grundfos» www.grundfos.ru

15. Сайт компании «Ридан» www.ridan.ru

ПРИЛОЖЕНИЕ А

Таблица А.1 – Единицы измерения энергии

Таблица А.2 –Характеристика некоторых видов топлива


Таблица 1- Климатические параметры холодного периода года

Город Температура воздуха наиболее холодных суток, °С, обеспеченностью Температура воздуха наиболее холодной пятидневки, °С, обеспеченностью Температура воздуха, °С, обеспеченностью 0,94 Абсолютная минимальная температура воздуха, °С Средняя суточная амплитуда температуры воздуха наиболее холодного месяца, °С Продолжительность, сут, и средняя температура воздуха, °С, периода со средней суточной температурой воздуха Средняя месячная относительная влажность воздуха наиболее холодного месяца, % Средняя месячная относительная влажность воздуха в 15 ч. наиболее холодного месяца, %. Количество осадков за ноябрь-март, мм Преобладающее направление ветра за декабрь-февраль Максимальная из средних скоростей ветра по румбам за январь, м/с Средняя скорость ветра, м/с, за период со средней суточной температ урой воздуха £ 8 °С
£ 0°С £ 8°С £ 10°С
0,98 0,92 0,98 0,92 продолжительность средняя температура продолжительность средняя температура продолжительность средняя температура
Москва -36 -32 -30 -28 -15 -42 6,5 -6,5 -3,1 -2,2 ЮЗ 4,9 3,8
Нижний Новгород -38 -34 -34 -31 -17 -41 6,1 -7,5 -4,1 -3,2 ЮЗ 5,1 3,7
Оренбург -37 -36 -34 -31 -20 -43 8,1 -9,6 -6,3 -5,4 В 5,5 4,5
Орел -35 -31 -30 -26 -15 -39 6,5 -6 -2,7 -1,8 ЮЗ 6,5 4,8
Пермь -42 -39 -38 -35 -20 -47 7,1 -9,5 -5,9 -4,9 Ю 5,2 3,3
Екатеринбург -42 -40 -38 -35 -20 -47 7,1 -9,7 -6 -5,3 З 3,7
Саратов -34 -33 -30 -27 -16 -37 6,9 -7,5 -4,3 -3,4 СЗ 5,6 4,4
Казань -41 -36 -36 -32 -18 -47 6,8 -8,7 -5,2 -4,3 Ю 5,7 4,3
Тула -35 -31 -30 -27 -15 -42 6,8 -6,4 -3 -2,1 ЮВ 4,9
Ижевск -41 -38 -38 -34 -20 -48 6,9 -9,2 -5,6 -4,7 ЮЗ 4,8

Примечание - Абсолютная минимальная температура воздуха выбрана из ряда наблюдений за период 1881-1985 гг.; в СНиП 2.01.01-82 "Строительная климатология и геофизика" абсолютная минимальная температура воздуха для отдельных пунктов определялась методом приведения.