Меню
Бесплатно
Главная  /  Жалюзи  /  Энергоэффективное жилье. Самые актуальные вопросы

Энергоэффективное жилье. Самые актуальные вопросы

В целях экономии природных и энергетических ресурсов человечеством разработаны комплексные меры по утеплению зданий и доведению уровня тепловой изоляции до значения близкого к абсолютному. В этом материале будет раскрыта суть пассивного дома как современного и экономного типа жилья.

Понятия пассивности и энергоэффективности

Наш обзор обойдет стороной общепринятый перечень преимуществ и технических показателей. Например, энергоэффективным считается строение, потеря тепла в котором не превышает 10 кВт·ч с каждого квадратного метра в течение года, но о чем это должно сказать читателю? Если пересчитать, то за год с небольшого (до 150 м 2) дома уходит примерно 1,5-2 МВт энергии, что сопоставимо с энергопотреблением обычного коттеджа за один зимний месяц. Столько же потребляют 2-3 лампы накаливания по 100 Вт, включенные постоянно в течение одного года, что эквивалентно 200 м 3 природного газа.

Столь малое энергопотребление позволяет в принципе отказаться от системы отопления в доме, используя для обогрева тепло, выделяемое человеком, животными и бытовыми приборами. Если дом не требует целенаправленных затрат энергии на работу отопительных установок (или требует, но незначительный минимум), такой дом называют пассивным. Точно так же пассивным может называться дом с весьма высокими потерями тепла, потребность в котором восполняется собственной энергетической установкой, работающей на возобновляемых источниках энергии.

Так что энергоэффективный дом не обязательно претендует на звание пассивного, справедливо и обратное. Дом же, который не только покрывает собственные энергетические нужды, но и передает какой-либо вид энергии в общественную сеть, называют активным.

В чем основная идея пассивного дома

Все три вышеперечисленных понятия принято объединять: пассивный дом обладает максимально расширенным комплексом мер по обеспечению энергетической автономности. В конце концов, никому не интересно годами тестировать свое жилище, добиваясь норматива по теплопотерям для получения почетного звания. Важно, чтобы внутри было сухо, тепло и комфортно.

Существует мнение, что сегодня любая новостройка должна возводиться по технологии пассивного дома, благо, что технические решения есть даже для многоэтажных зданий. Это не лишено смысла: затраты на обслуживание дома за период междуремонтной эксплуатации обычно даже выше затрат на строительство .

Пассивный же дом при более объемных первоначальных вложениях практически не требует затрат весь срок службы, который, к тому же, превышает срок эксплуатации обычных зданий за счет абсолютной защиты несущих и ограждающих конструкций в комплексе с самыми современными и технологичными решениями строительства и ремонта.

Главной технической особенностью пассивного дома можно назвать непрерывный контур теплоизоляции, от фундамента до кровли. Такой «термос» хорошо сохраняет тепло, но не все материалы пригодны для его устройства.

Материалы для теплоизоляции

Пенополистирол в таких объемах неприменим, он горюч и токсичен. В ряде проектов это решается огнезащитным слоем у несущего целика и под фасадной отделкой, что ведет к неоправданному удорожанию. Использование стеклянной и минеральной ваты также не решает проблему. В ней, так же как и в пенополистироле, активно селятся вредители (насекомые и грызуны), да и срок службы у ваты в 2-3 меньше, чем у самого пассивного дома.

Пригодный для целей пассивного дома материал — пеностекло . Краткий свод характеристик: наименьшая теплопроводность из известных материалов широкого потребления, полная экологичность за счет инертности стекла, простая обработка и хорошая способность к склеиванию. Из минусов — высокая цена и сложность производства, но материал однозначно стоит своих денег.

Менее дорогостоящий, но пригодный для утепления пассивного дома материал — вспененный полиуретан. Технически такие дома пассивными назвать нельзя, их теплопотери составляют 30-50 кВт·ч с квадратного метра в год, но и эти показатели вполне приемлемы. Полиуретан может устанавливаться как листовой материал, либо наноситься методом торкрет-оштукатуривания.

Кровля и теплый чердак

Другое ключевое отличие пассивных домов — наличие неотапливаемой мансарды или теплого чердака и качественное утепление кровли без мостиков холода. При таком подходе выделяется две границы температур: на перекрытии верхнего этажа и в самой кровле. Благодаря разнесению теплозащиты гарантированно устраняется образование конденсата в утеплителе кровли и существенно снижаются потери тепла.

Перекрытие верхнего этажа обычно делают каркасным на деревянных балках, пустоты заполняют слоем минеральной ваты средней плотности толщиной в 20-25 см. Перекрытие лучше утеплять листовыми материалами с устройством перекрестного ячеистого каркаса и точной подгонкой плит утеплителя. Все швы и стыки заполняются специальным клеем или монтажной пеной. Особое внимание уделяется устройству защитного пояса в месте опоры стропильной системы на стены.

Теплый чердак устраивается по принципу рекуперации вентиляционной системы. Каналы вытяжной вентиляции выходят прямо в герметичное чердачное помещение, откуда выводятся через единственное отверстие с принудительным оттоком. Часто этот канал снабжают рекуперационной установкой, передающей часть тепла от вытяжного воздуха приточному.

Окна, двери и другие места утечек

С окнами для пассивного дома все просто: они должны быть высокого качества и обязательно сертифицированными для применения в отрасли энергосбережения. Признаками подходящего изделия считаются стеклопакеты с двумя или более камерами, заполненными газом, низкоэмиссионные стекла разной толщины и двойное примыкание стеклопакета к профилю, уплотненное каучуковой лентой. Для дверей важно сотовое наполнение и наличие двойного притвора по всему периметру. Не менее важно соблюдать правила монтажа и защиты мест примыканий.

Пассивный дом имеет свои особенности устройства фундамента. Для защиты структуры бетона его гидрофобизируют инъекционным способом и дополнительно защищают внешним слоем обмазочной гидроизоляции. Утеплитель опускается на всю глубину фундамента, таким образом цокольный этаж становится второй после теплого чердака буферной зоной.

Энергообеспечение пассивного дома

К пассивному дому обычно не подводят газ, для бытовых целей и обогрева полностью хватает однофазной электросети. С электрическими нагревателями все просто: сколько киловатт вложено в дом, столько в нем и остается, КПД составляет почти 99%, в отличие от газовых котлов.

Но электрическая сеть в качестве единственного источника энергоснабжения имеет массу недостатков, заключающихся по большей части в ненадежности подключения. Часто дома снабжаются достаточно сложной электросетью, включающей аварийный генератор с автозапуском, либо используют для резервной подпитки парк аккумуляторов или солнечные батареи.

Нагрев воды для бытовых нужд обычно выполняется солнечными коллекторами , преимущественно вакуумными. Вообще автономные источники энергии достаточно разнообразны, среди разновидностей можно подобрать оптимальное решение для объектов с разными условиями.

Энергосберегающий дом

Как с минимальными затратами возвести современный энергосберегающий дом. О том, что современный дом должен быть энергосберегающим, писалось уже неоднократно. Сегодня мы представляем вашему вниманию фоторепортаж и подробное описание строительства такого дома, причем, весьма оригинального с точки зрения, как архитектуры, так и технологии возведения. И самое главное, достаточно недорогого для данного класса домов.

Этот дом, построенный под патронажем фирмы «Rockwool» в подмосковном посёлке Назарьево, отличается весьма высокими показателями энергосбережения при небольшой стоимости. Наверное, поэтому он и получил своё название - Green Balance. Здание построено для обычной российской семьи. При его возведении использованы оригинальные технологические приёмы, которые заслуживают внимания.

Никому не нужно энергосбережение, если дом баснословно дорог и при этом неудобен для проживания. Но к сожалению, многие здания, возводимые в последние годы в связи с модой на энергоэффективность, как раз этим и страдают. Тем не менее, возможно, при всей их некомфортности они позволяют экономить энергию даже лучше, чем дом Green Balance. Происходит это потому, что энергосбережение при проектировании становится самоцелью, а об удобстве будущих владельцев жилища архитектор думает в последнюю очередь. Создавая проект Green Balance, доказали, что проектировать энергоэффективный дом можно и нужно, думая, прежде всего об удобстве эксплуатации, а энергосбережение при этом должно быть лишь одной из составляющих комфорта.

И ещё одно: можно, как говорят архитекторы, «переводить калифорнийскую архитектуру на русские рельсы» - то есть слепо копировать западные проекты. А можно взять лучшее, что есть в них, - эффективность, качество, быстровозводимость и т. п. - и заложить это в проект, учитывающий и чисто российские особенности и традиции. Только тогда получится дом, удобный для проживания и «родной» для его обитателей. В данном проекте удалось воплотить в реальность все эти идеи. Впрочем, судите сами. Дом Green Balance при его высоких теплосберегающих характеристиках и уровне комфорта действительно оказался достаточно недорогим. Это получилось прежде всего благодаря тому, что в его конструкции использовано множество новых разработок, созданных нами именно для данного экспериментального проекта.

Оптимизируем все, от стоимости до планировки

Поскольку владельцы дома - люди далеко не богатые, они попросили, чтобы стоимость 1 м² с отделкой была недорогой.

  • в доме установлены пластиковые окна;
  • на пол уложены ламинат, ковролин и лакированная фанера;
  • белые гипсокартонные стены покрыты фактурной краской, а части деревянного каркаса - лаком;
  • использованы сантехника эконом класса и встроенные в потолок и недорогие светильники;
  • весьма оригинальные лестницы, изготовленные строительным способом, безопасны для детей

То есть дом площадью около 200 м² (без мансарды) обеспечен всем, что нужно для жизни, и при этом достигнут необходимый уровень комфорта. В доме три санузла, две кухни (одна оборудована полностью, вторая - частично), финская баня (правда, пока без купели), четыре изолированные спальни и большое зонированное общественное пространство, включающее зимний сад. Поэтому места здесь хватает и детям, и взрослым, и даже гостям.

Оптимален дом и с точки зрения планировки. Спальня владельцев и две детские находятся на третьем этаже. На втором, куда можно попасть сразу с главного входа, - спальня для родителей хозяев (им трудно подниматься на третий этаж), хозяйская кухня и гостиная. На первом этаже - общественные и технические помещения, баня и ещё одна кухня. Такое расположение исключает хаотичное перемещение жильцов с нижнего этажа на самый верхний: члены семьи весь день могут проводить в общественных зонах первого и второго уровней, а на третий (спальный) подниматься только вечером. Если приехали друзья, они могут расположиться на первом этаже. В том случае, если гостей много или одновременно пришли две разные компании, можно открыть для посещения и второй этаж (при этом в хозяйскую спальню и детские доступ будет по-прежнему ограничен).

Дом не только тёплый, но и светлый : его довольно толстые энергосберегающие стены оптимально сочетаются с большими светопрозрачными конструкциями, создающими ощущение простора. Конечно, при этом сопротивление теплопередаче ограждающих конструкций оказалось несколько неравномерным, но в целом оно сбалансировано и соответствует заданным требованиям: у дома Green Balance данный показатель близок к 7 м² х °С/Вт, что чуть ниже европейских нормативов для пассивных зданий (8-10 м² х °С/Вт). Как этого добились?

Компактно и тепло

Чтобы дом эффективно сберегал энергию, недостаточно заложить в его стены толстый слой утеплителя. Он должен быть компактным. Чем компактнее здание, тем проще сохранять в нём тепло, и к тому же стоить оно будет дешевле. Поясним это утверждение.

Можно построить энергоэффективный одноэтажный дом площадью 200 м², но он получится очень дорогим из-за огромной площади фундамента и стен. Другое дело - трёхэтажное здание той же площади. Оно гораздо более компактно, а следовательно, решить задачу удержания тепла внутри его можно значительно быстрее и дешевле. А фундамент у него будет почти в 3 раза меньше (кстати, стоимость основания составляет 30 — 40 % от общей цены дома). Чтобы сделать фундамент ещё дешевле и одновременно снизить теплопотери, архитекторы применили два оригинальных приёма. Во-первых, поставили дом на плавающую монолитную «утеплённую» плиту, которая одновременно служит основанием пола первого этажа. Благодаря этому под зданием нет «закопанных» в землю массивных конструкций, которые забирают тепло. Во-вторых, заглубили первый этаж на 1 м ниже отметки грунта, создав с одной стороны постройки земляную подсыпку на всю высоту первого этажа. Она позволила решить сразу две задачи: искусственно заглубить основание ниже точки промерзания грунта и устроить главный вход в дом на уровне второго этажа.

Таким образом, первый этаж оказался под землёй, но не полностью, а лишь частично. Это позволило ему остаться полноценным жилым этажом. В той части здания, которая не заглублена в землю, обустроили общественные помещения. Днём свет в них поступает сквозь высокие панорамные окна. В конструкции последних предусмотрена и дверь - через неё можно выйти на примыкающую к дому площадку для отдыха. Там, где стены первого этажа засыпаны землёй, находятся помещения, которым окна не требуются: финская баня, санузел и т. п. Котельная, расположенная в этой части дома, имеет отдельный вход со стеклянной дверью. Теперь, когда мы разобрались с основными, заложенными в проект идеями, рассмотрим, как их воплощали в жизнь на строительной площадке.

Котлован и фундамент

Сначала выполнили разметку участка и выставили так называемые обноски. Затем сняли плодородный слой грунта (он пригодится для ландшафтных работ) и выкопали котлован глубиной 1 м не только под самим домом, но и под «патио» - площадкой, на которую будут выходить окна первого этажа. Грунт не вывозили, а сразу подсыпали на указанные в проекте места. Дно котлована вручную выровняли и закрыли песчаной подушкой толщиной около 10 см.

Основанием дома стала монолитная плита с прямоугольными рёбрами, расположенными в виде сетки. Шаг последней был переменным: под той частью дома, где стены каменные, он меньше, под каркасной - больше. Такая конструкция (она представляет собой ноу-хау архитекторов и на фотографиях подробно не показана) позволяет уравнять давление, которое оказывают на грунт части здания, имеющие различный вес (в данном случае - каменная и каркасная).

Прежде чем приступить к возведению монолитной оребрённой плиты основания, к дону подвели трубы канализации и водопровода (они поселковые), их утеплили и подняли над уровнем будущего пола (а). Чтобы приподнять один ряд дорожной сетки над другим, обычно применяют пластиковые элементы. Для экономии вместо них использовали подручный материал (б)

Под силовые рёбра выкопали траншеи глубиной около 50 см и шириной 30 см. Их полностью засыпали песчано-гравийной смесью (ПГС) толщиной примерно 40 см. ПГС и песок тщательно утрамбовали. Между будущими рёбрами на песчаную подсыпку уложили в несколько слоев гидроизоляцию, а на неё - плиты «Rockwool Флор Баттс» общей толщиной 120 мм и прикрыли их слоем гидроизоляции. Затем в образовавшихся между плитами утеплителя «канавках» создали из арматуры диаметром 12 мм каркас будущих рёбер. После этого по всей площади фундамента уложили в два слоя дорожную сетку из проволоки диаметром 5 мм с ячейками 100 х 100 мм, связав её с арматурой силовых рёбер. Далее в местах расположения стоек силового деревянного каркаса дома к арматуре вертикально присоединили металлические стержни, к которым будут крепиться «башмаки », удерживающие стойки от горизонтального смещения. Наконец из бетона марки М300 отлили плиту с рёбрами сечением 300 х 300 мм и толщиной «стяжки» 80 мм.

Возведение стен подвала

Наружную стену первого этажа, которая впоследствии окажется ниже уровня грунта, изготовили из кирпича, причём весьма оригинальным способом. Вначале торчащую из-под основания гидроизоляцию загнули вверх и герметично приклеили к торцевой поверхности плиты. Затем вдоль контура стены установили лист сотового поликарбоната толщиной 5 мм, закрепив его в вертикальном положении с помощью деревянных стоек, и герметично приклеили к слою гидроизоляции. Таким образом, ещё до возведения самой стены решили проблему её изоляции от поступающей из фунта влаги. Эта изоляция была сплошной- она состояла из одного листа сотового поликарбоната длиной 12 м. Возвести саму дугообразную стену толщиной в полкирпича (она тонкая, так как является не несущей, а служит всего лишь подпорной стенкой для фунта) было, как говорится, делом техники.

Стену «подвала» гидроизолировали с помощью сотового поликарбоната (а); в многослойной внешней стене дома (б) внешнюю (декоративную) и внутреннюю (несущую) стенки через каждые шесть рядов кладки связывали между собой арматурной сеткой (в)

Силовой каркас и стены

Наружные стены здания комбинированные - частично кирпичные, частично каркасные. Почему так? Кирпичные стены из-за своей большой массы обладают довольно значительной теплоёмкостью, иногда даже излишней. Стены каркасного дома имеют минимальную массу и поэтому отличаются невысокой теплоёмкостью. Комбинация двух материалов даёт ряд существенных преимуществ. Во-первых, она позволяет переложить часть нагрузки с каркаса на гораздо более мощные кирпичные конструкции. Во-вторых, даёт возможность уравнять теплоёмкость стен дома в целом (каменная стена будет работать как пассивный аккумулятор). В-третьих, кирпичные стены станут надёжной опорой для бетонных стяжек в ванных комнатах и санузлах.

Деревянный каркас и кирпичные стены возводили параллельно . Сопряжение частей деревянного каркаса с кладкой выполняли через прокладки из утеплителя. Это позволило создать «скользящую посадку», которая и дала возможность нивелировать разницу величин температурного расширения кирпича и дерева.

Каменные стены многослойные: они состоят из двух кирпичных стенок и уложенного между ними слоя утеплителя «Rockwool Венти Баттс» толщиной 100 мм. Толщина внутренней опорной стены- 380 мм (полтора кирпича). Внешняя стенка, выложенная из более дорогого облицовочного кирпича, имеет толщину 120 мм (полкирпича). Деревянные стойки каркаса сечением 150 х 150 мм установили в стальные подпятники. На них закрепили ригели - горизонтальные деревянные балки сечением 200 х 120 мм, которые изготовили на месте, склеивая и скрепляя саморезами доски сечением 200 х 4О мм (балка позволяет перекрывать пролёты до 8 м). Затем, уже опираясь на ригели, создали конструкцию перекрытия (о ней чуть позже).

А где же каркасные стены? Их пока нет. При возведении этого здания использовали практически тот же приём, что и при строительстве многоэтажного дома из монолитного бетона: сначала соорудили несущую «этажерку», а потом опёрли на неё внешние ненесущие ограждения. То есть возведённая силовая каркасная «этажерка» являлась самонесущей конструкцией. Единственное отличие от бетонного аналога в том, что в момент создания её надо было удерживать от боковых колебаний временными раскосами. После того как соорудили кирпичные стены, образующие весьма жёсткую угловую конструкцию, и соединили их с каркасом, именно они стали защищать последний от боковых колебаний. Все временные раскосы сняли.

Решетчатые перекрытия

У перекрытий дома необычная конструкция - решётчатая. Они созданы из устанавливаемых на узкую кромку досок сечением 100 х 40 мм, расположенных с шагом 600 мм в двух перпендикулярных друг другу рядах (по высоте). При этом нижний ряд досок опирается на прикреплённые к стойкам балки-ригели. Снизу к кромкам «решётки» плашмя подшили доски сечением 100 х 20 мм. Сверху на «решётку » уложили настил из ОСП-плит толщиной 8 мм, поверх которого так же, как снизу - «клеткой», - прибили доски 100 х 20 мм, и уже к ним прикрепили сплошной настил пола из ОСП-плит толщиной 18 мм.

Расположенные перпендикулярно друг другу два ряда досок в междуэтажном перекрытии образуют пространственную решётку с размером ячеек 600 * 600 мм (а, б). В готовом виде такое перекрытие представляет собой сплошную решётчатую ферму, способную выдерживать нагрузки до 250 кг/м²

Чтобы обеспечить звуковой комфорт, перекрытие изолировали плитами «Rockwool Акустик Баттс», а сверху на «решётку» (прежде чем создавать настил из ОСП-плит толщиной 8 мм) уложили вспененный фольгированный материал (фольгоизол). Он одновременно служит и «амортизатором» для сплошного настила пола, и отражателем тепла, а также света, если в решётку снизу будет встроен светильник. Следует отметить, что даже при перекрывании пролётов шириной до 8 м толщина перекрытия не превышает 300 мм - клеёные балки-ригели, на которые опирается «решётка», остаются в интерьере и не уменьшают видимую высоту потолков.

И ещё один любопытный момент. Внешний контур решётчатого перекрытия в момент возведения лишь приблизительно совпадает с внешним контуром будущих наружных стен дома. Точные размеры оно приобретает позднее - при создании каркаса обшивки внешних стен, когда края перекрытия опиливают. В решётчатом перекрытии можно выпиливать проёмы произвольной формы, только необходимо укрепить их края. Внутренние перегородки допускается устанавливать в любом месте.

Кровельное перекрытие (а, б) отличается от междуэтажного тем, что его решётку образуют не два, а три ряда стоящих на узкой кромке досок. Эта позволяет усилить несущую способность конструкции и увеличить толщину слоя укладываемого утеплителя (в), что для кровли просто необходимо

«Решётку» кровельного перекрытия создали не из двух, а из трёх рядов стоящих на узкой кромке досок. Поверх неё уложили сплошной настил из ОСП-плит толщиной 12 мм, а на него- рулонный кровельный материал в несколько слоёв. Форма кровельного перекрытия довольно оригинальна- оно односкатное (уклон кровли составляет около 7-10°), но не плоское, а как бы закрученное по спирали.

Кровельное перекрытие тщательно утеплили (а), а затем по нему сделали сплошной настил из ОСП-плит (б), стыки которых герметизировали битумной мастикой

Каркасные стены

Кровельное перекрытие и перекрытие первого этажа по периметру обрезали по заданному проектом контуру. После этого их утеплили, используя плиты «Rockwool Лайт Баттс». Далее к «решёткам» обоих перекрытий с шагом 600 мм вертикально прикрепили доски сечением 100 х 50 мм, создав из них каркас наружных стен. Когда их контур полностью обрисовался, по нему обрезали края перекрытия второго этажа.

Каркас наружных стен создали из досок сечением 100 х 50 им, прикреплённых к силовым «решёткам» перекрытий. Такой необычный приём позволяет возводить стены, произвольные по форме и ушу наклона

Затем в местах, предусмотренных проектом, каркас обшили ОСП- плитами толщиной 9 мм. Плиты прибивали к каркасу, оставляя между ними горизонтальные щели шириной 2 см. Они по замыслу архитекторов должны обеспечивать возможность выхода наружу из влажных помещений или зимнего сада паров воды, попавших в смонтированный на стенах изнутри дома утеплитель. Проникнув сквозь щели во внешнее утепление, эти пары затем смогут выйти из него в атмосферу. В дальнейшем стены были оштукатурены и окрашены.

Внутренние перегородки в доме имеют металлодеревянную каркасную конструкцию (а). Для звукоизоляции внутрь них заложили утеплитель «Rockwool Акустик Баттс», который с обеих сторон прикрыли сначала пароизоляцией, а затем листами гипсокартона (б)

Каркасные стены дома и торцы перекрытий всех этажей изнутри утеплили каменной ватой «Rockwool Лайт Баттс». Утеплитель сверху прикрыли фольгоизолом (его устанавливают фольгой внутрь помещения), создав таким образом пароизоляцию, отражающую тепло (а, б). Поверх неё смонтировали каркас из металлопрофилей, который обшили листами гипсокартона

Светопрозрачные конструкции

ОСП-плиты прибили к каркасу только в местах, предусмотренных проектом. Дело в том, что значительную часть фасада обшили листами сотового поликарбоната толщиной 25 мм, которые с торцов тщательно загерметизировали. В чём плюсы такой отделки? Благодаря применению листов размером 12 х 2 м создаваемые с их помощью «стены» практически не продуваются. И хотя теплосберегающие характеристики поликарбоната толщиной 25 мм практически такие же, как двухкамерного стеклопакета, собранная с его использованием светопрозрачная конструкция значительно теплее, чем остеклённая такой же площади.

В доме использованы и обычные стеклянные окна и двери. Их рамы выполнены из пятикамерного ПВХ-профиля (самый экономичный вариант) и оснащены двухкамерными стеклопакетами, которые изготовлены с применением низкоэмиссионного i-стекла и заполнены инертным газом.

Общественные помещения дома освещают встроенные в потолок светильники (а). Лестницу изготовили на месте, её ступени с одной стороны опёрли на стену (б, в), с другой прикрепили металлоэлементами к мощной балке - косоуру

Чтобы уменьшить теплопотери в зоне примыкания окон к кирпичной стене, их крепили следующим образом. При возведении стен по периметру оконных проёмов оставили пазы сечением 120 х 120 мм, в которые перед монтажом окон вкладывали нарезанные из утеплителя полосы. Окна устанавливали на анкерные пластины, прикрепляемые к кирпичной кладке проёма со стороны помещения. При монтаже утеплитель слегка поджимали, чтобы он, распрямившись после установки окон, сам прикрыл щель между рамой и проёмом. В дальнейшем оконные откосы снаружи оштукатурили.

При наружной отделке утеплённые не только снаружи, но и изнутри (а) каркасные стены дома оштукатурили по армирующей сетке составом Rockfacade, а затем окрасили ярко-оранжевой фасадной краской (б, в)

Система отопления

Несколько необычно организована подача теплоносителя к обогревающим устройствам: он поступает наверх, а затем самотёком расходится по системе отопления. В обычном режиме воду наверх подаёт электронасос, а в отсутствие электроснабжения она направляется туда за счёт так называемой гравитационной циркуляции. Последнюю обеспечивает подающий воду наверх стояк, который состоит не из одной, а из двух труб диаметром 32 мм (клапан, открывающий подачу теплоносителя через вторую трубу, срабатывает, когда в сети исчезает напряжение).

Создавая «тёплые стены», в качестве последнего слоя при утеплении уложили фольгированный материал «Rockwool Lamella Mat» (а). Чтобы полипропиленовые трубы системы не провисали под действием температуры, их поместили в короба из стального оцинкованного профиля (б). На первом этаже и в помещениях санузлов смонтировали водяные тёплые полы (в)

В доме использованы сразу три системы обогрева . Первая - водяные тёплые полы , смонтированные на первом этаже, а также в санузлах. Вторая - конвекторы , установленные под большими светопрозрачными конструкциями. Третья - тёплые стены . Их мы рассмотрим подробно. К этим утеплённым и покрытым фольгой стенам в горизонтальном положении прикрепили стальные профили шириной 27 мм, в которые змейкой уложили полипропиленовые трубы диаметром 20 мм. Поверх последних смонтировали профили металлокаркаса и закрыли их гипсокартоном.

Сердцем системы вентиляции стала рекуперативная приточно-вытяжная установка, размещённая в котельной (а). Воздуховоды системы проложены внутри решётчатых перекрытий. Видимой осталась только труба воздухозабора (б)

«Тёплая стена» передаёт тепло двумя способами - это излучение и конвекция. Лучистый обогрев создаётся в результате того, что трубы нагревают гипсокартон и он, в свою очередь, начинает излучать тепло в помещение.

Дом отапливает котёл мощностью 36 кВт, пока работающий на деревянных брикетах. Когда подведут газ, котёл переведут на это топливо. Отопительный дровяной котёл оснастили дымоходом из сандвич-трубы (а), который проложили в «шахте» с каркасом из металлопрофилей. В ней же смонтирован и стояк «выхлопа» системы вентиляции (б)

Конвективный обогрев возникает потому, что воздух через отверстия в нижней зоне обшивки проникает в пространство за гипсокартоном, где, нагреваясь, постепенно поднимается вверх и выходит в помещения через отверстия в верхней зоне обшивки.

Поисковые теги:

Почему в нашей стране почти не строят энергоэффективные дома? Оказывается, все дело в размытой выгоде, о которой застройщики порой и не догадываются


В последние годы стало модно с разных трибун рассуждать об энергоэффективности. Но если вы зададите бывалому строителю вопрос, зачем нужно строить энергоэффективный дом, то, пожалуй, тот не сразу найдется, что ответить. Почему?

А все потому, что выгода от такого строительства размыта, - размышляет член Экспертного совета при Комитете Госдумы по жилищной политике и ЖКХ Леонид Журавель . - Нашему российскому застройщику, действительно, не всегда понятно, зачем он должен вкладываться в возведение дома с энергоэффективными характеристиками.

Как заинтересовать застройщика

Во-первых, весьма сомнительно, что он сможет его дороже продать на рынке: население-то у нас пока плохо знакомо с преимуществами ресурсосберегающего здания. Во-вторых, вряд ли удастся получить и какие-то льготы от государства - ни налоговых, ни каких-либо иных преференций за подобные проекты не предусмотрено. Тут-то и возникает резонный вопрос: а действительно, зачем все это?

Вот на этой развилке, замечает Леонид Журавель, и происходит отказ от прогрессивной и уже очень широко применяющейся по всему миру технологии сбережения энергетических ресурсов.

Между тем философия «пассивного дома», живущего за счет своих внутренних ресурсов (вторичное использование воды, подогрев свежего воздуха за счет отработанного и т.д.), чрезвычайно популярна в Европе. Мы же здесь отстали лет этак на двадцать, если не сказать навсегда.

Как же заинтересовать отечественных девелоперов в таком строительстве? Решение напрашивается само собой: в проекте должна присутствовать экономическая целесообразность.

Где тут может быть выгода? - задается риторическим вопросом Леонид Журавель и сам же отвечает: - Она - в заключении так называемых контрактов жизненного цикла. То есть дом должна обслуживать та организация, которая его построила, причем на протяжении всей жизни здания. В этом случае застройщик сможет получать очень солидный доход именно в процессе эксплуатации энергоэффективного жилого фонда.

Кроме того, в недрах «Деловой России» (где внедрение энергоэффективных стандартов считают одной из своих приоритетных задач) готовят предложения о льготах и преференциях, которые будут получать те, кто решится на энергоэффективное строительство. Заметим, долгожданные нововведения.

Оказывается, все не так уж дорого

На сегодня, и это факт, решающим при покупке жилья становится вопрос цены. Спросом пользуется доступное жилье эконом-класса. Рынок быстро сориентировался и предлагает в первую очередь именно дешевый сегмент недвижимости. Казалось бы, о какой энергоэффективности тут можно говорить? Но, оказывается, и доступное жилье заслуживает того, чтобы сюда закладывались ресурсосберегающие технологии. Другое дело, что финансовые вложения (и, разумеется, отдача от них) должны быть тщательно просчитаны.

Тот же Леонид Журавель рассказал о своем опыте строительства энергоэффективного здания:

Компания, в которой я работаю, построила такой дом, потому что нам самим хотелось проверить, действительно ли так уж неподъемны траты на такое строительство. Дом мы заложили 17-этажный, одноподъездный, круглый по форме: так нам посоветовали проектировщики - мол, круглый дом более инсолирован, максимально использует энергию солнца. После окончания строительства здание показало хорошие характеристики: оно потребляло в два раза меньше тепла. Но самый главный сюрприз ждал нас впереди. Когда мы подсчитали все затраты, оказалось, что мы потратили всего на 7% больше средств по сравнению со строительством обычного дома.

Леонид Журавель уверен: если застройщик поймет, что в процессе эксплуатации здания он сполна получит назад деньги, которые «перевложил» в строительство, то он с большей легкостью примет решение о возведении энергоэффективного жилья.

Через стены просачивается львиная доля тепла

Если решением проблемы энергоэффективности займутся одни строители, это ни к чему не приведет, - считает директор белорусского государственного предприятия «Институт жилища - НИПТИС им. С.С. Аптаева» Владимир Пилипенко . - Здесь нужно волевое решение государства.

В Белоруссии за проблему энергоэффективности взялись всерьез. Достаточно сказать, что в этой братской республике на отопление жилья и объектов соцкультбыта тратится 35% всей вырабатываемой энергии. Поэтому вопросы ресурсосбережения для наших западных соседей - не пустой звук.

Сейчас около 70% теплопотерь происходит через оболочку здания, остальное теряется через вентиляцию. По идее, хорошо бы всю эту энергию собрать и использовать повторно. Как это сделать? Во-первых, за счет снижения потерь тепла через ограждающие конструкции. За счет утилизации сточных вод. С помощью снижения теплопотерь через оконные блоки. И, наконец, посредством устройства принудительной приточно-вытяжной вентиляции (рекуперации).

В современных зданиях за счет этих мер можно вдвое сократить энергопотребление.

Нужны системы рекуперации для многоэтажек

Важная проблема энергоэффективного дома - проветривание. Ведь такой дом немножко похож на термос, закупорен со всех сторон, защищен утеплителями, двухкамерными пластиковыми окнами. И такая «закупоренность» может привести к катастрофическим последствиям для здоровья.

Как не выпустить через форточку так тщательно сохраняемое тепло? Ничего лучше рекуперации здесь пока не придумано. Рекуперация - технология, при которой отработанный воздух, выходящий из квартиры, греет свежий воздух, поступающий с улицы.

Надо сказать, технология эта не из простых. К тому же отечественных мощностей по производству такого оборудования у нас, увы, нет. Впрочем, рекуператоры производит та же Белоруссия, так что пока мы их там и закупаем.

Вопрос настолько серьезен, что не так давно в России был даже создан Комитет по рекуперации, специально занимающийся всем кругом вопросов, связанных с внедрением этой технологии. В рамках комитета ведутся разработки отечественного варианта рекуператоров.

Без рекуперации эффекта энергоэффективности не добиться, - убежден Леонид Журавель. - Причем мы должны постараться разработать вариант для массового строительства. Для коттеджей такие системы у нас есть, для многоэтажек же их пока не придумали.

К 2020 году потери тепла должны уменьшиться на 40%

Не так давно в Минстрое РФ подписан приказ по нормам потребления энергоресурсов. Здание должно потреблять 150 квт/ч на 1 кв. м площади. Согласно 261-му Закону о повышении энергоэффективности зданий, предусматривается постепенное снижение потребления энергетических ресурсов. По плану такое снижение должно проходить в три этапа: в ближайшие два года - на 15%, через три-четыре года - на 30% и к 2020 году - на 40%.

Что же мешает воплотить в жизнь намеченную динамику? Во-первых, отсутствие энергоэффективного оборудования отечественного производства, а во-вторых, большие затраты на инженерные сети с энергоэффективными характеристиками.

В НИИ Мосстрой, например, считают, что нужно в большей степени сосредоточиться на повышении энергоэффективности инженерных сетей, а не на утеплении ограждающих конструкций. Есть и другие идеи.

Словом, лед, похоже, тронулся. Предложений по энергоэффективности сегодня звучит много и с самых разных сторон - от ученых, строителей, чиновников. Осталось только суммировать все самое ценное. И вперед, на баррикады энергоэффективности и ресурсосбережения! Пока не стало окончательно поздно…

Елена МАЦЕЙКО

Принимая решение о строительстве дома и занимаясь поисками проекта, необходимо учитывать будущие расходы по эксплуатации дома.

Большинство из них будет связано с его отоплением, значит, особое внимание следует уделить решениям, влияющим на поступление и потери тепла.

Стоит ли строить энергосберегающий дом?

Цель энергосбережения при строительстве дома – потратив определенные деньги на энергосберегающие мероприятия при строительстве, ежегодно получать экономию расходов на топливо.

Эта ежегодная экономия должна в течении определенного периода компенсировать дополнительные единовременные затраты на утепление дома. Этот период называют сроком окупаемости инвестиций в энергосбережение. Срок окупаемости СНиП определяют, как половина срока службы элемента до замены или ремонта, но не более 12 лет.

Тепловые потери в элементах частного дома, если утепление конструкций выполнено в соответствии с действующими нормами для средней полосы России. Где R (м 2 * о С)Вт — сопротивление теплопередаче; (м 3 /час ) — расход воздуха на вентиляцию; (ГДж ) — количество потерь тепловой энергии (1 кВт*час = 0,0036 ГДж ); % — относительные потери тепла в элементе по сравнению с суммарными теплопотерями дома.

Размер ежегодных затрат на отопление дома, при прочих равных условиях, определяется стоимостью топлива, расходуемого на получение 1 кВт·ч тепловой энергии на отопление.

В таблице, в качестве примера, для одного из регионов приведено соотношение стоимости разных видов топлива, расходуемого на получение 1 единицы теплоэнергии:

В других местах это соотношение стоимости топлива может быть другим.

Из таблицы следует, что если мы сэкономим 1 кВт·ч тепла, то, в зависимости от используемого топлива, получим экономию ежегодных затрат на топливо разной величины.

Разница может быть более чем десятикратная. Следовательно, срок окупаемости одного и того же энергосберегающего мероприятия в зависимости от вида топлива, может отличаться тоже в десятки раз.

Срок окупаемости в конечном итоге зависит от ежегодных суммарных затрат на топливо за отопительный период, которые в свою очередь определяются не только стоимостью топлива, но и продолжительностью отопительного периода и температурами наружного воздуха в этот период.

Для оценки и расчетов чаще всего используется интегрированный показатель суровости климата в отопительный период в разных районах России – градусо-сутки отопительного периода (ГСОП). В некоторых случаях применяют .

Диапазон изменения ГСОП на территории Росии, от 979 в Сочи до 12666 на Мыс Челюскин.

Важно понимать, что эффективность (срок окупаемости) того или иного энергосберегающего мероприятия зависит от вида топлива и суровости климата в месте строительства дома.

При отоплении электричеством или в суровом климате могут быть выгодны дорогостоящие меры, дающие сравнительно небольшой процент экономии расхода тепла.

При отоплении природным газом или на юге, эффективными окажутся только мероприятия менее дорогие, и с бОльшим энергосберегающим эффектом.

Как сделать дом теплым

Вопросы утепления стен и перекрытий рассмотрены в других статьях блога:

Солнцезащитные устройства на окнах защищают от перегрева только в том случае, если установлены снаружи здания.

В более северных районах этот способ экономии на отоплении теряет свою эффективность.

Тепловые потери через окна можно также снизить путем применения современных конструкций. При изготовлении теплосберегающих окон увеличивают количество камер в стеклопакете, используют специальные стекла с селективным теплоотражающим слоем, увеличивают толщину оконной коробки.

С наружной стороны на окна частного дома рекомендуется устанавливать рольставни. Закрытые рольставни не только защищают окна от взлома, но в лютые морозы уменьшают теплопотери через окна, а в летнюю жару снижают перегрев дома солнечными лучами.

Теплый пол экономит тепло

Позволяет снизить температуру в помещении на 2 град.С, что сэкономит до 5% тепловой энергии на отопление.

Если ногам тепло, то температура воздуха в помещении может быть немного ниже без потери теплового комфорта для людей.

Распределение температуры по высоте в помещении с теплым полом более равномерное, чем с радиаторной системой отопления.

Если для отопления дома используется природный газ, то следует придерживаться нормативов энергосбережения, закрепленных в действующих нормах. Это, прежде всего, норматив удельного расхода тепловой энергии (смотри таблицу выше).

Для выполнения норматива необходимо обеспечить сопротивление теплопередаче ограждающих конструкций, ориентируясь на нормы, указанные в СНиП.

Эти нормы уже разработаны с учетом стоимости материалов и работ, необходимых для их обеспечения. Например, нормативное сопротивление теплопередаче стены почти в 1,5 раза меньше, чем у перекрытия.

Такая разница в нормах учитывает то, что стоимость утепления стены существенно больше, чем перекрытия. То есть, разработчики норм попытались учесть разницу в затратах на реализацию нормативных показателей.

Тем не менее, скрупулезно придерживаться нормативных величин энергосбережения, без учета стоимости строительства, в конкретных условиях часто невыгодно.

Можно сэкономить , если, например, не утеплять дополнительным слоем минваты газобетонную стену, а вместо этого увеличить толщину утеплителя перекрытия. В результате, снижение теплосопротивления стены будет скомпенсировано уменьшением теплопотерь через перекрытие.

При использовании для отопления других, более дорогих, видов топлива следует ориентироваться на более жесткие нормативы энергосбережения.

При использовании сжиженного газа, пелетт, дров (к стоимости колотых дров прибавляем зарплату хозяина — истопника) удельный расход, указанный в таблице, следует умножить на коэффициент 0,6 — 0,7.

Для жидкого топлива, а тем более электроэнергии, удельный расход тепловой энергии будет выгодно сократить в два, два с половиной раза от указанного выше в таблице.

Для обеспечения такого расхода необходимо не только увеличивать сопротивление теплопередаче ограждающих конструкций, но и использовать другие меры. C перечнем таких мер Вы познакомитесь в статьях, указанных выше.

Постарайтесь купить готовый проект энергосберегающего дома , где в документации уже рассчитаны показатели теплозащитных характеристик дома для региона стройки. Такой проект, скорее всего, Вы найдете у местных проектных организаций.

Проекты, купленные в других регионах потребуют корректировки под местные климатические условия и показатели энергосбережения, которые Вы можете задать сами.

СНиП 23-02-2003 предлагает проводить оптимизацию оболочки здания по окупаемости энергосберегающих мероприятий. Для этого, делают расчеты и определяют общую стоимость 1м 2 поверхности, руб/м 2 , и срок окупаемости разных конструкций стен и перекрытий.

В разных регионах, в зависимости от стоимости используемого топлива и стройматериалов, а также суровости климата, получают разные результаты.

Если бюджет Вашей стройки ограничен и у Вас нет определенных предпочтений из чего строить дом, то узнайте у местных проектировщиков результаты таких расчетов. Выберите вариант конструкции стен и перекрытий с наименьшим сроком окупаемости затрат на строительство. При выборе учитывайте, кроме стоимости, показатели долговечности и экологичности.

Следующая статья:

Предыдущая статья:

Как известно, тепловой поток всегда направлен в сторону более низкой температуры. Так, например, тепло обогреваемого в зимний период дома устремляется наружу через ограждающие конструкции (стены, окна, двери, кровлю) и в результате теряется.

Подсчитано, что на обогрев неутеплённых домов старой постройки надо около 220-270 кВтч/мЧод. Согласно современным нормам по теплозащите, расход энергии для вновь построенных домов не должен превышать 54-100 кВТ’Ч/мЧод. Если же учесть, что 10 кВт-ч соответствуют энергии, полученной при сжигании примерно 1 л жидкого котельного топлива, то нетрудно подсчитать, сколько топлива (денег) можно сэкономить, если эффективно утеплить дом.

Заметим, что теплопотери через отдельные элементы дома различны и зависят от теплоизоляционных качеств конструкций и их размеров. Максимум теплопотерь приходится, как правило, на наружные стены - через них уходит (в зависимости от конструкции) до 35-45% тепла.

Значительно меньший процент общей площади наружных ограждений составляют окна. Однако их сопротивление теплопередаче в 2-3 раза меньше, чем у наружных стен. Поэтому на окна приходятся до 20-30% теплопотерь всего дома.

Немалая часть тепла теряется через крышу . Причём в одно-, двухэтажных домах потери значительно выше, чем в многоэтажных, и составляют порядка 30-35% от общих теплопотерь. Около 3-10% тепла уходит через перекрытия. Безусловно, часть тепла утекает из дома через трубы инженерных коммуникаций.

Температурная характеристика неизолированной стены в летний (вверху) и зимний (внизу) периоды свидетельствуют о необходимости теплоизоляции хотя бы только из-за температуры внутренней поверхности стены.

«Мостик холода» образуется, например, на стыке железобетонного перекрытия с облицовочным бетонным поясом и фасадом наружной стены: 1 - наружная стена; 2 - плавающая стяжка; 3 - междуэтажное перекрытие; 4 - «мостик холода».

При наличии «мостика холода» в жилом помещении может образоваться конденсат. При температуре в помещении 20°С один кубометр воздуха может содержать в себе 17,5 г влаги в виде водяного пара. При снижении температуры на внутренней поверхности наружной стены до 0″С в указанном объёме воздуха может содержаться всего лишь 5 г влаги. Остальные 12,5 г влаги конденсируются и оседают на холодной стене.

Конденсат образуется там, где есть «мостики холода», например, в месте прерывания внутренней теплоизоляции поперечной стеной: 1 - наружная стена; 2 - внутренняя теплоизоляция; 3 - угол, где температура снижена до 6-7°С; 4 - поперечная стена; 5 - конденсат; 6 - место, где температура снижена до 17 °С .

Конечно, добиться полного отсутствия утечек тепла в энергоэффективном доме невозможно. Но свести потери к разумному минимуму удаётся. Один из способов - сократить периметр наружных стен. Если же вы не хотите менять архитектуру здания, нужно позаботиться о грамотном утеплении. Поскольку наибольшее количество тепла теряется через стены, о них и поговорим в первую очередь.

Основных вариантов утепления стен, как известно, три: разместить утеплитель на внутренней поверхности стены; упрятать его внутрь ограждающей конструкции; устроить утепление стены снаружи. Каждый из этих способов имеет присущие ему особенности.

Энергетическое состояние дома показывают термографические исследования. Здесь чётко видны утечки тепла.

Внутренняя теплоизоляция стен

Этот способ имеет целый ряд недостатков. Очевидно, что при таком расположении утеплителя уменьшается площадь помещений. Но это - не основная беда. Главное, что при внутреннем утеплении стена находится в зоне отрицательных температур, которая отчасти захватывает и сам утеплитель. Кроме того, нарушается естественная диффузия водяных паров через ограждение, и создаются условия для образования конденсата на границе стены и утеплителя. Повышенная же влажность приводит не только к снижению теплотехнических характеристик, но и к появлению и активному росту грибков, плесени. Ещё один серьёзный недостаток - наружные стены, утеплённые изнутри, утрачивают свои теп-лоаккумулирующие свойства.

Внутреннее утепление. В случае отсутствия пароизоляции на границе слоёв образуется конденсат.

Внутренняя теплоизоляция с применением пенополистирола (стиропора): 1 - комбинированный слой из стиропора и гипсокартонной плиты; 2 - клеевой раствор; 3 - гипсокартонная плита; 4 -стиропор; 5 - кладка; 6 - штукатурка.

Внутренняя теплоизоляция с применением минерально-волокнистых плит. В отличие от стиропора, который сам по себе паронепроницаем, здесь требуется дополнительная изоляция: 1 - гипсокартонная плита; 2 - минерально-волокнистая плита толщиной 80 мм; 3 - паронепроницаемая плёнка; 4 - кладка.

Таким образом , внутренняя теплоизоляция целесообразна только в том случае, если дом имеет уникальное внешнее оформление, которое может быть нарушено при наружном утеплении его стен (например, если речь идет о памятниках архитектуры).

Утепление наружной стены изнутри с использованием металлической несущей конструкции. Между стеной и профилями установлены тонкие звукоизоляционные полосы. В качестве утеплителя использованы минерально-волокнистые плиты толщиной 50 мм.

Есть и другие резоны, по которым вы можете предпочесть внутреннюю теплоизоляцию. Например, утеплить дом изнутри проще, чем снаружи. Эта задача под силу даже дилетанту. Ещё один плюс - помещение с внутренней теплоизоляцией можно быстрее прогреть. Наконец, связанные с внутренним утеплением работы можно проводить постепенно, по отдельным помещениям.

Наружная теплоизоляция стен

Один из передовых способов теплоизоляции - «тёплый фасад» или наружное утепление «мокрого» типа - наиболее универсальный и применяется во многих странах Европы более полувека. Например, только в Германии в течение 1996 г. такие системы были применены на площади более 43 млн. м2!!!

Комбинированная система «мокрого» типа - многослойная конструкция, в основе которой три слоя. Теплоизоляционный слой - плиты из материалов с низким коэффициентом теплопроводности (минеральная вата или пенополи-стирол). Второй слой - особый штукатурно-клеевой состав, армированный щёлочестойкой сеткой. Третий слой - защитно-декоративная штукатурка (минеральная, акриловая, силикатная, силиконовая), которую можно окрашивать специальными красками.

Здесь показана укладка утеплителя между основной и облицовочной кладками с помощью компрессорной установки. В качестве утеплителя используется вулканическая порода, больше известная под названием перлит.

Достоинств у наружной теплоизоляции «мокрого» типа достаточно много . Главное - возможность недорогими средствами обеспечить необходимое по нормам утепление фасада. При этом стены будут тонкими, поскольку им нужно иметь только достаточную несущую способность, а теплопотерь не допустит утеплитель. Кроме того, стены будут лёгкими, а значит, уменьшатся затраты на возведение фундамента - одного из самых дорогостоящих элементов здания. Температура воздуха в помещениях такого энергоэффективного дома распределяется более равномерно, в результате микроклимат становится приятнее. Системы «мокрого» типа также заметно улучшают звукоизолирующие свойства стен.

В качестве наружной теплоизоляции отлично зарекомендовали себя комбинированные системы «мокрого» типа на основе пенополистирольных или минерально-волокнистых плит, покрываемых паропроницаемой штукатуркой со стеклотканью.

Летом «тёплый фасад» уменьшает нагрев ограждающих конструкций под воздействием солнечных лучей и высокой температуры воздуха, поэтому температура внутри помещения не будет резко возрастать.
Чтобы «тёплый фасад» в течение длительного времени сохранял свои эксплуатационные свойства, он должен соответствовать определённым требованиям. Так, например, очень важно, чтобы все слои «тёплого фасада» не только обладали необходимыми показателями по водо-поглощению, паропроницаемости, морозостойкости, тепловому расширению, но и сочетались друг с другом по этим показателям.

Сочетаемость определяется только расчётом системы в целом. Так, необходимо, чтобы в многослойной конструкции каждый последующий слой (изнутри - наружу) пропускал пар лучше, чем предыдущий. Недооценка этого обстоятельства приводит к использованию вместе, к примеру, ми-нераловатного утеплителя с отличной паропроницаемостью и полимерной декоративной штукатурки (тонкой, но плохо пропускающей пар). В итоге - отслаивание финишного слоя. Во избежание подобных ситуаций специалисты не рекомендуют применять дешёвые, но незнакомые материалы, так как это обычно пагубно сказывается на качестве и сроке службы «теплого фасада».

Основой для теплоизоляции «мокрого» типа могут служить железобетон (панели или монолит), кирпичная или каменная кладка, пенобетон, металл, древесина и т.д. Некоторую сложность, по мнению отдельных специалистов, представляют стены из пенобетонных блоков. Они сами по себе очень «тёплые» и притом обладают высокой паропроницаемостью, что в сочетании с системой наружного утепления может обернуться неприятностями: смещением точки росы в толщу блока (вместо плиты утеплителя) или зоны отрицательных температур внутрь стены, выпадением конденсата на границе утеплителя и штукатурного слоя. Всё это снижает долговечность конструкции и даже разрушает её.

В качестве наружной теплоизоляции в зоне фундамента применяют периметральные изоляционные плиты: 1 - стена подвала; 2 - горизонтальная гидроизоляция наружной стены; 3 - грунтовка; 4 - вертикальная гидроизоляция; 5 - периметральная изоляционная плита; 6 - наружный слой.

Чтобы избежать этих проблем, следует тщательно подобрать плотность и толщину пенобетонных блоков, тип и толщину утеплителя, крепёжные элементы и материалы для армированного и защитно-декоративного слоёв.

Вентилируемые фасадные системы

Более 50% новых зданий в Европе имеют вентилируемые фасады. Теплоизоляционный материал в этом случае укладывают в обрешётку, к которой крепят элементы наружной оболочки из шифера, досок, плит и пр.
Особенность этой системы - наличие вентиляционного зазора между слоем теплоизоляции и декоративной отделкой. В летнюю жару такая конструкция препятствует проникновению

тепла через наружную стену в помещение. Зимой облицовочные плиты защищают от ветра, а воздушное пространство в стене работает как дополнительный утеплитель. Положительным моментом является также отсутствие резких перепадов температуры ограждения. Подобная конструкция стен не препятствует выходу влаги - они дышат.

Наружные стены можно утеплить навесными фасадами, например, из фиброцементных плит, гонта или шпунтованных досок. Важно, чтобы между облицовкой и уложенным между рейками обрешётки утеплителем был вентиляционный зазор, необходимый для циркуляции воздуха.

Фасадные плиты защищают старую стену от воздействия дождя. Влага, случайно проникающая через стыки или зазоры крепёжных изделий, не доходит до утеплителя или несущих конструкций, а благодаря достаточной вентиляции высыхает на внутренней поверхности облицовки, не повреждая самой стены.

Нередко в качестве облицовочного материала в навесных фасадных системах используют фиброцементные плиты. Состоят они на 85% из цемента и на 15% из волокон целлюлозы и различных минеральных наполнителей, а изготавливают их путём прессования.

Состав и уникальные технологии производства придают материалу экологичность, пожаробезопасность, низкие влаго- и звукопроницаемость. Материал долговечен - срок его службы составляет около 100-150 лет, а морозоустойчивость - до 300 циклов, что в несколько раз превышает показатели кирпича. Плиты удобны в монтаже и обработке.

Ещё одно преимущество навесной фасадной системы - возможность применения утеплителя слоем до 250 мм. Для этого используют специально разработанные для вентилируемых фасадов гидрофобизированные минераловатные плиты на основе базальтового волокна. Этот утеплитель абсолютно пожаробезопасен, экологичен и обладает хорошей паропроницаемостью.

Смонтировать систему можно достаточно быстро. Работы производят круглый год, так как полностью исключены мокрые процессы, что особенно важно для России с её холодным климатом.

Утепление крыши

Теплоизолировать дом следует со всех сторон, в том числе и сверху. Причём целесообразно утеплять не только перекрытие, но и крышу, даже если чердачное помещение и не планируется делать жилым.

Когда теплоизоляцию укладывают поверх стропил, то крыша будет защищена от температурных колебаний наиболее надёжно. Если это невозможно, утеплитель укладывают между стропилами, а то и под ними. Очень важно правильно защитить утеплитель от продувания и влаги со стороны кровельного покрытия и от пара - со стороны помещения.

Здесь показано устройство крыши с размещением утеплителя между стропилами: 1 - гидроветрозащитная плёнка; 2 - пароизоляционная плёнка.

Существенное влияние на срок службы теплоизоляции оказывают температурно-влажностный режим эксплуатации конструкции, воздействие ветровых, снеговых и прочих механических нагрузок. Кроме того, утеплители должны долго сохранять свои основные функции (в том числе водо- и биостойкость), не выделять в процессе эксплуатации токсичных и неприятно пахнущих веществ и соответствовать требованиям пожарной безопасности.

Как правило, крыши дачных домов бывают скатными. Прочностные требования к теплоизоляционным материалам для скатных крыш не столь жестки, но важно, чтобы материал не проседал под собственным весом, не давал усадку. В противном случае под коньком могут возникать «мостики холода». Этот эффект нередко возникает при использовании стек-ловолокнистых изделий небольшой плотности.

Пенополистирол подходит для утепления скатных крыш лишь отчасти : он горюч, а значит, требует проведения противопожарных мероприятий, включающих антипиреновую пропитку деревянных конструкций, устройство огнезащитных слоёв и т.д.

Наиболее целесообразно применять гидрофобизированные плиты из базальтовых горных пород.
Эти кашированные фольгой или стеклохолстом материалы лучше всего подходят для утепления ненагруженных кровельных конструкций.

Перечисленные меры по утеплению домов надо выполнять с соблюдением важного требования: утепление должно быть сплошным, без просветов, так как любое место прерывания теплоизоляции образует «мостик холода». К тому же в неутеплённых местах вследствие разности температур может образовываться конденсат, который непременно приведёт к разрушению конструкции.

Вспомним физику. Как известно, в воздухе всегда содержится определённое количество водяных паров. Они и обусловливают влажность воздуха, которая тем выше, чем больше влаги содержится в 1 м3 воздуха.

Однако воздух способен насыщаться водой только до определённых пределов. Например, при температуре 20°С в 1 м3 воздуха может содержаться 17,5 г влаги.

При превышении этой величины при той же температуре влага из воздуха начнёт выпадать в виде мелких капель - конденсата. В то же время, чем ниже температура воздуха, тем меньше в нём может быть воды. Например, при температуре 0°С её количество составляет всего 5 г на 1 м3. Таким образом, если воздух, имеющий температуру 20°С, начать охлаждать до 5°С, то 12,5 г влаги выпадет в виде конденсата.

Утепление окон

Тепловой баланс дома в немалой степени зависит от окон.

Современные оконные системы на основе стеклопакетов с эффективным уплотнением швов позволяют значительно уменьшить потери тепла. Однако при столь надёжном утеплении окон воздух в помещениях становится более влажным и насыщенным вредными веществами. В этих условиях остро встает вопрос о вентиляции помещений.

Оснащённый хорошо уплотнёнными окнами энергоэффективный дом оборудуют вентиляционной системой с теплообменником и дополнительным тепловым насосом: А - наружный воздух; В - отработанный воздух; С - воздух, выводимый в атмосферу; D - приточный воздух; 1 - теплообменник; 2 - вентилятор; 3 - тепловой насос.

Современные стеклопакеты обладают очень высокими теплоизоляционными свойствами: 1 - стекло; 2 - газ ксенон; 3 - сушильный реагент; 4 - бутиловое уплотнение; 5 - полисульфидное уплотнение; 6 - алюминиевый дистанционный элемент.

Современные оконные конструкции обеспечивают вентиляцию помещений при закрытом окне.

С недавних пор на рынке появились окна особой конструкции, обеспечивающие постоянный воздухообмен. При этом ни сквозняк, ни уличный шум не ощущаются. В то же время современный рынок предлагает широкий ассортимент вентиляторов и теплообменников, уменьшающих расход энергии за счёт рационального вентилирования помещений.

Окна в энергоэффективном доме имеют ещё одну функцию: получение дополнительного тепла от солнечных лучей.

При использовании высокоизолирующих стекол температура на их внутренней поверхности составляет 17″С, что создаёт в помещении благоприятный микроклимат. При аналогичной температуре за окном поверхностная температура обычных стеклопакетов равна всего лишь 9″С.

Применение энергии солнца в сочетании с внутренним теплом, источником которого являются газовая или электрическая плита, лампы накаливания, тело человека и пр., способствует экономии энергии.

Существенно большей экономии тепла при наличии окон со стеклопа-кетами можно достичь при использовании отопительной системы с электронным регулированием.

Отопительные системы

Какие же узлы системы отопления нужно модернизировать, чтобы сделать дом энергоэффективным?

Для наглядности систему отопления можно разбить на пять составных элементов: теплогенератор (например, отопительный котел), теплорас-пределительный узел (трубопроводы с циркуляционным насосом), приборы для отдачи тепла в помещение (отопительные батареи, «тёплый пол» и пр.), приборы управления и регулирования, дымовая труба.

В настоящее время наиболее эффективными в плане экономии энергии являются низкотемпературные котлы с использованием водяного пара. В отличие от традиционных отопительных котлов, работающих при температуре 70-90°С, низкотемпературные котлы функционируютт в диапазоне температур 40-75°С.

Низкотемпературная отопительная система с использованием водяного пара: 1 - низкотемпературная отопительная батарея; 2 - конденсат; 3 - уходящий газ.

Особенность котлов, использующих водяной пар, состоит в том, что они в сравнении с обычными низкотемпературными котлами, производят больше тепла при меньшем расходе топлива и, следовательно, при меньшем количестве вредных выбросов.

Обычно водяной пар, образующийся при сжигании топлива, уходит вместе с выбрасываемыми в атмосферу газами. В этих же котлах водяной пар проходит через теплообменник, где он отдаёт своё тепло, которое затем возвращается в отопительную систему.

Низкотемпературные котлы могут также обеспечивать дом водой для хозяйственных нужд.

Низкотемпературная система отопления требует применения отопительных приборов, поверхность теплоотдачи которых больше, чем у обычных батарей. Поэтому с этой системой хорошо сочетается «тёплый пол» с его обширной поверхностью.

Тепло для отопления и нагрева хозяйственной воды производят солнечные коллекторы и работающая на дровах печь.

Современная промышленность выпускает множество механических и электронных приборов управления и регулирования, позволяющих оптимально расходовать энергию. Один из них - наружный температурный датчик (обычно на северо-западной стороне дома). Он передаёт данные о температуре на прибор управления, который при необходимости включает горелку, повышая температуру на входе отопительной системы. Температуру отопительных батарей поддерживают термостаты. Эти приборы устанавливают как на отопительном котле (центральный), так и в комнатах.

Схема современной отопительной системы: 1 - погодный датчик; 2 - задаваемая программа работы; 3 - центральный прибор; 4 - термостат; 5 - вентиль термостата; 6 - смеситель с исполнительным электродвигателем; 7 - отопительный насос.

Приборы с программируемым временем снижают температуру в ночное время или даже днем, когда дом пустует (в выходные дни или во время отпуска). Однако резко снижать температуру не следует, иначе потом при её повышении на остывших поверхностях может образоваться конденсат. К тому же нагрев сильно охлаждённого помещения потребует большего расхода энергии.

Таким образом, только правильно утеплив дом и оснастив его техникой, позволяющей экономно расходовать тепло, вы станете не столь зависимыми от цен на энергию. А самое главное - в энергоэффективном доме всегда будут и здоровый микроклимат, и комфорт.