Меню
Бесплатно
Главная  /  Жалюзи  /  Газоразрядный счетчик гейгера зачем нужен. Счетчик Гейгера: устройство и бытовые вариации

Газоразрядный счетчик гейгера зачем нужен. Счетчик Гейгера: устройство и бытовые вариации

Газоразрядный счетчик Гейгера-Мюллера (Г-М). Рис.1 – это стеклянный цилиндр (баллон) заполненный инертным газом (с

примесями галогенов) под давлением несколько ниже атмосферного. Тонкий металлический цилиндр внутри баллона служит катодом К; анодом А служит тонкий проводник, проходящий по центру цилиндра. Между анодом и катодом прикладывается напряжение U В =200-1000 В. Анод и катод подключаются к электронной схеме радиометрического прибора.

Рис.1 Цилиндрический счетчик Гейгера-Мюллера.

1 – нить анода 2 – трубчатый катод

U в – источник высоковольтного напряжения

R н – нагрузочное сопротивление

С V – разделительно-накопительная емкость

Р – пересчетное устройство с индикацией

ξ – источник радиации.

С помощью счетчика Г-М можно регистрировать все частицы излучения (кроме легко поглощаемых α-частиц); чтобы β- частицы не поглощались корпусом счетчика в нем имеются прорези, закрытые тонкой пленкой.

Поясним особенности работы счетчика Г-М.

β-частицы непосредственно взаимодействуют с молекулами газа счетчика, в то время как нейтроны и γ-фотоны (незаряженные частицы) с молекулами газа взаимодействуют слабо. В этом случае механизм возникновения ионов иной.

проведем дозиметрический замер окружающей среды около точек К и А, полученные данные занесем в табл. 1.

Для проведения замера необходимо:

1. Подключить дозиметр к источнику питания (9в).

2. На тыльной стороне дозиметра закрыть задвижкой (экраном) окно детектора.

3. Установить переключатель MODE (режим) в положение γ («Р»).

4. Установить переключатель RANGE (диапазон) в положение x 1 (Р н =0,1-50 мкЗв/час).

5. Установить переключатель питания дозиметра в положение ON (Вкл.).

6. Если в положении х1 раздастся звуковой сигнал и числовые ряды дисплея полностью заполнятся, то необходимо перейти на диапазон х10 (Р н =50-500 мкЗв/час).

7. После завершения суммирования импульсов на дисплее дозиметра высветится доза, эквивалентная мощности P мкЗв/час; через 4-5 сек. произойдет сброс показаний.

8. Дозиметр вновь готов к замерам радиации. Автоматически начинается новый цикл замеров.

Таблица 1.

Результирующее значение в рабочем пространстве (АВ) определяется формулой

=
, мкЗв/час (6)

- показания дозиметра дают значения радиационного фона в точке;

Величина радиации в каждой точке замера подчиняется законам флуктуации. Поэтому, чтобы получить наиболее вероятное значение измеряемой величины, необходимо производить серию замеров;

- при дозиметрии β – излучений замеры необходимо проводить вблизи поверхности исследуемых тел.

4. Проведение измерений. П.1. Определение мощности эквивалентной дозы естественного радиационного фона.

Для определения γ-фона окружающей среды выделим (относительно каких-либо объектов (тел)) две точки А, К, расположенные друг от друга на расстоянии ~1 метр, и, не касаясь тел,

Нейтроны, взаимодействуя с атомами катода, порождают заряженные микрочастицы (осколки ядер). Гамма излучение

взаимодействует главным образом с веществом (атомами) катода, порождая фотонное излучение, которое далее ионизирует молекулы газа.

Как только в объеме счетчика появляются ионы, то под действием анодно-катодного электрического поля начнется движение зарядов.

Вблизи анода линии напряженности электрического поля резко сгущаются (следствие малого диаметра нити анода), напряженность поля резко возрастает. Электроны, подходя к нити, получают большое ускорение, возникает ударная ионизация нейтральных молекул газа , вдоль нити распространяется самостоятельный коронный разряд.

За счет энергии этого разряда, энергия первоначального импульса частиц резко усиливается (до 10 8 раз). При распространении коронного разряда часть зарядов будет медленно стекать через большое сопротивление R н ~10 6 Ом (рис.1). В цепи детектора на сопротивлении R н будут возникать импульсы тока, пропорциональный исходному потоку частиц. Возникший импульс тока передается на накопительную емкость С V (С~10 3 пикофарад), далее усиливается и регистрируется пересчетной схемой Р.

Наличие большого сопротивления R н в цепи детектора приводит к тому, что на аноде будут скапливаться отрицательные заряды. Напряженность электрического поля анода будет понижаться и в какой-то момент ударная ионизация прервется, разряд затухнет.

Важную роль в гашении возникшего газового разряда играют галогены, находящиеся в газе счетчика. Потенциал ионизации галогенов ниже, чем у инертных газов, поэтому атомы галогенов активнее «поглощают» фотоны, вызывающие самостоятельный разряд, переводя эту энергию в энергию диссипации, гася тем самостоятельный разряд.

После того как ударная ионизация (и коронный разряд) прервется, начинается процесс восстановление газа в исходное (рабочее) состояние. В течение этого времени счетчик не работает, т.е. не регистрирует пролетающие частицы. Этот промежуток

времени называется «мертвым временем» (временем восстановления). Для счетчика Г-М мертвое время = Δ t ~10 -4 секунды.

Счетчик Г-М реагирует на попадание каждой заряженной частицы, не различая их по энергиям, но, если мощность падаю

щего излучения неизменна, то скорость счета импульсов оказывается пропорциональна мощности излучения, и счетчик можно будет проградуировать в единицах доз излучения.

Качество газоразрядного самогасящегося детектора определяется зависимостью средней частоты импульсов N в единицу времени от напряжения U на его электродах при неизменной интенсивности излучения. Эта функциональная зависимость называется счетной характеристикой детектора (рис.2).

Как следует из рисунка 2, при U < U 1 приложенного напряжения недостаточно для возникновения газового разряда при попадании в детектор заряженной частицы или гамма-кванта. Начиная с напряжения U В > U 2 в счетчике возникает ударная ионизация, вдоль катода распространяется коронный разряд, счетчик фиксирует пролет почти каждой частицы. С ростом U В до U 3 (см. рис. 2) число фиксируемых импульсов несколько увеличивается, что связано с некоторым увеличением степени ионизации газа счетчика. У хорошего счетчика Г-М участок графика от U 2 до U Р почти не зависит от U В , т.е. идет параллельно оси U В , средняя частота импульсов почти не зависит U В .

Рис. 2. Счетная характеристика газоразрядного самогасящегося детектора.

3. Относительная погрешность приборов при измерении Р н : δР н = ±30%.

Поясним, как импульс счетчика преобразуются в показания дозы мощности излучений.

Доказывается, что при неизменной мощности излучений скорость счета импульсов пропорциональна мощности излучений (измеряемой дозе). На этом принципе основывается измерение дозы мощности радиации.

Как только в счетчике возникает импульс, сигнал этот передается в блок пересчета, где фильтруется по длительности, амплитуде, суммируется и результат передается на дисплей счетчика в единицах дозы мощности.

Соответствие между скоростью счета и измеряемой мощностью, т.е. градуировка дозиметра производится (на заводе) по известному источнику радиации С s 137 .

В 1908 году физик из Германии Ганс Гейгер трудился в химических лабораториях, принадлежащих Эрнсту Резерфорду. Там же им было предложено испытать счетчик заряженных частиц, представлявший собой ионизированную камеру. Камера являлась электро-конденсатором, который наполняли газом под высоким давлением. Еще Пьер Кюри применял это устройство на практике, изучая электричество в газах. Идея Гейгера - обнаруживать излучения ионов - была связана с их влиянием на уровень ионизации летучих газов.

В 1928 г. немецкий ученый Вальтер Мюллер, работавший с Гейгером и под его началом, создал несколько счетчиков, регистрирующих ионизирующие частицы. Устройства были нужны для дальнейшего исследования радиации. Физика, будучи наукой экспериментов, не могла бы существовать без измерительных конструкций. Были открыты только несколько излучений: γ, β, α. Задача Гейгера состояла в том, чтобы измерить чувствительными приборами все виды излучения.

Счетчик Гейгера-Мюллера - простой и дешевый радиоактивный датчик. Это не точный инструмент, который фиксирует отдельные частицы. Техника измеряет общую насыщенность ионизирующего излучения. Физики используют его с другими датчиками, чтобы добиться точности расчетов при проведении экспериментов.

Немного об ионизирующих излучениях

Можно было бы сразу перейти к описанию детектора, но его работа покажется непонятной, если вы мало знаете об ионизирующих излучениях. При излучении происходит эндотермическое влияние на вещество. Этому способствует энергия. К примеру, ультрафиолет или радиоволна к таким излучениям не относятся, а вот жесткий ультрафиолетовый свет - вполне. Здесь определяется граница влияния. Вид именуется фотонным, а сами фотоны - это γ-кванты.

Эрнст Резерфорд поделил процессы испускания энергии на 3 вида, используя установку с магнитным полем:

  • γ - фотон;
  • α - ядро атома гелия;
  • β - электрон с высокой энергией.

От частиц α можно защититься бумажным полотном. β проникают глубже. Способность проникновения γ самая высокая. Нейтроны, о которых ученые узнали позже, являются опасными частицами. Они воздействуют на расстоянии нескольких десятков метров. Имея электрическую нейтральность, они не вступают в реакцию с молекулами разных веществ.

Однако нейтроны легко попадают в центр атома, провоцируют его разрушение, из-за чего образуются радиоактивные изотопы. Распадаясь, изотопы создают ионизирующие излучения. От человека, животного, растения или неорганического предмета, получившего облучение, радиация исходит несколько дней.

Устройство и принцип работы счетчика Гейгера

Прибор состоит из металлической или стеклянной трубки, в которую закачан благородный газ (аргоново-неоновая смесь либо вещества в чистом виде). Воздуха в трубке нет. Газ добавляется под давлением и имеет примесь спирта и галогена. По всей трубке протянута проволока. Параллельно ей располагается железный цилиндр.

Проволока называется анодом, а трубка - катодом. Вместе они - электроды. К электродам подводится высокое напряжение, которое само по себе не вызывает разрядных явлений. В таком состоянии индикатор будет пребывать, пока в его газовой среде не возникнет центр ионизации. От источника питания к трубке подключается минус, а к проволоке - плюс, направленный через высокоуровневое сопротивление. Речь идет о постоянном питании в десятки сотен вольт.

Когда в трубку попадает частица, с ней сталкиваются атомы благородного газа. При соприкосновении выделяется энергия, отрывающая электроны от атомов газа. Затем образуются вторичные электроны, которые тоже сталкиваются, порождая массу новых ионов и электронов. На скорость электронов по направлению к аноду влияет электрическое поле. По ходу этого процесса образуется электрический ток.

При столкновении энергия частиц теряется, запас ионизированных атомов газа подходит к концу. Когда заряженные частицы попадают в газоразрядный счетчик Гейгера, сопротивление трубки падает, что немедленно снижает напряжение средней точки деления. Затем сопротивление вновь растет - это влечет за собой восстановление напряжения. Импульс становится отрицательным. Прибор показывает импульсы, а мы можем их сосчитать, заодно оценив количество частиц.

Виды счётчиков Гейгера

По конструкции счетчики Гейгера бывают 2 видов: плоский и классический.

Классический

Сделан из тонкого гофрированного металла. За счет гофрирования трубка приобретает жесткость и устойчивость к внешнему воздействию, что препятствует ее деформации. Торцы трубки оснащены стеклянными или пластмассовыми изоляторами, в которых находятся колпачки для вывода к приборам.

На поверхность трубки нанесен лак (кроме выводов). Классический счетчик считается универсальным измерительным детектором для всех известных видов излучений. Особенно для γ и β.

Плоский

Чувствительные измерители для фиксации мягкого бета-излучения имеют другую конструкцию. Из-за малого количества бета-частиц, их корпус имеет плоскую форму. Есть окошко из слюды, слабо задерживающее β. Датчик БЕТА-2 - название одного из таких приборов. Свойства других плоских счетчиков зависят от материала.

Параметры и режимы работы счетчика Гейгера

Чтобы рассчитать чувствительность счетчика, оцените отношение количества микрорентген от образца к числу сигналов от этого излучения. Прибор не измеряет энергию частицы, поэтому не дает абсолютно точной оценки. Калибровка устройств происходит по образцам изотопных источников.

Также нужно смотреть на следующие параметры:

Рабочая зона, площадь входного окна

Характеристика площади индикатора, через которую проходят микрочастицы, зависит от его размеров. Чем шире площадь, тем большее число частиц будет поймано.

Рабочее напряжение

Напряжение должно соответствовать средним характеристикам. Сама характеристика работы - это плоская часть зависимости количества фиксированных импульсов от напряжения. Ее второе название - плато. В этом месте работа прибора достигает пиковой активности и именуется верхним пределом измерений. Значение - 400 Вольт.

Рабочая ширина

Рабочая ширина - разница между напряжением выхода на плоскость и напряжением искрового разряда. Значение - 100 Вольт.

Наклон

Величина измеряется в виде процента от количества импульсов на 1 вольт. Он показывает погрешность измерения (статистическую) в подсчете импульсов. Значение - 0,15 %.

Температура

Температура важна, поскольку счётчик часто приходится применять в сложных условиях. Например, в реакторах. Счетчики общего использования: от -50 до +70 С по Цельсию.

Рабочий ресурс

Ресурс характеризуется общим числом всех импульсов, зафиксированных до момента, когда показания прибора становятся некорректными. Если в устройстве есть органика для самогашения, количество импульсов составит один миллиард. Ресурс уместно подсчитывать только в состоянии рабочего напряжения. При хранении прибора расход останавливается.

Время восстановления

Это промежуток времени, за который устройство проводит электричество после реагирования на ионизирующую частицу. Существует верхний предел для частоты импульсов, ограничивающий интервал измерений. Значение - 10 микросекунд.

Из-за времени восстановления (его ещё называют мертвое время) прибор может подвести в решающий момент. Для предотвращения зашкаливания производители устанавливают свинцовые экраны.

Есть ли у счетчика фон

Фон измеряется в толстостенной свинцовой камере. Обычное значение - не более 2 импульсов за минуту.

Кто и где применяет дозиметры радиации?

В промышленных масштабах выпускают много модификаций счетчиков Гейгера-Мюллера. Их производство началось во времена СССР и продолжается сейчас, но уже в Российской Федерации.

Устройство применяют:

  • на объектах атомной промышленности;
  • в научных институтах;
  • в медицине;
  • в быту.

После аварии на Чернобыльской АЭС дозиметры покупают и рядовые граждане. Во всех приборах установлен счетчик Гейгера. Такие дозиметры оснащают одной или двумя трубками.

Можно ли сделать счетчик Гейгера своими руками?

Изготовить счетчик самостоятельно сложно. Нужен датчик излучения, а его купить смогут далеко не все. Сама схема счетчика давно известна - в учебниках физики, например, её тоже печатают. Однако воспроизвести устройство в домашних условиях сумеет только настоящий «левша».

Талантливые мастера-самоучки научились делать счетчику заменитель, который также способен замерять гамма- и бета-излучения с помощью люминесцентной лампы и лампы накаливания. Также используют трансформаторы от сломанной техники, трубка Гейгера, таймер, конденсатор, различные платы, резисторы.

Заключение

Диагностируя излучения, нужно учитывать собственный фон измерителя. Даже при наличии свинцовой защиты приличной толщины скорость регистрации не обнуляется. У этого явления есть объяснение: причина активности - космическое излучение, проникающее через толщи свинца. Над поверхностью Земли ежеминутно проносятся мюоны, которые регистрируются счетчиком с вероятностью 100%.

Есть и еще один источник фона - радиация, накопленная самим устройством. Поэтому по отношению к счётчику Гейгера тоже уместно говорить об износе. Чем больше радиации прибор накопил, тем ниже достоверность его данных.

В связи с экологическими последствиями деятельности человека, связанной с атомной энергетикой, а также промышленностью (в том числе военной), использующую радиоактивные вещества как компонент или основу своей продукции изучение основ радиационной безопасности и радиационной дозиметрии становится сегодня достаточно актуальной темой. Помимо природных источников ионизирующего излучения с каждым годом все больше и больше появляется мест, загрязненных радиацией впоследствии человеческой деятельности. Таким образом, чтобы сохранить свое здоровье и здоровье своих близких необходимо знать степень зараженности той или иной местности или предметов и пищи. В этом может помочь дозиметр – прибор для измерения эффективной дозы или мощности ионизирующего излучения за некоторый промежуток времени.

Прежде чем приступать к изготовлению (или же покупке) данного устройства необходимо иметь представление о природе измеряемого параметра. Ионизирующее излучение (радиация) – это потоки фотонов, элементарных частиц или осколков деления атомов, способные ионизировать вещество. Разделяется на несколько видов. Альфа-излучение представляет собой поток альфа частиц – ядер гелия-4, альфа-частицы, рождающиеся при радиоактивном распаде, могут быть легко остановлены листом бумаги, поэтому опасность представляет в основном при попадании внутрь организма. Бета-излучение – это поток электронов, возникающих при бета-распаде, для защиты от бета-частиц энергией до 1 МэВ достаточно алюминиевой пластины толщиной в несколько миллиметров. Гамма-излучение обладает гораздо большей проникающей способностью, поскольку состоит из высокоэнергичных фотонов, не обладающих зарядом, для защиты эффективны тяжелые элементы (свинец и т.п.) слоем в несколько сантиметров. Проникающая способность всех видов ионизирующего излучения зависит от энергии.

Для регистрации ионизирующего излучения в основном используются счетчики Гейгера-Мюллера. Это простое и эффективное устройство обычно представляет собой цилиндр металлический или стеклянный металлизированный изнутри и тонкой металлической нити, натянутой по оси этого цилиндра, сам цилиндр наполняется разреженным газом. Принцип работы основан на ударной ионизации. При попадании на стенки счетчика ионизирующего излучения выбивают из него электроны, электроны, двигаясь в газе и сталкиваясь с атомами газа, выбивают из атомов электроны и создают положительные ионы и свободные электроны. Электрическое поле между катодом и анодом ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, приводящая к размножению первичных носителей. При достаточно большой напряженности поля энергии этих ионов становится достаточной, чтобы порождать вторичные лавины, способные поддерживать самостоятельный разряд, в результате чего ток через счетчик резко возрастает.

Не все счетчики Гейгера могут регистрировать все виды ионизирующего излучения. В основном они чувствительны к одному излучению – альфа, бета или гамма-излучению, но часто так же в некоторой степени могут регистрировать и другое излучение. Так, например, счетчик Гейгера СИ-8Б предназначен для регистрации мягкого бета-излучения (да, в зависимости от энергии частиц излучение может разделяться на мягкое и жесткое), однако данный датчик так же в некоторой степени чувствителен к альфа-излучению и к гамма-излучению.

Однако, приближаясь все-таки к конструкции статьи, наша задача сделать максимально простой, естественно портативный, счетчик Гейгера или вернее сказать дозиметр. Для изготовления этого устройства мне удалось раздобыть только СБМ-20. Этот счетчик Гейгера предназначен для регистрации жесткого бета- и гамма излучения. Как и большинство других счетчиков, СБМ-20 работает при напряжении 400 вольт.

Основные характеристики счетчика Гейгера-Мюллера СБМ-20 (таблица из справочника):

Данный счетчик обладает относительно невысокими показателями точности измерения ионизирующего излучения, но достаточными для определения превышения допустимой для человека дозы излучения. СБМ-20 применяется во многих бытовых дозиметрах в настоящее время. Для улучшения показателей часто используется сразу несколько трубок. А для увеличения точности измерения гамма-излучения дозиметры оснащаются фильтрами бета-излучения, в этом случае дозиметр регистрирует только гамма-излучение, но зато достаточно точно.

При измерении дозы радиации необходимо учитывать некоторые факторы, которые могут быть важны. Даже при полном отсутствии источников ионизирующего излучения счетчик Гейгера будет давать некоторое количество импульсов. Это так называемый собственный фон счетчика. Сюда так же относится несколько факторов: радиоактивное загрязнение материалов самого счетчика, спонтанная эмиссия электронов из катода счетчика и космическое излучение. Все это дает некоторое количество «лишних» импульсов в единицу времени.

Итак, схема простого дозиметра на основе счетчика Гейгера СБМ-20:

Схему собираю на макетной плате:

Схема не содержит дефицитных деталей (кроме, естественно, самого счетчика) и не содержит программируемых элементов (микроконтроллеров), что позволит собрать схему в течении короткого времени без особого труда. Однако такой дозиметр не содержит шкалы, и определять дозу радиации необходимо на слух по количеству щелчков. Такой вот классический вариант. Схема состоит из преобразователя напряжения 9 вольт – 400 вольт.

На микросхеме NE555 выполнен мультивибратор, частота работы которого составляет примерно 14 кГц. Для увеличения частоты работы можно уменьшить номинал резистора R1 примерно до 2,7 кОм. Это будет полезно, если выбранный вами дроссель (а может и изготовленный) будет издавать писк – при увеличении частоты работы писк исчезнет. Дроссель L1 необходим номиналом 1000 – 4000 мкГн. Быстрее всего можно найти подходящий дроссель в сгоревшей энергосберегающей лампочке. Такой дроссель и применен в схеме, на фото выше он намотан на сердечнике, которые обычно используют для изготовления импульсных трансформаторов. Транзистор T1 можно использовать любой другой полевой n-канальный с напряжением сток-исток не менее 400 вольт, а лучше больше. Такой преобразователь даст всего несколько миллиампер тока при напряжении 400 вольт, но для работы счетчика Гейгера этого хватит с головой несколько раз. После отключения питания от схемы на заряженном конденсаторе C3 схема будет работать еще примерно секунд 20-30, учитывая его небольшую емкость. Супрессор VD2 ограничивает напряжение на уровне 400 вольт. Конденсатор C3 необходимо использовать на напряжение не менее 400 - 450 вольт.

В качестве Ls1 можно использовать любой пьезодинамик или динамик. При отсутствии ионизирующего излучения ток через резисторы R2 – R4 не протекает (на фото на макетной плате пять резисторов, но общее их сопротивление соответствует схеме). Как только на счетчик Гейгера попадет соответствующая частица внутри датчика происходит ионизация газа и его сопротивление резко уменьшается вследствие чего возникает импульс тока. Конденсатор С4 отсекает постоянную часть и пропускает на динамик только импульс тока. Слышим щелчок.

В моем случае в качестве источника питания используется две аккумуляторных батареи от старых телефонов (две, так как необходимое питание должно быть более 5,5 вольт для запуска работы схемы в силу примененной элементной базы).

Итак, схема работает, изредка пощелкивает. Теперь как это использовать. Самый простой вариант – это пощелкивает немного – все хорошо, щелкает часто или вообще непрерывно – плохо. Другой вариант – это примерно подсчитываем количество импульсов за минуту и переводим количество щелчков в мкР/ч. Для этого из справочника необходимо взять значение чувствительности счетчика Гейгера. Однако в разных источника всегда немного разные цифры. В идеальном случае необходимо провести лабораторные замеры для выбранного счетчика Гейгера с эталонными источниками излучения. Так для СБМ-20 значение чувствительности варьируется в пределах от 60 до 78 имп/мкР по разным источникам и справочникам. Так вот, подсчитали количество импульсов за одну минуту, далее это число умножаем на 60 для аппроксимации числа импульсов за один час и все это разделить на чувствительность датчика, то есть на 60 или 78 или что у вас ближе к действительности получается и в итоге получаем значение в мкР/ч. Для более достоверного значения необходимо сделать несколько замеров и посчитать между ними среднеарифметическое значение. Верхний предел безопасного уровня радиации составляет примерно 20 - 25 мкР/ч. Допустимый уровень составляет примерно до 50 мкР/ч. В разных странах цифры могут отличаться.

P.S. На рассмотрение этой темы меня подтолкнула статья о концентрации газа радон, проникающего в помещения, воду и т.д. в различных регионах страны и его источниках.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 Программируемый таймер и осциллятор

NE555

1 В блокнот
T1 MOSFET-транзистор

IRF710

1 В блокнот
VD1 Выпрямительный диод

1N4007

1 В блокнот
VD2 Защитный диод

1V5KE400CA

1 В блокнот
C1, C2 Конденсатор 10 нФ 2 В блокнот
C3 Электролитический конденсатор 2.7 мкФ 1 В блокнот
C4 Конденсатор 100 нФ 1 400В

1.4 Счётчик Гейгера-Мюллера

В пропорциональном счётчике газовый разряд развивается только в части объёма газа. В ней образуется сначала первичная ионизация, а затем и лавина электронов. Остальной объём не охватывается газовым разрядом. С повышением напряжения критическая область расширяется. В ней увеличивается концентрация возбуждённых молекул, а следовательно, и количество испущенных фотонов. Под действием фотонов из катода и молекул газа вырывается

всё больше и больше фотоэлектронов. Последние в свою очередь дают начала новым лавинам электронов в объёме счётчика, не занятом газовым разрядом от первичной ионизации. Таким образом, повышение напряжения U приводит к распространению газового разряда по объёму счётчика. При некотором напряженииU п . Называемом пороговым, газовый разряд охватывает весь объём счётчика. При напряженииU п начинается область Гейгера-Мюллера.

Счётчик Гейгера (или счётчик Гейгера-Мюллера) − газонаполненный счётчик заряженных элементарных частиц, электрический сигнал с которого усилен за счёт вторичной ионизации газового объёма счётчика и не зависит от энергии, оставленной частицей в этом объёме.Изобретён в 1908 г. Х.Гейгером и Э.Резерфордом, позднее усовершенствован Гейгером и В. Мюллером. Счетчики Гейгера-Мюллера - самые распространенные детекторы (датчики) ионизирующего излучения.

Гейгера - Мюллера счётчик - газоразрядный прибор для обнаружения и исследования различного рода радиоактивных и др. ионизирующих излучений:α - и β -частиц, γ -квантов, световых и рентгеновских квантов, частиц высокой энергии в космических лучах и на ускорителях. Гамма-кванты регистрируются счётчиком Гейгера – Мюллера по вторичным ионизирующим частицам - фотоэлектронам, комптоновским электронам, электронно-позитронным парам; нейтроны регистрируются по ядрам отдачи и продуктам ядерных реакций, возникающим в газе счётчика. Работает счётчик при напряжениях, соответствующих самостоятельному

коронному разряду (участок V, Рис. 21 ).

Рис. 21. Схема включения счетчика Гейгера

Разность потенциалов приложена (V ) между стенками и центральным электродом через сопротивлениеR , зашунтированное конденсатором

C1 .

Этот счётчик обладает практически стопроцентной вероятностью регистрации заряженной частицы, так как для

возникновения разряда достаточно одной электрон-ионной пары.

Конструктивно счётчик Гейгера устроен также как пропорциональный счётчик, т.е. представляет собой конденсатор (как правило, цилиндрический), с сильно неоднородным электрическим полем. К внутреннему электроду (тонкой металлической нити) приложен положительный потенциал (анод), к внешнему – отрицательный (катод). Электроды заключены в герметически замкнутый резервуар, наполненный каким-либо газом до давления 13-26 кн/м 2 (100-200 мм pm .ст .). К электродам счётчика прикладывается напряжение в несколько сотв . На нить подаётся знак + через сопротивлениеR .

Функционально счётчик Гейгера также повторяет пропорциональный счётчик, но отличается от последнего тем, что за счёт более высокой разности потенциалов на электродах работает в таком режиме, когда достаточно появления в объёме детектора одного электрона, чтобы развился мощный лавинообразный процесс, обусловленный вторичной ионизацией (газовое усиление), который способен ионизовать всю область вблизи нити-анода. При этом импульс тока достигает предельного значения (насыщается) и не зависит от первичной ионизации. Развиваясь лавинообразно, этот процесс завершается образованием в межэлектродном пространстве электронно-ионного облака, резко увеличивающего его проводимость. По существу, при попадании в счетчик Гейгера частицы в нём вспыхивает (зажигается) самостоятельный газовый разряд, видимый (если баллон прозрачный) даже простым газом. При этом коэффициент газового усиления может достигать 1010 , а величина импульса десятков вольт.

Возникает вспышка коронного разряда и через счётчик течёт ток.

Распределение электрического поля в счётчике таково, что разряд развивается лишь в вблизи анода счётчика на расстоянии нескольких диаметров нити. Электроны быстро скапливаются на нити (не более 10-6 сек), вокруг которой образуется «чехол» из положительных ионов. Положительный пространственный заряд увеличивает эффективный диаметр анода и снижает тем самым напряжённость поля, поэтому разряд прерывается. По мере удаления слоя положительных ионов от нити его экранирующее действие ослабляется и напряжённость поля вблизи анода становится достаточной для образования новой вспышки разряда. Положительные ионы, приближаясь к катоду, выбивают из последнего электроны, в результате чего образуются нейтральные атомы инертного газа в возбуждённом состоянии. Возбуждённые атомы при

достаточном приближении к катоду, выбивают из его поверхности электроны, которые становятся родоначальниками новых лавин. Без внешнего воздействия такой счётчик находился бы в длительном прерывистом разряде.

Таким образом, при достаточно большом R (108 -1010 ом ) на нити скапливается отрицательный заряд

и разность потенциалов между нитью и катодом быстро падает, в результате чего разряд обрывается. После этого чувствительность счётчика восстанавливается через 10-1 -10-3 сек (время разрядки ёмкости С через сопротивлениеR ). Именно такое время требуется, чтобы медленные положительные ионы, заполнившие пространство вблизи нити-анода после пролёта частицы и прохождения электронной лавины, ушли к катоду,

и восстановилась чувствительность детектора. Такое большое время нечувствительности неудобно для многих применений.

Для практического использования несамогасящего счётчика Гейгера используются различные способы прекращения разряда:

а) Использование электронных схем гашения разряда в газе. Приспособленная для этого электронная схема, в нужное время выдаёт на счётчик «противосигнал», который прекращает самостоятельный разряд и «выдерживает» счётчик на время до полной нейтрализации возникших заряженных частиц. Характеристики такого счётчика со схемой гашения разряда близки к характеристикам самогасящихся счётчиков и иногда превосходят их.

б) Гашение за счёт подбора величин нагрузочного сопротивления и эквивалентной ёмкости, а также величины напряжения на счётчике.

В зависимости от механизма гашения разряда различают две группы счётчиков: несамогасящиеся и самогасящиеся. В несамогасящихся счётчиках «мёртвое» время слишком велико (10-2 сек), для его

уменьшения применяют электронные схемы гашения разряда, которые снижают разрешающее время до времени собирания положительных ионов на катоде (10-4 сек).

Сейчас несамогасящиеся счётчики, в которых гашение разрядов обеспечивается сопротивлением R , вытеснены самогасящимися счётчиками, которые к тому же более стабильны. В них благодаря специальному газовому наполнению (инертный газ с примесью сложных молекул, например паров спирта, и небольшой

примесью галогенов - хлора, брома, йода) разряд сам собой обрывается даже при малых сопротивлениях R . Время нечувствительности самогасящегося счётчика ~10-4 сек .

В 1937 г. Трост обратил внимание на то обстоятельство, что если в счетчик, наполненный аргоном,

добавить небольшое количество (несколько процентов) паров этилового спирта (С2 H5 OH), то разряд, вызванный в счетчике ионизирующей частицей, погаснет сам по себе. Впоследствии выяснилось, что самопроизвольное погасание разряда в счетчике имеет место и при добавлении к аргону паров других органических соединений, обладающих сложными многоатомными соединениями. Вещества эти называют обычно гасящими, а счётчики Гейгера-Мюллера, в которых используются эти вещества, называются счетчиками - самогасящегося типа. Самогасящийся счётчик наполняется смесью двух (или нескольких) газов. Один газ, основной, составляет в смеси около 90 %, другой, гасящий - около 10 %. Компоненты рабочей смеси должны удовлетворять обязательному условию, заключающемуся в том, что потенциал ионизации гасящего газа должен быть ниже первого потенциала возбуждения основного газа.

Замечание. Для регистрации рентгеновского излучения часто применяются проволочные ксеноновые детекторы. Примером может служить первый отечественный сканирующий цифровой медицинский флюорограф МЦРУ СИБИРЬ. Другое приложение рентгеновских счётчиков - рентгенофлуоресцентный волнодисперсионный спектрометр (например, Venus 200), предназначенный для определения различных элементах в веществах и материалах. В зависимости от определяемого элемента возможно применение следующих детекторов: - проточного пропорционального детектора с окнами толщиной 1, 2, 6 микрон, непроточного неонового детектора с окнами толщиной 25 и 50 микрон, - непроточного криптонового детектора с окном толщиной 100 микрон, - ксенонового детектора с окном 200 микрон и сцинтилляционного детектора с окном 300 микрон.

Самогасящиеся счётчики допускают большую скорость счёта без специальных электронных схем

гашения разряда, поэтому они нашли широкое применение. Самогасящиеся счётчики с органическими гасящими примесями имеют ограниченный срок работы (108 -1010 импульсов). При использовании в качестве гасящей примеси одного из галогенов (чаще всего применяется менее активный Br2 ) срок службы становится практически неограниченным из-за того, что двухатомные молекулы галогена после диссоциации на атомы (в процессе разряда) образуются снова. К недостаткам галогенных счётчиков следует отнести сложность технологии их изготовления из-за химической активности галогенов и большое время нарастания переднего фронта импульсов из-за прилипания первичных электронов к молекуле галогена. «Затягивание» переднего фронта импульса в галогенных счётчиках делает их неприменимыми в схемах совпадений.

Основными характеристиками счётчика являются: счётная характеристика – зависимость скорости счёта от величины рабочего напряжения; эффективность счётчика – выраженное в процентах отношение числа считаемых частиц к числу всех частиц, попадающих в рабочий объём счётчика; разрешающее время –

минимальный интервал времени между импульсами, при котором они регистрируются раздельно и срок службы счётчиков.

Рис. 22. Схема возникновения мёртвого времени в счётчике Гейгера-Мюллера. (Форма импульса при разряде в счётчике Гейгера-Мюллера).

Отрезок времени, необходимый для восстановления радиационной чувствительности счетчика Гейгера и фактически определяющий его быстродействие - «мертвое» время - является важной его паспортной характеристикой.

Если в счётчике Гейгера-Мюллера в момент временt 0 начался разряд, вызванный ядерной частицей, то напряжение на счётчике резко падает. Счётчик в течение определённого времени, которое называется мёртвым временемτ м , не способен регулировать другие частицы. С моментаt 1 , т.е. по истечении мёртвого времени, в счётчике снова возможно возникновение самостоятельного разряда. Однако вначале амплитуда импульса ещё мала. Только после того, как пространственный заряд достигнет поверхности катода, в счётчике образуются импульсы нормальной амплитуды. Отрезок времениτ с между моментомt 0 , когда в счётчике возник самостоятельный разряд, и моментом восстановления рабочего напряженияt 3 называется временем восстановления. Для того чтобы регистрирующее устройство могло сосчитать импульс, необходимо, чтобы его амплитуда превышала определённую величинуU п . Интервал времени между моментом возникновения самостоятельного разрядаt 0 и моментом образования амплитудыU п импульсаt 2 называется разрешающим временемτ p счётчика Гейгера-Мюллера. Разрешающее времяτ p несколько больше мёртвого времени.

Если ежесекундно в счетчик попадает большое число частиц (несколько тысяч и более), то разрешающее время τ р по величине будет сравнимо со средним промежутком времени между импульсами, поэтому значительное число импульсов не сосчитывается. Пустьm - наблюдаемая скорость счета счетчика. Тогда доля времени, в течение которого счетная установка нечувствительна, равнаm τ . Следовательно, число импульсов, потерянных за единицу времени, равноnm τ р , гдеn - скорость счета, которая наблюдалась бы в том случае, если бы разрешающее время имело пренебрежимо малую величину. Поэтому

n – m = nmτ р

−m τ

Поправка в скорости счета, которая дается этим уравнением, называется поправкой на мертвое время установки.

Галогеновые самогасящиеся счётчики отличаются самым низким напряжением питания, превосходными параметрами выходного сигнала и достаточно высоким быстродействием, они оказались особенно удобными для применения в качестве датчиков ионизирующего излучения в бытовых приборах радиационного контроля.

Каждая фиксируемая счетчиком частица вызывает появление в его выходной цепи короткого импульса. Число импульсов, возникающих в единицу времени, - скорость счета счетчика Гейгера - зависит от уровня ионизирующей радиации и напряжения на его электродах. Типичный график зависимости скорости счета от напряжения питания V показан наРис. 23. ЗдесьV заж - напряжение начала счета;V 1 иV 2 - нижняя и верхняя граница рабочего участка, так называемого плато, на котором скорость счета почти не зависит от напряжения питания счетчика. Рабочее напряжениеV раб обычно выбирают в середине этого участка. Ему соответствуетN р - скорость счета в этом режиме.

Рис. 23. Зависимость скорости счета от напряжения питания в счетчике Гейгера (Счётная характеристика)

Зависимость скорости счета от уровня радиационного облучения счетчика - важнейшая его характеристика. График этой зависимости имеет почти линейный характер и поэтому нередко радиационную чувствительность счетчика выражают через имп/мкР (импульсов на микрорентген; эта размерность следует из отношения скорости счета - имп/с - к уровню радиации - мкР/с). В

тех случаях, когда она не указана (нередких, к сожалению), судить о радиационной чувствительности

счетчика приходится по другому его тоже очень важному параметру - собственному фону. Так называют скорость счета, причиной которой являются две составляющие: внешняя - естественный радиационный фон, и внутренняя - излучение радионуклидов, оказавшихся в самой конструкции счетчика, а также спонтанная электронная эмиссия его катода. («фон» в дозиметрии имеет почти тот же смысл, что и «шум» в радиоэлектронике; в обоих случаях речь идет о принципиально неустранимых воздействиях на аппаратуру.)

Еще одной важной характеристикой счетчика Гейгера является зависимость его радиационной чувствительности от энергии («жесткости») ионизирующих частиц. На профессиональном жаргоне график этой зависимости называют «ходом с жесткостью». В какой мере эта зависимость важна, показывает график на рисунке. «Ход с жесткостью» будет влиять, очевидно, на точность проводимых измерений.

В своей основе счетчик Гейгера очень прост. В хорошо вакуумированный герметичный баллон с двумя электродами введена газовая смесь, состоящая в основном из легко ионизируемых неона и аргона. Баллон может быть стеклянным, металлическим и др. Обычно счетчики воспринимают излучение всей своей поверхностью, но существуют и такие, у которых для этого в баллоне предусмотрено специальное «окно».

Счетчики Гейгера способны реагировать на самые разные виды ионизирующего излучения - α ,β ,γ , ультрафиолетовое, рентгеновское, нейтронное. Но реальная спектральная чувствительность счетчика в значительной мере зависит от его конструкции. Так, входное окно счетчика, чувствительного кα - и мягкому β -излучению, должно быть очень тонким; для этого обычно используют слюду толщиной 3...10 мкм. Баллон счетчика, реагирующего на жесткоеβ - и γ -излучение, имеет обычно форму цилиндра с толщиной стенки 0,05....0,06 мм (он служит и катодом счетчика). Окно рентгеновского счетчика изготавливают из бериллия, а ультрафиолетового - из кварцевого стекла.

Рис. 24. Зависимость скорости счета от энергии гамма-квантов («ход с жесткостью») в счетчике Гейгера

В счетчик нейтронов вводят бор, при взаимодействии с которым поток нейтронов преобразуется в легко регистрируемые α - частицы. Фотонное излучение -ультрафиолетовое, рентгеновское, γ -излучение - счетчики Гейгера воспринимают опосредованно - через фотоэффект, комптон-эффект, эффект рождения пар; в каждом случае происходит преобразование взаимодействующего с веществом катода излучения в поток электронов.

Рис. 25. Радиометрическая установка на базе счётчика Гейгера-Мюллера.

То, что счетчик Гейгера является лавинным прибором, имеет и свои минусы – по реакции такого прибора нельзя судить о первопричине его возбуждения. Выходные импульсы, генерируемые счетчиком Гейгера под действием α -частиц, электронов, γ -квантов (в счетчике, на все эти виды излучения реагирующем), ничем не различаются. Сами

частицы, их энергии совершенно исчезают в порождаемых ими лавинах-близнецах.

О качестве счетчика Гейгера-Мюллера судят обычно по виду его счетной характеристики. Для «хороших» счетчиков протяженность счетной части составляет 100-300 В при наклоне плато не более 3 - 5 % на 100 В. Рабочее напряжение счетчикаV раб выбирают обычно в середине его счетной области.

Поскольку скорость счета частиц на плато изменяется пропорционально интенсивности облучения ядерными частицами, счетчики Гейгера-Мюллера с успехом используются для относительных измерений активности радиоактивных источников. Абсолютные измерения затрудняются вследствие учета большого числа дополнительных поправок. При работе с источниками малой интенсивности следует учесть фон счетчика, обусловленный космическим излучением, радиоактивностью окружающей среды и радиоактивным загрязнением материала счетчика. В качестве наполняющих счетчик газов первоначально чаще всего использовались благородные газы, в частности, аргон и неон. У большинства счетчиков давление лежит в интервале от 7 до 20 см рт.ст, хотя они иногда работают и при больших давлениях, вплоть до 1 атм. В счётчиках такого типа необходимо применять специальные электронные схемы для гашения газового разряда, возникшего при попадании в счетчик ионизирующего излучения. Поэтому такие счетчики называются счетчиками Гейгера-Мюллера несамогасящегося типа. Они обладают весьма плохой разрешающей способностью. Применение схем для принудительного гашения разряда, улучшая

разрешающую способность, существенно усложняет экспериментальную установку, особенно в случае использования большого числа счетчиков одновременно.

Типичный стеклянный счётчик Гейгера-Мюллера представлен наРис. 25.

Рис. 25. Стеклянный счётчик Гейгера-Мюллера: 1 –

геометрически запаянная стеклянная трубка; 2 – катод (тонкий слой меди на трубке из нержавеющей стали); 3 – вывод катода; 4 – анод (тонкая натянутая нить).

В Табл. 1 приведены сведения о самогасящихся галогеновых счетчиках Гейгера

российского производства, наиболее подходящих для бытовых приборов радиационного контроля.

Обозначения: 1 - рабочее напряжение, В; 2 - плато - область малой зависимости скорости счета от напряжения питания, В; 3 - собственный фон счетчика, имп/с, не более; 4 - радиационная чувствительность счетчика, имп/мкР (* - по кобальту-60); 5 - амплитуда выходного импульса, В, не менее; 6 - габариты, мм - диаметр х длина (длина х ширина х

высота); 7.1 - жесткое β - иγ - излучение; 7.2 - то же и мягкоеβ - излучение; 7.3 - то же иα - излучение; 7.4 -γ - излучение.

Рис.26. Часы со встроенным счётчиком Гейгера-Мюллера.

Счетчик Гейгера-Мюллера, типа СТС-6, считаетβ иγ частицы и относится к самогасящимся счетчикам. Он представляет собой цилиндр из нержавеющей стали с толщиной стенок 50 мг/(см2 с) ребрами жесткости для прочности. Счетчик заполнен смесью паров неона и брома. Бром гасит разряд.

Конструкции счётчиков весьма разнообразны и зависят от вида излучения и его энергии, а также от методики измерения).

Радиометрическая установка на базе счётчика Гейгера - Мюллера представлена на Рис. 27. Напряжение на счётчик подаётся с высоковольтного источника питания. Импульсы со счетчика подаются в блок усилителя, где они усиливаются, и затем регистрируются пересчётным устройством.

Счётчики Гейгера-Мюллера применяются для регистрации всех видов излучения. Они могут быть использованы как для абсолютных, так и для относительных измерений радиоактивных излучений.

Рис. 27. Конструкция счётчиков Гейгера-Мюллера: а – цилиндрический; б

внутреннего наполнения; г – проточный для жидкостей. 1 – анод (собирающий электрод); 2 – катод; 3 – стеклянный баллон; 4 – выводы электродов; 5 – стеклянная трубка; 6 – изолятор; 7 – слюдяное окно; 8 – кран для впуска газа.

Назначение счетчиков

Счетчик Гейгера - Мюллера это двухэлектродный прибор, предназначенный для определения интенсивности ионизирующего излучения или, иными словами, - для счета возникающих при ядерных реакциях ионизирующих частиц: ионов гелия (- частиц), электронов (- частиц), квантов рентгеновского излучения (- частиц) и нейтронов. Частицы распространяются с очень большой скоростью [до 2 . 10 7 м/с для ионов (энергия до 10 МэВ) и около скорости света для электронов (энергия 0,2 - 2 МэВ)], благодаря чему проникают внутрь счетчика. Роль счетчика заключается в формировании короткого (доли миллисекунды) импульса напряжения (единицы - десятки вольт) при попадании частицы в объём прибора.

В сравнении с другими детекторами (датчиками) ионизирующих излучений (ионизационной камерой, пропорциональным счетчиком) счетчик Гейгера-Мюллера отличается высокой пороговой чувствительностью - он позволяет контролировать естественный радиоактивный фон земли (1 частица на см 2 за 10 - 100 секунд). Верхний предел измерения сравнительно невысок - до 10 4 частиц на см 2 в секунду или до 10 Зиверт в час (Зв/ч). Особенностью счетчика является способность формировать одинаковые выходные импульсы напряжения вне зависимости от рода частиц, их энергии и числа ионизаций, произведенных частицей в объеме датчика.

Работа счетчика Гейгера основана на несамостоятельном импульсном газовом разряде между металлическими электродами, который инициируется одним или несколькими электронами, появляющимися в результате ионизации газа -, -, или -частицей. В счетчиках обычно используется цилиндрическая конструкция электродов, причем диаметр внутреннего цилиндра (анода) много меньше (2 и более порядков), чем наружного (катода), что имеет принципиальное значение. Характерный диаметр анода 0,1 мм.

Частицы поступают в счетчик через вакуумную оболочку и катод в «цилиндрическом» варианте конструкции (рис. 2,а ) или через специальное плоское тонкое окно в «торцевом» варианте конструкции (рис. 2,б) . Последний вариант используется для регистрации -частиц, обладающих низкой проникающей способностью (задерживаются, например, листом бумаги), но очень опасных в биологическом отношении при попадании источника частиц внутрь организма. Детекторы со слюдяными окнами используются также для счета -частиц сравнительно малой энергии («мягкое» бэта-излучение).

Рис. 2. Схематические конструкции цилиндрического (а ) и торцевого (б) счетчиков Гейгера. Обозначения: 1 - вакуумная оболочка (стекло); 2 - анод; 3 - катод; 4 - окно (слюда, целлофан)

В цилиндрическом варианте счетчика, предназначенного для регистрации -частиц высокой энергии или мягкого рентгеновского излучения, используют тонкостенную вакуумную оболочку, а катод выполняют из тонкой фольги или в виде тонкой пленки металла (медь, алюминий), напылённой на внутреннюю поверхность оболочки. В ряде конструкций тонкостенный металлический катод (с ребрами жесткости) является элементом вакуумной оболочки. Жесткое рентгеновское излучение (-частицы) обладает повышенной проникающей способностью. Поэтому его регистрируют детекторами с достаточно толстыми стенками вакуумной оболочки и массивным катодом. В счетчиках нейтронов катод покрывается тонким слоем кадмия или бора, в котором нейтронное излучение преобразуется в радиоактивное через ядерные реакции.

Объем прибора обычно заполнен аргоном или неоном с небольшой (до 1 %) примесью аргона при давлении, близком к атмосферному (10 -50 кПа). Для устранения нежелательных послеразрядных явлений в газовое наполнение вводится примесь паров брома или спирта (до 1 %).

Способность счетчика Гейгера регистрировать частицы независимо от их рода и энергии (генерировать один импульс напряжения независимо от количества образованных частицей электронов) определяется тем, что благодаря очень малому диаметру анода почти все приложенное к электродам напряжение сосредоточено в узком прианодном слое. За пределами слоя находится “область улавливания частиц”, в которой они ионизируют молекулы газа. Электроны, оторванные частицей от молекул, ускоряются к аноду, но газ ионизируют слабо из-за малой напряженности электрического поля. Ионизация резко усиливается после входа электронов в прианодный слой с большой напряженностью поля, где развиваются электронные лавины (одна или несколько) с очень высокой степенью размножения электронов (до 10 7). Однако возникающий за счет этого ток еще не достигает величины, соответствующей формированию сигнала датчика.

Дальнейший рост тока до рабочего значения обусловлен тем, что в лавинах одновременно с ионизацией генерируются ультрафиолетовые фотоны с энергией около 15 эВ, достаточной для ионизации молекул примеси в газовом наполнении (например, потенциал ионизации молекул брома равен 12,8 В). Электроны, появившиеся в результате фотоионизации молекул за пределами слоя, ускоряются к аноду, но лавины здесь не развиваются из-за малой напряженности поля и процесс слабо влияет на развитие разряда. В слое ситуация иная: образующиеся фотоэлектроны благодаря большой напряженности инициируют интенсивные лавины, в которых генерируются новые фотоны. Их количество превышает первоначальное и процесс в слое по схеме «фотоны - электронные лавины - фотоны» быстро (несколько микросекунд) нарастает (входит в «спусковой режим»). При этом разряд от места первых лавин, инициированных частицей, распространяется вдоль анода («поперечное зажигание»), анодный ток резко увеличивается и формируется передний фронт сигнала датчика.

Задний фронт сигнала (уменьшение тока) обусловлен двумя причинами: снижением потенциала анода за счет падения напряжения от тока на резисторе (на переднем фронте потенциал поддерживается межэлектродной емкостью) и снижением напряженности электрического поля в слое под действием пространственного заряда ионов после ухода электронов на анод (заряд повышает потенциалы точек, в результате чего перепад напряжения на слое уменьшается, а на области улавливания частиц увеличивается). Обе причины снижают интенсивность развития лавин и процесс по схеме «лавины - фотоны - лавины» затухает, а ток через датчик уменьшается. После окончания импульса тока потенциал анода увеличивается до исходного уровня (с некоторой задержкой из-за заряда межэлектродной емкости через анодный резистор), распределение потенциала в промежутке между электродами возвращается к первоначальной форме в результате ухода ионов на катод и счетчик восстанавливает способность регистрировать поступление новых частиц.

Выпускаются десятки типов детекторов ионизирующих излучений . При их обозначении используется несколько систем. Например, СТС-2, СТС-4 - счетчики торцевые самогасящиеся, или МС-4 - счетчик с медным катодом (В - с вольфрамовым, Г - с графитовым), или САТ-7 - счетчик -частиц торцевой, СБМ-10 - счетчик -частиц металлический, СНМ-42 - счетчик нейтронов металлический, СРМ-1 - счетчик для рентгеновского излучения и т. д.