Меню
Бесплатно
Главная  /  Устройства  /  Математические способности детей. Анализ представлений о математических способностях

Математические способности детей. Анализ представлений о математических способностях

Отдельные способности человека еще не гарантируют успеш¬ного выполнения им сложной деятельности. Развитое у человека тонкое восприятие формы и цвета еще не делает его художником. Отличный музыкальный слух сам по себе еще не создает музы¬канта. Для успешного овладения любой деятельностью необходи¬мо определенное сочетание отдельных, частных способностей, образующих единство, качественно своеобразное целое, синтез, или, как говорят, ансамбль, способностей. В этом синтезе отдельные способности (компоненты) обычно объединяются вокруг определенного, стержневого личностного образования, своего рода центральной способности. Указанный синтез не является постоянным и неизменным, это развивающееся и изменяющееся под влиянием деятельности единство.
Различают способности разного уровня - учебные и творчес¬кие. Учебные способности связаны с усвоением уже известных способов выполнения деятельности, приобретением знаний, уме¬ний и навыков. Творческие способности связаны с созданием нового, оригинального продукта, с нахождением новых способов выполнения деятельности. С этой точки зрения различают, напри¬мер, способности к усвоению, изучению математики и творческие математические способности. Разумеется, резко обособлять учеб¬ные и творческие способности нет оснований: учебная деятель¬ность обычно включает в себя и элементы субъективного твор¬чества.
Различают также общие умственные способности и специаль¬ные способности. Общие умственные способности - это способ¬ности, которые необходимы для выполнения не какой-то одной, а многих видов деятельности; эти способности отвечают требова¬ниям, которые предъявляют не одна, а целый ряд, широкий круг относительно родственных деятельностей. К общим умственным способностям относят, например, такие качества ума, как умст¬венная активность, критичность, систематичность, быстрота умст¬венной ориентировки, высокий уровень аналитико-синтетической деятельности, сосредоточенное внимание. Специальные способнос¬ти - это способности, которые необходимы для успешного выполнения какой-нибудь одной определенной деятельности - музы¬кальной, художественно-изобразительной, математической, лите¬ратурной, конструктивно-технической и т. д. Эти способности также представляют собой единство отдельных частных способ¬ностей.
Например, в составе математических способностей большую роль играет математическая память (не память на числа, а память на общие схемы рассуждений и доказательств, на методы решения типовых задач, на общие правила); способность к логи-ческому мышлению в области количественных и пространствен¬ных отношений; быстрое и широкое обобщение математического материала (способность увидеть общее в, казалось бы, различ¬ных математических выражениях и действиях); легкое и сво¬бодное переключение от одной умственной операции к другой стремление к ясности, простоте, экономности и рациональности рассуждений и решений и т. д. Все частные способности объе¬диняются стержневой способностью - математической направлен¬ностью ума (под которой понимают тенденцию вычленять при восприятии пространственные и количественные отношения, функциональные зависимости), связанной с потребностью в ма¬тематической деятельности.
Конструктивно-технические способности включают такие компоненты, как наблюдательность в области технических приспо¬соблений, позволяющую видеть их достоинства и несовершенства; точность и живость пространственных представлений; комбина¬торную способность (способность составлять из данных узлов, деталей новые комбинации, сопоставлять свойства различных материалов); техническое мышление (способность понимать логику технических устройств).
Музыкальные способности составляют единство таких способ¬ностей, как ладовое чувство, проявляющееся в эмоциональном восприятии и легком узнавании мелодий, способность к слухо¬вому представлению, проявляющуюся в точном воспроизведении мелодии по слуху (иначе говоря, музыкальная память), музы¬кально-ритмическое чувство - способность чувствовать ритм и воспроизводить его. Важное значение имеет и абсолютный слух - способность точно определять высоту звука без сравнения его с эталоном (хотя, по мнению некоторых исследователей, это свой¬ство не обязательное). Все эти частные способности группи¬руются вокруг стержневой способности - музыкальности, под которой понимают способность воспринимать музыку как выра¬жение некоторого содержания (а не просто гармоническое со¬четание звуков).
В основе литературных способностей лежат такие стержневые образования, как творческая активность и эстетическая позиция, объединяющие частные способности - наблюдательность, впе¬чатлительность (эмоциональное переживание воспринятого), на¬личие ярких, наглядных образов памяти, творческое воображе¬ние, а также эмоциональность и выразительность языка.
К художественно-изобразительным способностям относится способность правильной оценки пропорций и светлотных отно¬шений, способность чувствовать выразительную функцию цвета, творческое воображение и др.
Учителю, вдумчиво изучающему учеников, для правильной организации учебно-воспитательного процесса и индивидуального подхода в обучении и воспитании важно знать, и к чему обна¬руживает способности его ученик, и в какой мере выражены эти способности - насколько быстро, легко и прочно овладевает ученик знаниями, умениями и навыками в соответствующей деятельности. О способностях ученика можно судить, наблюдая его проявления в соответствующей деятельности. Практически судить о способностях можно по совокупности следующих пока¬зателей: 1) по быстрому продвижению (темпу продвижения) ученика в овладении соответствующей деятельностью; 2) по качественному уровню его достижений; 3) по сильной, дейст¬венной и устойчивой склонности человека к занятиям этой дея¬тельностью.
Например, по данным некоторых исследований оказалось, что в подавляющем большинстве случаев имелась прямая связь между интересами и склонностями к определенным учебным предметам и способностями к овладению ими.

Калькуляторы могут быть удивительно полезными, но они не всегда под рукой. К тому же не всем удобно доставать калькуляторы или телефоны, чтобы подсчитать, сколько нужно заплатить в ресторане, или вычислить размер чаевых. Вот десять подсказок, которые могут помочь вам произвести все эти подсчеты в уме. На самом деле это совсем не сложно, особенно если запомнить несколько простых правил.

Прибавляйте и вычитайте слева направо

Помните, как в школе нас учили прибавлять и вычитать в столбик справа налево? Это сложение и вычитание удобно, когда под рукой карандаш и листок бумаги, но в уме эти математические действия легче выполнить, считая слева направо. В числе слева расположена цифра, определяющая большие ценности, например сотни и десятки, а справа меньшие, то есть единицы. Слева направо считать интуитивнее. Таким образом, прибавляя 58 и 26, начните с первых цифр, сначала 50 + 20 = 70, потом 8 + 6 = 14, затем сложите оба результата - и получите 84. Легко и просто.

Облегчите себе задачу

Если вы столкнулись со сложным примером или задачей, попытайтесь найти способ упростить ее, например, добавить или отнять определенное число, чтобы сделать общее вычисление проще. Если, например, вам нужно посчитать, сколько будет 593 + 680, сначала прибавьте 7 к 593, чтобы получить более удобное число 600. Вычислите, сколько будет 600 + 680, а затем от полученного результата 1280 отнимите те же 7, чтобы получить правильный ответ - 1273.

Подобным образом можно поступать и с умножением. Чтобы умножить 89 x 6, вычислите, сколько будет 90 x 6, а затем отнимите оставшиеся 1 х 6. Таким образом, 540 - 6 = 534.

Запомните стандартные блоки

Запоминание таблиц умножения является важной и нужной частью математики, которая отлично помогает решать примеры в уме.

Запоминая основные «стандартные блоки» математики, такие как таблица умножения, квадратные корни, процентные соотношения десятичных и обыкновенных дробей, мы можем немедленно получить ответы на простые задачи, спрятанные в более трудных.

Помните полезные уловки

Чтобы быстрее справиться с умножением, важно помнить несколько простых уловок. Одно из самых очевидных правил - умножение на 10, то есть просто добавление ноля к умножаемому числу или перенос запятой на один десятичный показатель. При умножении на 5, ответ будет всегда заканчиваться цифрой 0 или 5.

Кроме того, умножая число на 12, сначала умножьте его на 10, а потом на 2, затем прибавьте результаты. Например, вычисляя 12 x 4, сначала умножьте 4 x 10 = 40, а затем 4 x 2 = 8, и прибавьте 40 + 8 = 48. Умножая на 15, просто умножьте число на 10, и затем прибавьте еще половину полученного, например, 4 x 15 = 4 x 10 = 40, плюс еще половина (20), получается 60.

Есть также хитрая уловка для умножения на 16. Во-первых, умножьте рассматриваемое число на 10, а затем умножьте половину числа на 10. После прибавьте оба результата к числу, чтобы получить окончательный ответ. Таким образом, чтобы вычислить 16 x 24, сначала вычислите 10 x 24 = 240, затем половину 24, то есть 12, умножьте на 10 и получите 120. И последний шаг: 240 + 120 + 24 = 384.

Квадраты и их корни очень полезны

Почти как таблица умножения. И помочь они могут с умножением более крупных чисел. Квадрат получается при умножении числа на само себя. Вот как работает умножение с использованием квадратов.

Давайте предположим на мгновение, что мы не знаем ответ на 10 x 4. Сначала выясняем среднее число между этими двумя числами, оно равно 7 (т. е. 10 - 3 = 7, и 4 + 3=7, при этом различие между средним числом равно 3 - это важно).

Затем определяем квадрат 7, который равен 49. У нас теперь есть число, близкое к финальному ответу, но оно не достаточно близко. Чтобы получить правильный ответ, возвращаемся к различию между средним числом (в этом случае 3), его квадрат дает нам 9. Последний шаг включает в себя простое вычитание, 49 - 9 = 40, теперь у вас есть правильный ответ.

Это похоже на окольный и чересчур сложный способ вычислить, сколько же будет 10 x 4, но та же самая техника прекрасно работает и для больших чисел. Возьмем, например, 15 x 11. Сначала мы должны найти среднее число между этими двумя (15 - 2 = 13, 11 + 2 = 13). Квадрат 13 равен 169. Квадрат различия среднего числа 2 равен 4. Получаем 169 - 4 = 165, вот и правильный ответ.

Иногда достаточно и приблизительного ответа

Если вы пытаетесь решить сложные задачи в уме, неудивительно, что на это уходит немало времени и усилий. Если вам не нужен абсолютно точный ответ, возможно, достаточно будет подсчитать приблизительное число.

То же самое касается и задач, в условиях которых вам не известны все точные данные. Например, во время Манхэттенского проекта физик Энрико Ферми хотел примерно подсчитать силу атомного взрыва, прежде чем ученые получат точные данные. С этой целью он набросал бумажных обрывков на пол и следил за ними с безопасного расстояния, в тот момент, когда до бумажек дошла взрывная волна. Измерив расстояние, на которое сдвинулись обрывки, он предположил, что сила взрыва составила приблизительно 10 килотонн в тротиловом эквиваленте. Эта оценка оказалась довольно точна для предположения навскидку.

К счастью, нам не приходится регулярно оценивать приблизительную силу атомных взрывов, однако приблизительные подсчеты не повредят, если, например, вам нужно предположить, сколько в городе настройщиков фортепиано. Для этого проще всего оперировать числами, которые просто делить и умножать. Таким образом, сначала вы оцениваете население своего города (например, сто тысяч человек), затем оцениваете предположительное число фортепьяно (скажем, десять тысяч), ну и затем количество настройщиков фортепьяно (например, 100). Вы не получите точный ответ, но сумеете быстро предположить приблизительное количество.

Перестраивайте примеры

Основные правила математики помогают перестроить сложные примеры в более простые. Например, вычисление в уме примера 5 x (14 + 43) кажется грандиозной и даже непосильной задачей, но пример можно «разломить» на три довольно несложных вычисления. Например, эта непосильная задача может быть перестроена следующим образом: (5 x 14) + (5 x 40) + (5 x 3) = 285. Не так уж и сложно, правда?

Упрощайте задачи

Если задача кажется сложной, упростите ее. Всегда проще справиться с несколькими простыми заданиями, чем с одним сложным. Решение многих сложных примеров в уме заключается в умении правильно разделить их на более простые примеры, решение которых не составляет труда.

Например, умножать на 8 проще всего, удваивая число три раза. Таким образом, вместо того, чтобы пытаться решить, сколько будет 12 x 8 традиционным способом, просто удвойте 12 три раза: 12 х 2 = 24, 24 х 2 = 48, 48 х 2 = 96.

Или умножая на 5, сначала умножайте на 10, так как это легко, затем разделите результат на 2, так как это также довольно легко. Например, для решения 5 x 18, вычислите 10 x 18 и разделите на 2, где 180: 2 = 90.

Пользуйтесь возведением в степень

Вычисляя большие суммы в уме, помните, что вы можете преобразовать их в более мелкие числа, умноженные на 10 в нужной степени. Например, сколько получится, если 44 миллиарда разделить на 400 тысяч? Простой способ решить эту задачу состоит в том, чтобы преобразовать 44 миллиарда в следующее число - 44 х 10 9 , а из 400 тысяч сделать 4 х 10 5 . Теперь мы можем преобразовать задачу следующим образом: 44: 4 и 10 9: 10 5 . Согласно математическим правилам, все это выглядит так: 44: 4 х 10(9-5), таким образом, мы получаем 11 x 10 4 = 110,000.

Самый простой способ вычислить необходимые чаевые

Математика необходима даже во время ужина в ресторане, точнее после него. В зависимости от заведения, размер чаевых может составлять от 10% до 20% от стоимости счета. Например, в США принято оставлять на чай официантам 15%. И там, как и во многих европейских странах, чаевые обязательны.

Если вычислить 10% от общей суммы сравнительно легко (просто разделите сумму на 10), то с 15 и с 20% дело, кажется, обстоит сложнее. Но на самом деле, все так же просто и очень логично.

Вычисляя 10-процентные чаевые за ужин, который обошелся в 112,23 доллара, просто переместите десятичную точку влево на одну цифру, получится 11,22 $. Вычисляя 20-процентные чаевые, сделайте то же самое, и просто удвойте полученную сумму (20% просто в два раза больше 10%), в этом случае чаевые составят 22,44 $.

Для 15-процентных чаевых сначала определите 10% от суммы, а затем добавьте половину полученной суммы (дополнительные 5% - это половина 10-процентной суммы). Не волнуйтесь, если не можете получить точный ответ, до последнего цента. Если не заморачиваться слишком сильно с десятичными знаками, мы можем быстро вычислить, что 15-процентные чаевые от суммы 112,23 $ составляют 11 + 5,50 $, что дает нам 16,50 $. Достаточно точно. Если вы не хотите обидеть официанта, недосчитав нескольких центов, округлите сумму до целого числа и заплатите 17 долларов.

Способности к математике – это один из данных природой талантов, проявляющийся уже с раннего возраста и связанный напрямую со становлением творческого потенциала, стремлением к познанию мира вокруг малыша. Но почему изучение математики так сложно дается некоторым детям и можно ли улучшить эти способности?

Мнение, что математика подвластна лишь одарённым детям, ошибочно. Математические способности, как и прочие таланты, являются результатом гармоничного развития ребенка, и начинать надо с самого раннего возраста.

В современном компьютерном мире с его цифровыми технологиями умение “дружить” с числами крайне необходимо. Много профессий основано на математике, развивающей мышление и относящейся к одному из самых важных факторов влияния на интеллектуальный рост детей. Эта точная наука, чья роль в воспитании и обучении ребенка неоспорима, развивает логику, учит последовательно мыслить, определять сходства, связи и отличия предметов и явлений, делает детский ум быстрым, внимательным и гибким.

Чтобы занятия математикой у детей пяти-семи лет были эффективными, необходим серьезный подход, и первым делом следует диагностировать их знания и умения – оценить, на каком уровне находятся у малыша логическое мышление и базовые математические понятия.

Диагностика математических способностей детей 5-7 лет по методу Белошистой А.В.

Если ребенок с математическим складом ума освоил устный счет еще в раннем возрасте, это еще не является основанием для стопроцентной уверенности в его будущем как гения математики. Навыки устного счёта – это лишь небольшой элемент точной науки и далеко не самый сложный. О наличии у ребенка способностей к математике свидетельствует особый способ мышления, которому присущи логика и абстрактное мышление, понимание схем, таблиц и формул, умение анализировать, способность видеть фигуры в пространстве (объемными).

Чтобы определить наличие у детей от младшего дошкольного (4-5 лет) до младшего школьного возраста данных способностей, существует система эффективной диагностики, созданная доктором педагогических наук Анной Витальевной Белошистой. Она основана на создании учителем или родителем определенных ситуаций, в которых ребенок должен применить то или иное умение.

Этапы диагностики:

  1. Проверка ребенка 5-6 лет на предмет владения навыками анализа и синтеза. На данном этапе можно оценить, как ребенок умеет сравнивать предметы различных форм, разделять их и обобщать по определенным признакам.
  2. Тестирование навыков образного анализа у детей в возрасте 5-6 лет.
  3. Проверка умения анализировать и синтезировать информацию, по результатам которого выявляется способность дошкольника (первоклассника) определять формы различных фигур и замечать их в сложных картинках с наложенными друг на друга фигурами.
  4. Тестирование с целью определения у ребенка понимания базовых тезисов математики – речь идет о понятиях “больше” и “меньше”, порядковом счете, форме простейших геометрических фигур.

Первые два этапа такой диагностики проводятся в начале учебного года, остальные – в конце, что дает возможность оценить динамику математического развития ребенка.

Применяемый для проверки материал должен быть понятным и интересным для детей – соответствующим возрасту, ярким и с картинками.

Диагностика математических способностей ребенка по методу Колесниковой Е.В.

Елена Владимировна создала немало учебно-методических пособий для развития математических способностей у дошкольников. Её метод тестирования детей 6 и 7 лет получил широкое распространение у учителей и родителей разных стран и соответствует требованиям ФГОС (Россия).

Благодаря методу Колесниковой можно максимально точно установить уровень основных показателей развития математических навыков детей, узнать их готовность к школе, определить слабые стороны для своевременного восполнения пробелов. Данная диагностика помогает найти пути улучшения математических способностей малыша.

Развитие математических способностей ребенка: советы родителям

С любой наукой, даже такой серьезной, как математика, малыша лучше знакомить в игровой форме – именно это будет лучшим методом обучения, который следует выбрать родителям. Прислушайтесь к словам известного ученого Альберта Эйнштейна: “Игра – это высшая форма исследования”. Ведь при помощи игры можно получить потрясающие результаты:

– познание себя и окружающего мира;

– формирование базы математических знаний;

– развитие мышления:

– становление личности;

– развитие коммуникабельности.

Применять можно различные игры:

  1. Счетные палочки. Благодаря им малыш запоминает формы предметов, развивает свое внимание, память, смекалку, формируются навыки сравнения и усидчивость.
  2. Головоломки, развивающие логику и смекалку, внимание и память. Логические задачи помогают детям научиться лучшему восприятию пространства, взвешенному планированию, простому и обратному, а также порядковому счету.
  3. Математические загадки – это отличный способ развития основных аспектов мышления: логики, анализа и синтеза, сравнения и обобщения. Во время поиска решения дети учатся самостоятельно делать выводы, справляться с трудностями и отстаивать свою точку зрения.

Развитие математических способностей через игру формирует учебный азарт, добавляет яркие эмоции, помогает малышу полюбить заинтересовавший его предмет изучения. Также стоит отметить, что игровая деятельность способствует и развитию творческих способностей.

Роль сказок в развитии математических способностей дошкольников

Детской памяти присущи свои особенности: она фиксирует яркие эмоциональные моменты, то есть ребенок запоминает ту информацию, которая связана с удивлением, радостью, восхищением. И учиться “из-под палки” – крайне неэффективный способ. В поиске результативных методов обучения взрослым следует вспомнить о таком простом и обыденном элементе, как сказка. Именно сказка является одним из первых средств знакомства малыша с окружающим миром.

Для детей сказка и реальность тесно связаны, волшебные персонажи – настоящие и живые. Благодаря сказкам развивается речь ребенка, его фантазия и смекалка; они дают понятие добра, честности, расширяют кругозор, а также дают возможность развивать и математические навыки.

К примеру, в сказке “Три медведя” малыш в ненавязчивой форме знакомится со счётом до трех, понятиями “маленький”, “средний” и “большой”. “Репка”, “Теремок”, “Козленок, который умел считать до 10”, “Волк и семеро козлят”, – в этих сказках можно научиться простому и порядковому счёту.

Обсуждая сказочных персонажей, можно предложить крохе сравнить их по ширине и высоте, “спрятать” в геометрических фигурах, подходящих по размеру или форме, что способствует развитию абстрактного мышления.

Использовать сказки можно не только дома, но и на занятиях в школе. Дети очень любят уроки, построенные на сюжетах их любимых сказок, с применением загадок, лабиринтов, пальцематики. Такие занятия станут настоящим приключением, в которых малыши будут принимать личное участие, а значит, и материал будет усвоен лучше. Главное – вовлечь детей в процесс игры и вызвать у них интерес.

"Нет ни одного ребенка не способного, бездарного. Важно, чтобы этот ум, эта талантливость стали основой успехов в учении, чтобы ни один ученик не учился ниже своих возможностей" (Сухомлинский В.А.)

В чём же заключаются математические способности? Или они есть не что иное, как качественная специализация общих психических процессов и свойств личности, то есть общие интеллектуальные способности, развитые применительно к математической деятельности? Является ли математическая способность унитарным или интегральным свойством? В последнем случае можно говорить о структуре математических способностей, о компонентах этого сложного образования. Ответы на эти вопросы искали психологи и педагоги еще начала века, но до сих пор нет единого взгляда на проблему математических способностей. Попробуем разобраться в этих вопросах, проанализировав работы некоторых ведущих специалистов, работавших над этой проблемой .

Большое значение в психологии придается проблеме способностей вообще и проблеме способностей школьников в частности. Целый ряд исследований психологов направлен на выявление структуры способностей школьников к различным видам деятельности.

В науке, в частности, в психологической, продолжается дискуссия о самой сущности способностей, их структуре, происхождении и развитии. Не вдаваясь в детали традиционных и новых подходов к проблеме способностей, укажем на некоторые основные спорные пункты различных точек зрения психологов на способности. Однако среди них нет единого подхода к данной проблеме .

Различие в понимании сущности способностей обнаруживается, прежде всего, в том, рассматриваются ли они как социально приобретенные свойства или же признаются как природные. Одни авторы под способностями понимают комплекс индивидуально-психологических особенностей человека, отвечающих требованиям данной деятельности и являющихся условием успешного ее выполнения, которые не сводятся к подготовленности, к имеющимся знаниям, умениям и навыкам. Здесь следует обратить внимание на несколько фактов. Во-первых, способности - это индивидуальные особенности, то есть то, что отличает одного человека от другого. Во-вторых, это не просто особенности, а психологические особенности. И, наконец, способности это не всякие индивидуально-психологические особенности, а лишь те, которые соответствуют требованиям определенной деятельности .

При другом подходе, наиболее ярко выраженном у К.К. Платонова, способностью считается любое качество "динамической функциональной структуры личности", если оно обеспечивает успешное освоение и выполнение деятельности. Однако, как отмечал В.Д. Шадриков, "при таком подходе к способностям онтологический аспект проблемы переносится на задатки , под которыми понимаются анатомо-физиологические особенности человека, составляющие основу развития способностей. Решение психофизиологической проблемы заводилось в тупик в контексте способностей как таковых, поскольку способности, как психологическая категория не рассматривались как свойство мозга. Не более продуктивен и признак успешности, ибо успешность деятельности определяется и целью, и мотивацией, и многими другими факторами". Согласно его теории способностей, продуктивно определить способности как особенности можно только по отношению к их единичному и всеобщему .

Всеобщим (общим) для каждой способности В.Д. Шадриков называет свойство, на основе которого реализуется конкретная психическая функция. Каждое свойство представляет собой сущностную характеристику функциональной системы. Именно для того чтобы реализовать это свойство, формировалась конкретная функциональная система в процессе эволюционного развития человека, например свойство адекватно отражать объективный мир (восприятие) или свойство запечатлевать внешние воздействия (память) и так далее. Свойство проявляется в процессе деятельности. Таким образом, теперь можно определить способности с позиции всеобщего как свойство функциональной системы, реализующее отдельные психические функции .

Различают два вида свойств: те, которые не обладают интенсивностью и поэтому не могут ее менять, и те, которые обладают интенсивностью, то есть могут быть больше или меньше. Гуманитарные науки имеют дело главным образом со свойствами первого вида, естественные со свойствами второго вида. Психические функции характеризуются свойствами, которые обладают интенсивностью, мерой выраженности. Это позволяет определить способности с позиции единичного (отдельного, индивидуального). Единичное будет представлено мерой выраженности свойства;

Таким образом, согласно представленной выше теории, способности можно определить как свойства функциональных систем, реализующих отдельные психические функции, которые имеют индивидуальную меру выраженности, проявляющуюся в успешности и качественном своеобразии освоения и реализации деятельности. При оценке индивидуальной меры выраженности способностей целесообразно использовать те же параметры, что и при характеристике любой деятельности: производительность, качество и надежность (в плане рассматриваемой психической функции).

Одним из инициаторов изучения математических способностей школьников был выдающийся французский математик А. Пуанкаре. Он констатировал специфичность творческих математических способностей и выделил их важнейший компонент - математическую интуицию. С этого времени началось изучение этой проблемы. Впоследствии психологи выделили три вида математических способностей - арифметические, алгебраические и геометрические. При этом оставался неразрешимым вопрос о наличии математических способностей .

В свою очередь, исследователи В. Хаекер и Т. Циген выделили четыре основных сложных компонента: пространственный, логический, числовой, символический, являющихся "ядром" математических способностей. В этих компонентах они различали понимание, запоминание, оперирование .

Наряду с основным компонентом математического мышления - способностью к избирательному мышлению, к дедуктивному рассуждению в числовой и символической сферах, способностью к абстрактному мышлению, А. Блекуэлл выделяет еще и способность к манипулированию пространственными объектами. Также он отмечает вербальную способность и способность сохранять в памяти данные в их точном и строгом порядке и значении .

Значительная часть их представляет интерес и сегодня. В книге, которая в оригинале названа "Психология алгебры", Э. Торндайк формулирует сначала общие математические способности : умение обращаться с символами, выбирать и устанавливать соотношения, обобщать и систематизировать, определенным образом выбирать существенные элементы и данные, приводить в систему идеи и навыки. Он выделяет также специальные алгебраические способности : возможность понимать и составлять формулы, выражать в виде формулы количественные соотношения, преобразовывать формулы, составлять уравнения, выражающие данные количественные отношения, решать уравнения, выполнять тождественные алгебраические преобразования, графически выражать функциональную зависимость двух величин и т.д.

Одно из самых значительных со времени выхода работ Э. Торндайка исследований математических способностей принадлежит шведскому психологу И. Верделину. Он дает весьма широкое определение математических способностей, в котором отражает репродуктивный и продуктивный аспекты, понимание и применение, но основное внимание он уделяет важнейшему из этих аспектов - продуктивному, который исследует в процессе решения задач. Ученый полагает, что на характере математических способностей может сказываться метод обучения .

Крупнейший швейцарский психолог Ж. Пиаже придавал большое значение мыслительным операциям, выделяя в онтогенетическом развитии интеллекта стадию малоформализированных конкретных операций, связанных с конкретными данными, и стадию обобщенных формализированных операций, когда организуются операторные структуры. Он соотносил последние с тремя фундаментальными математическими структурами, которые выделены Н. Бурбаки: алгебраическими, структурами порядка и топологическими. Ж. Пиаже обнаруживает все типы этих структур в развитии арифметических и геометрических операций в сознании ребенка и в особенностях логических операций. Отсюда делается вывод о необходимости синтеза математических структур и операторных структур мышления в процессе преподавания математики .

В психологии исследованием проблемы математических способностей занимался В.А. Крутецкий. В своей книге "Психология математических способностей школьников" он приводит следующую общую схему структуры математических способностей школьников. Во-первых, получение математической информации - способность к формализированному восприятию математического материала, схватыванию структуры задачи. Во-вторых, переработка математической информации - способность к логическому мышлению в сфере количественных и пространственных отношений, числовой и знаковой символики, способность мыслить математическими символами, способность к быстрому и широкому обобщению математических объектов, отношений и действий, способность к свертыванию процесса математических рассуждений и системы соответствующих действий, способность мыслить свернутыми структурами. Также необходима гибкость мыслительных процессов в математической деятельности, стремление к ясности, простоте, экономности и рациональности решений. Существенную роль играет тут способность к быстрой и свободной перестройке направленности мыслительного процесса, переключению с прямого на обратный ход мысли (обратимость мыслительного процесса при математическом рассуждении). В-третьих, хранение математической информации - математическая память (обобщенная память на математические отношения, типовые характеристики, схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним). И, наконец, общий синтетический компонент - математическая направленность ума. Все приведенные выше исследования позволяют утверждать, что фактор общих математических рассуждений лежит в основе общих умственных способностей, и математические способности имеют общеинтеллектуальную основу .

Из различного понимания сущности способностей вытекает различный подход к раскрытию их структуры, которая у разных авторов предстает в виде набора разных качеств, классифицируемых по разным основаниям и находящихся в разном соотношении.

Нет однозначного ответа и на вопрос о генезисе и развитии способностей, их связи с деятельностью. Наряду с утверждением, что способности в своей родовой форме существуют у человека до деятельности как предпосылка ее реализации. Высказывалась и другая, противоречивая точка зрения: способности не существуют до деятельности Б.М. Тепловым. Последнее положение заводит в тупик, так как непонятно, каким образом начинает совершаться деятельность без способностей к ней. В действительности способности на определенном уровне их развития существуют до деятельности, а с началом ее проявляются и затем развиваются в деятельности, если она предъявляет все более высокие требования к человеку .

Однако это не раскрывает соотношения навыков и способностей. Решение этой проблемы предложил В.Д. Шадриков. Он считает, что суть онтологических различий способностей и навыков заключается в следующем: способность описывается функциональной системой, одним из ее обязательных элементов является природный компонент, в качестве которого выступают функциональные механизмы способностей, а навыки описываются изоморфной системой, одним из ее главных компонентов являются способности, выполняющие в этой системе те функции, которые в системе способностей реализуют функциональные механизмы. Таким образом, функциональная система навыков как бы произрастает из системы способностей. Это система вторичного уровня интеграции (если принять систему способностей за первичную) .

Говоря о способностях вообще, следует указать, что способности бывают разного уровня учебные и творческие. Учебные способности связаны с усвоением уже известных способов выполнения деятельности, приобретением знаний, умений и навыков. Творческие способности связаны с созданием нового, оригинального продукта, с нахождением новых способов выполнения деятельности. С этой точки зрения различают, например, способности к усвоению, изучению математики и творческие математические способности. Но, как писал Ж. Адамар, "между работой ученика, решающего задачу …, и творческой работой разница лишь в уровне, так как обе работы аналогичного характера" .

Природные предпосылки имеют значение, однако, они не являются собственно способностями, а являются задатками. Сами по себе задатки не означают, что у человека разовьются соответствующие способности. Развитие способностей зависит от многих социальных условий (воспитание, потребность в общении, система образования).

Виды способностей:

1. Природные (естественные) способности.

Являются общими для человека и животных: восприятие, память, способность к элементарной коммуникации. Данные способности непосредственно связаны с врожденными задатками. На базе этих задатков у человека, при наличии элементарного жизненного опыта, через механизмы учения, формируются специфические способности.

2. Специфические способности.

Общие: определяют успехи человека в различных видах деятельности (мыслительные способности, речь, точность ручных движений).

Специальные: определяют успехи человека в специфических видах деятельности, для осуществления которых необходимы задатки особого рода и их развитие (музыкальные, математические, лингвистические, технические, художественные способности).

Кроме того, способности делят на теоретические и практические. Теоретические предопределяют склонность человека к абстрактно-теоретическим размышлениям, а практические - к конкретным практическим действиям. Чаще всего теоретические и практические способности не сочетаются друг с другом. Большинство людей обладают или одним, или другим типом способностей. Вместе они встречаются крайне редко.

Существует также деление на учебные и творческие способности. Первые определяют успешность обучения, усвоения знаний, умений и навыков, а вторые определяют возможность открытий и изобретений, создания новых предметов материальной и духовной культуры.

3. Творческие способности.

Это в первую очередь умение человека находить особый взгляд на привычные и повседневные вещи или задачи. Это умение напрямую зависит от кругозора человека. Чем больше он знает, тем легче ему взглянуть на исследуемый вопрос с разных ракурсов. Творческая личность постоянно стремится больше узнать об окружающем мире не только в области своей основной деятельности, но и в смежных отраслях. В большинстве случаев творческий человек - это в первую очередь оригинально мыслящий человек, способный на нестандартные решения.

Уровни развития способностей:

  • 1) Задатки - природные предпосылки способностей;
  • 2) Способности - сложное, интегральное, психическое образование, своеобразный синтез свойств и компонентов;
  • 3) Одаренность - своеобразное сочетание способностей, которое обеспечивает человеку возможность успешного выполнения какой-либо деятельности;
  • 4) Мастерство - совершенство в конкретном виде деятельности;
  • 5) Талант - высокий уровень развития специальных способностей (это определенное сочетание высокоразвитых способностей, т.к. изолированная способность, даже очень высокоразвитая, не может быть названа талантом);
  • 6) Гениальность - высший уровень развития способностей (за всю историю цивилизации было не более 400 гениев).

Общие умственные способности - это способности, которые необходимы для выполнения ни какой-то одной, а многих видов деятельности. К общим умственным способностям относят, например, такие качества ума, как умственная активность, критичность, систематичность, сосредоточенное внимание. Человек от природы наделен общими способностями. Любая деятельность осваивается на фундаменте общих способностей, которые развиваются в этой деятельности .

Как отмечает В.Д. Шадриков, "специальные способности" есть общие способности, приобретшие черты оперативности под влиянием требований деятельности". Специальные способности это способности, которые необходимы для успешного овладения какой-нибудь одной определенной деятельностью. Эти способности также представляют собой единство отдельных частных способностей. Например, в составе математических способностей большую роль играет математическая память; способность к логическому мышлению в области количественных и пространственных отношений; быстрое и широкое обобщение математического материала; легкое и свободное переключение от одной умственной операции к другой; стремление к ясности, экономичности, рациональности рассуждений и так далее. Все частные способности объединяются стержневой способностью математической направленностью ума (под которой понимают тенденцию вычленять при восприятии пространственные и количественные отношения, функциональные зависимости), связанной с потребностью в математической деятельности.

А. Пуанкаре пришел к выводу, что важнейшее место в математических способностях занимает умение логически выстроить цепь операций, которые приведут к решению задачи. Кроме того, для математика недостаточно иметь хорошую память и внимание. По мнению Пуанкаре, людей, способных к математике, отличает умение уловить порядок, в котором должны быть расположены элементы, необходимые для математического доказательства. Наличие интуиции такого рода есть основной элемент математического творчества .

Л.А. Венгер относит к математическим способностям такие особенности умственной деятельности, как обобщение математических объектов, отношений и действий, то есть способность видеть общее в разных конкретных выражениях и задачах; способность мыслить "свернутыми”, крупными единицами и "экономно", без лишней детализации; способность переключения с прямого на обратный ход мысли .

Для того чтобы понять, какие еще качества требуются для достижения успехов в математике, исследователями анализировалась математическая деятельность: процесс решения задач, способы доказательств, логических рассуждений, особенности математической памяти. Этот анализ привел к созданию различных вариантов структур математических способностей, сложных по своему компонентному составу. При этом мнения большинства исследователей сходились в одном: что нет, и не может быть единственной ярко выраженной математической способности это совокупная характеристика, в которой отражаются особенности разных психических процессов: восприятия, мышления, памяти, воображения.

Выделение наиболее важных компонентов математических способностей представлено на рисунке 1:

Рисунок 1

Некоторые исследователи выделяют также в качестве самостоятельного компонента математическую память на схемы рассуждений и доказательств, методы решения задач и способы подхода к ним. Одним из них является В.А. Крутецкий. Он так определяет математические способности: "Под способностями к изучению математики мы понимаем индивидуально-психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обуславливающие на прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности относительно быстрое, легкое и глубокое овладение знаниями, умениями и навыками в области математики".

В своей работе мы, главным образом, будем опираться на исследования именно этого психолога, так как его исследования этой проблемы и на сегодняшний день являются самыми глобальными, а выводы наиболее экспериментально обоснованными.

Итак, В.А. Крутецкий различает девять компонентов математических способностей:

  • 1. Способность к формализации математического материала, к отделению формы от содержания, абстрагированию от конкретных количественных отношений и пространственных форм и оперированию формальными структурами, структурами отношений и связей;
  • 2. Способность обобщать математический материал, вычленять главное, отвлекаясь от несущественного, видеть общее во внешне различном;
  • 3. Способность к оперированию числовой и знаковой символикой;
  • 4. Способность к "последовательному, правильно расчлененному логическому, рассуждению", связанному с потребностью в доказательствах, обосновании, выводах;
  • 5. Способность сокращать процесс рассуждения, мыслить свернутыми структурами;
  • 6. Способность к обратимости мыслительного процесса (к переходу с прямого на обратный ход мысли);
  • 7. Гибкость мышления, способность к переключению от одной умственной операции к другой, свобода от сковывающего влияния шаблонов и трафаретов;
  • 8. Математическая память. Можно предположить, что ее характерные особенности также вытекают из особенностей математической науки, что это память на обобщения, формализованные структуры, логические схемы;
  • 9. Способность к пространственным представлениям, которая прямым образом связана с наличием такой отрасли математики, как геометрия .

Кроме перечисленных, есть и такие компоненты, наличие которых в структуре математических способностей, хотя и полезно, не обязательно. Учителю, прежде чем относить ученика к числу способных или неспособных к математике, необходимо это учитывать. Не являются обязательными в структуре математической одаренности следующие компоненты:

  • 1. Быстрота мыслительных процессов как временная характеристика.
  • 2. Индивидуальный темп работы не имеет решающего значения. Ученик может размышлять неторопливо, медленно, но обстоятельно и глубоко.
  • 3. Способности к быстрым и точным вычислениям (в частности в уме). На самом деле вычислительные способности далеко не всегда связаны с формированием подлинно математических (творческих) способностей.
  • 4. Память на цифры, числа, формулы. Как указывал академик А.Н. Колмогоров, многие выдающиеся математики не обладали сколько-нибудь выдающейся памятью такого рода.

Большинство психологов и педагогов, говоря о математических способностях, опираются именно на эту структуру математических способностей В.А. Крутецкого. Однако в процессе различных исследований математической деятельности учеников, проявляющих способности к этому школьному предмету, некоторыми психологами были выделены и другие компоненты математических способностей. В частности, нас заинтересовали результаты исследовательской работы З.П. Горельченко. Он отметил у способных к математике учеников следующие особенности. Во-первых, он уточнил и расширил компонент структуры математических способностей, называемый в современной психологической литературе "обобщение математических понятий" и высказал мысль о единстве двух противоположных тенденций мышления учащегося к обобщению и "сужению" математических понятий. В указанном компоненте, можно видеть отражение единства индуктивного и дедуктивного методов познания учащимися нового в математике. Во-вторых, диалектические зачатки в мышлении учащихся при усвоении новых математических знаний. Это проявляется в том, что почти в любом отдельном математическом факте наиболее способные учащиеся стремятся усмотреть, понять факт, ему противоположный, или, по крайне мере, рассмотреть предельный случай исследуемого явления. В-третьих, он отметил особое повышенное внимание к возникающим новым математическим закономерностям, противоположным ранее установленным .

Одним из характерных признаков повышенных математических способностей учащихся и переходу их к зрелому математическому мышлению может считаться и относительно раннее понимание надобности аксиом как исходных истин при доказательствах. Доступное изучение аксиом и аксиоматического метода в значительной мере способствует ускорению развития дедуктивного мышления учащихся. Замечено также, что эстетическое чувство в математической работе у разных учащихся проявляется по-разному. По-разному различные ученики отвечают и на попытку воспитать и развить у них эстетическое чувство, соответствующее их математическому мышлению. Помимо указанных компонентов математических способностей, которые можно и должно развивать, необходимо учитывать еще и то, что успешность осуществления математической деятельности является производным определенного сочетания качеств: активного положительного отношения к математике, интереса к ней, стремления заниматься ею, переходящими на высоком уровне развития в страстную увлеченность. Также можно выделить ряд характеристических черт, таких как: трудолюбие, организованность, самостоятельность, целеустремленность, настойчивость, а также устойчивых интеллектуальных качеств, чувства удовлетворения от напряженной умственной работы, радость творчества, открытия и так далее.

Наличие во времени осуществления деятельности благоприятных для выполнения психических состояний, например, состояние заинтересованности, сосредоточенности, хорошего "психического" самочувствия и т.д. Определенный фонд знаний, умений и навыков в соответствующей области. Определенные индивидуально-психологические особенности в сенсорной и умственной сферах, отвечающие требованиям данной деятельности .

Наиболее способных к математике учащихся отличает особый эстетический склад математического мышления. Он позволяет им сравнительно легко понимать некоторые теоретические тонкости в математике, улавливать безупречную логику и красоту математических рассуждений, фиксировать малейшую шероховатость, неточность в логическом строе математических концепций. Самостоятельное устойчивое стремление к оригинальному, нешаблонному, изящному решению математической задачи, к гармоническому единству формальных и семантических компонентов решения задачи, блестящие догадки, иногда опережающие логические алгоритмы, порою трудно переложимые на язык символов, свидетельствуют о наличии в мышлении чувства хорошо развитого математического предвидения, являющегося одной из сторон эстетического мышления в математике. Повышенные эстетические эмоции при математическом размышлении присущи в первую очередь учащимся с высоко развитыми математическими способностями и совместно с эстетическим складом математического мышления могут служить существенным признаком наличия математических способностей у школьников .

Часть I
ИНДИВИДУАЛЬНО-ПСИХОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ЛИЧНОСТИ

В.А. Крутецкий. Математические способности и личность

Прежде всего следует отметить характеризующее способных математиков и совершенно необходимое для успешной деятельности в области математики «единство склонностей и способностей в призвании», выражающееся в избирательно-положительном отношении к математике, наличии глубоких и действенных интересов в соответствующей области, стремлении и потребности заниматься ею, страстной увлеченности делом. Нельзя стать творческим работником в области математики, не переживая увлеченности этой работой, - она порождает стремление к поискам, мобилизует трудоспособность, активность. Без склонности к математике не может быть подлинных способностей к ней. Если ученик не чувствует никакой склонности к математике, то даже хорошие способности вряд ли обеспечат вполне успешное овладение математикой. Роль, которую здесь играют склонность, интерес, сводится к тому, что интересующийся математикой человек усиленно занимается ею, а следовательно, энергично упражняет и развивает свои способности . На это указывают постоянно сами математики, об этом свидетельствуют вся их жизнь и творчество...

Составленные нами характеристики одаренных учащихся ярко свидетельствуют о том, что способности действенно развиваются только при наличии склонностей или даже своеобразной потребности в математической деятельности (в относительно элементарных ее формах). Все без исключения наблюдаемые нами дети обладали обостренным интересом к математике, склонностью заниматься ею, ненасытным стремлением к приобретению знаний по математике, решению задач.

Еще одна черта характера свойственна подлинному ученому - критическое отношение к себе, своим возможностям, своим достижениям, скромность, правильное отношение к своим способностям. Надо иметь в виду, что при неправильном отношении к способному школьнику - захваливании его, чрезмерном преувеличении его достижений, афишировании его способностей, подчеркивании его превосходства над другими - очень легко внушить ему веру в свою избранность, исключительность, заразить его «стойким вирусом зазнайства».

И наконец, последнее. Математическое развитие человека невозможно без повышения уровня его общей культуры. Нужно всегда стремиться к всестороннему, гармоничному развитию личности. Своеобразный «нигилизм» ко всему, кроме математики, резко одностороннее, «однобокое» развитие способностей не могут способствовать успешности в математической деятельности.

Анализируя схему структуры математической одаренности, мы можем заметить, что определенные моменты в характеристике перцептивной, интеллектуальной и мнемической сторон математической деятельности имеют общее значение... Поэтому развернутую схему структуры можно представить и в иной, чрезвычайно сжатой формуле: математическая одаренность характеризуется обобщенным, свернутым и гибким мышлением в сфере математических отношений, числовой и знаковой символики и математическим складом ума. Эта особенность математического мышления приводит к увеличению скорости переработки математической информации (что связано с заменой большого объема информации малым объемом - за счет обобщения и свертывания) и, следовательно, экономии нервио-психических сил... Указанные способности в разной степени выражены у способных, средних и неспособных учеников. У способных при некоторых условиях такие ассоциации образуются «с места», при минимальном количестве упражнений. У неспособных же они образуются с чрезвычайным трудом. Для средних же учащихся необходимым условием постепенного образования таких ассоциаций является системе специально организованных упражнений, тренировка.

СПЕЦИФИЧНОСТЬ МАТЕМАТИЧЕСКИХ СПОСОБНОСТЕЙ

Возникает вопрос: в какой степени выделенные нами компоненты являются специфически математическими способностями?

Рассмотрим с этой точки зрения одну из основных способностей, выделенных нами в структуре математической одаренности, - способность к обобщению математических объектов, отношений и действий. Разумеется, способность к обобщению - по природе своей общая способность и обычно характеризует общее свойство обучаемости.

Но речь-то идет в данном случае не о способности к обобщению, а о способности к обобщению количественных и пространственных отношений, выраженных в числовой и знаковой символике.

Чем можно аргументировать нашу точку зрения, заключающуюся в том, что способность к обобщению математического материала есть специфическая способность?

Во-первых, тем, что эта способность проявляется в специфической сфере и может не коррелировать с проивлением соответствующей способности в других областях... Иными словами, человек; талантливый вообще, может быть бездарным в математике. Д.И. Менделеев в школе отличался большими успехами в области математики и физики и получал нули н единицы по языковым предметам. А.С. Пушкин, судя по биографическим данным, учась в лицее, пролил много слез над математикой, приложил много трудов, но «успехов приметных не оказал».

Правда, есть немало случаев и сочетания математической и, например, литературной одаренности. Математик С. Ковалевская была талантливой писательницей, ее литературные произведения оценивались весьма высоко. Известный математик XIX в В.Я. Буняковский был поэтом. Английский профессор математики Ч.Л. Доджсон (XIX в.) был талантливым детским писателем, написал под псевдонимом Льюиса Кэррола известную книгу «Алиса в стране чудес». С другой стороны, поэт В.Г. Бенедиктов написал популярную книгу по арифметике. А.С. Грибоедов успешно учился на математическом факультете университета. Известный драматург А.В. Сухово-Кобылин получил математическое образование в Московском университете, проявлял большие способности к математике и за работу «Теория цепной линии» получил золотую медаль. Серьезно интересовался математикой Н.В. Гоголь. М.Ю. Лермонтов очень любил решать математические задачи. Серьезно занимался методикой преподавания арифметики Л.Н. Толстой.

Во-вторых, можно указать на целый ряд зарубежных исследований, которые показали (правда, основываясь только на тестовой методике и корреляционном и факторном анализе) слабую корреляцию между показателем интеллекта (известно, что способность к обобщению - одна из важнейших характеристик общего интеллекта) и тестами на достижения в математике.

В-третьих, для обоснования нашей точки зрения можно сослаться на учебные показатели (оценки) детей в школе. Многие учителя указывают, что способность к быстрому и глубокому обобщению может проявляться в каком-нибудь одном предмете, не характеризуя учебной деятельности школьника по другим предметам. Некоторые из наших испытуемых, проявляющих, например, способность к обобщению «с места» в области математики, не обладали этой способностью в области литературы, истории или географии. Имели место и обратные случаи: учащиеся, хорошо и быстро обобщающие и систематизирующие материал по литературе, истории или биологии, не проявляли подобной способности , в области математики.

Все сказанное выше позволяет нам сформулировать положение о специфичности математических способностей в следующем виде., - Те или иные особенности, умственной деятельности школьника могут характеризовать только его математическую деятельность, проявляться только в сфере пространственных и количественных отношений, выраженных средствами числовой и знаковой символики, и не характеризовать других видов его деятельности, не коррелировать с соответствующими проявлениями в других областях. Таким образом, общие по своей природе умственные способности (например, способность к обобщению) могут в ряд случаев выступать как специфические способности (способность к обобщению математических объектов, отношений и действий).

Мир математики - мир количественных и пространственных отношений, выраженных посредством числовой и знаковой символики, очень специфичен и своеобразен. Математик имеет дело с условными символическими обозначениями пространственных и количественных отношений, мыслит ими, комбинирует, оперирует ими. И в этом очень своеобразном мире, в процессе весьма специфической деятельности общая способность так преобразуется, так трансформируется, что, оставаясь общей по своей природе, выступает уже как специфическая способность.

Разумеется, наличие специфических проявлений общей способности никак не исключает возможности других проявлений этой же общей способности (как наличие у человека способностей к математике не исключает наличия у него же способностей и в других областях).

НЕКОТОРЫЕ СООБРАЖЕНИЯ О ПРИРОДЕ МАТЕМАТИЧЕСКИХ СПОСОБНОСТЕЙ

Материалы нашего исследования - анализ многочисленной литературы, анализ случаев чрезвычайно высокой математической одаренности в детском и зрелом возрасте (последнее - по биографическим материалам) - позволяют выделить некоторые факты, представляющие особый интерес для постановки вопроса о природе математической одаренности. Эти факты таковы:

  1. часто (хотя и не обязательное) весьма раннее формирование способностей к математике, нередко в неблагоприятных условиях (например, при явном противодействии родителей, опасающихся столь раннего яркого проявления способностей) и при отсутствии на первых порах систематического и целенаправленного обучения;
  2. острый интерес и склонность к занятиям математикой, также часто проявляющиеся в раннем возрасте;
  3. большая (а часто избирательная) работоспособность в области математики, связанная с относительно малой утомляемостью в процессе напряженных занятий математикой;
  4. характеризующая очень способных к математике людей математическая направленность сума как своеобразная тенденция воспринимать многие явления через призму математических отношений, осознавать их в плане математических категорий.

Все это позволяет выдвинуть гипотезу о роли прирожденных функциональных особенностей мозга в случаях особой (подчеркиваем это!) математической одаренности - мозг некоторых людей своеобразно ориентирован (настроен) на выделение из окружающего мира раздражителей типа пространственных и числовых отношений и символов и на оптимальную работу именно с такого рода раздражителями. В ответ на раздражители, имеющие математическую характеристику, связи образуются относительно быстро, легко, с меньшими усилиями и меньшей затратой сил. Аналогично неспособность к математике (имеются в виду также крайние случаи) имеет своей первопричиной большую затрудненность выделения мозгом раздражителей типа математических обобщенных отношений, функциональных зависимостей, числовых абстрактов и символов и затрудненность операций с ними. Иными словами, некоторые люди обладают такими прирожденными характеристиками строения и функциональных особенностей мозга, которые крайне благоприятствуют (или, наоборот, весьма не благоприятствуют) развитию математических способностей.

И на сакраментальный вопрос; «Математиком можно стать или им нужно родиться?» - мы гипотетически ответили бы так: «Обычным математиком можно стать; выдающимся, талантливым математиком нужно и родиться». Впрочем, здесь мы не оригинальны, - многие выдающиеся ученые утверждают это же. Мы уже приводили слова академика А.Н. Колмогорова: «Талант , одаренность... в области математики... даны от природы не всем». О том же говорит и академик И.Е. Тамм: «Творить новое... под силу только специально одаренным людям» (речь идет о научном творчестве высокого уровня. - В.К.). Все это сказано пока лишь в порядке гипотезы.

Выяснение физиологической природы математических способностей является важной задачей дальнейших исследований в этой области. Современный уровень развития психологии и физиологии вполне позволяет поставить вопрос о физиологической природе и физиологических механизмах некоторых специфических способностей человека.

Крутецкий В.А. Психология математических способностей школьников. М., 1968, с.380-390, 397-400