Меню
Бесплатно
Главная  /  Шторы и жалюзи  /  Справочник по проектированию элеваторов системы отопления. Что такое элеваторный узел системы отопления

Справочник по проектированию элеваторов системы отопления. Что такое элеваторный узел системы отопления

Элеватор выбирается по диаметру горловины d Г в зависимости от располагаемой разности давлений в подающем и обратном теплопроводе на вводе в здание. Диаметр горловины элеватора d Г, мм, определяется по формуле 5.1:

G СО – расход воды в системе отопления, определяемый по формуле 5.2:

Q ОТ = 44443,6 Вт – тепловая мощность системы отопления всего здания;

ΔР СО – насосное давление, создаваемое элеватором, Па, определяется по формуле 5.3:

Δp ТС – разность давления в теплопроводах теплосети на вводе в здание, 75кПа;

u – коэффициент смешения в элеваторе, определяется по формуле 5.4:

Принимаем ближайший стандартный элеватор №1, имеющий параметры:

диаметр горловины d Г = 15 мм,

диаметр трубы d У = 40 мм,

длина элеватора L= 425 мм. (По прил. 8 методических указаний.)

Согласно принятых параметров рассчитаем диаметр сопла d С по формуле 5.5:

(5.5)

5.3 Гидравлический расчет системы отопления

Гидравлический расчет трубопроводов сводится к подбору диаметров подводок, стояков и магистралей таким образом, чтобы при заданном циркуляционном давлении к каждому прибору поступало расчетное количество теплоты (теплоносителя), равное тепловой мощности системы отопления данного помещения.

Для расчета необходимо выделить главное циркуляционное кольцо, проходящее через наиболее удаленный и нагруженный стояк наиболее нагруженной ветви. В нашем случае, расчет главного циркуляционного кольца будем проводить через стояк № 1.

Определим расчетное циркуляционное давление для главного циркуляционного кольца по формуле 5.6:

Б – коэффициент, для двухтрубных систем, равный 0.4;

∆Р СО = – насосное давление, передаваемое элеватором в систему отопления, равно8436Па;

∆Р е – естественное давление от остывания воды в отопительных приборах,

Па, определяемое по формуле 5.7 (для двухтрубных систем):

∆Р е = 6,3h(t Г –t 0); (5.7)

h– высота расположения центра прибора первого этажа относительно оси элеватора, м;

t Г = 95ºС – температура воды в подающей магистрали отопления;

t 0 = 70ºС – температура воды в обратной магистрали;

h= 1,80 м (см. аксонометрическую схему и схему элеваторного узла);

Р Ц =8436 + 0,4 ∙ 6,3 ∙ 1,8 ∙ (95 – 70) = 8549,4 Па

Расчет двухтрубного стояка гцк

Определяют длину труб стояка от подающей до обратной магистрали, включая подводки к приборам. Находят количество воды G (по формуле 5.2). Задают диаметры труб таким образом, чтобы скорость движения воды не превышала 1 м/с, и по номограмме для G определяют удельные потери давления P y , Па/м, на 1 погонный метр трубы, учитывающие потери на трение и в местных

сопротивлениях. Тогда потери давления на участке вычисляются по формуле 5.8:

Р СТ = P У ∙ l, (5.8)

где l – длина участка стояка или магистрали, м.

Полные потери давления в стояке должны быть в пределах (0,1-0,15)Р Ц.

Расчет магистралей.

Потери давления в магистралях Р МАГ составляют 0,9(Р Ц –Р СТ). В таблицу 5.1 заносят номера участков, их тепловые нагрузки и длины. Определяют количество воды на участках G, кг/ч. Ориентировочные удельные потери давления в магистралях Р У.ОР рассчитываются по формуле 5.9:

где Ʃl МАГ – суммарная длина всех участков магистралей ГЦК, м.

Диаметры труб подбирают таким образом, чтобы скорость движения воды не превышала 1 м/с и удельные потери давления Р У, определяемые по номограмме, были бы наиболее близки к Р У.ОР. По принятому диаметру труб и фактическому расходу воды по той же номограмме определяют фактические удельные потери давления Р у и скорость движения воды V. Значения Р у,V записываются в таблицу 5.1, затем вычисляют полные потери давления на участках по формуле 5.8 по всему ГЦК.

Расчёт ГЦК считается законченным, если запас давления, определяемый по

формуле 5.10, равен 5-10%:

Р ЗАП =(Р Ц – Р ЦК) / Р Ц ∙100% (5.10)

Р ЦК = Р МАГ + Р СТ – суммарные потери давления на всех участках магистралей и стояке ГЦК, Па. Если Р ЦК больше Р Ц, значит, диаметры труб занижены. На участках следует увеличить диаметры труб и сделать пересчёт потерь давления. Если значения Р ЦК окажется значительно меньше Р Ц, то следует уменьшить диаметры труб отдельных участков, потери давления на которых малы.

Расчеты сведены в таблицу 5.1.

Предварительный расчет:

0,15  Р Ц = 8549,4  0,15 = 1282,5 Па

Р СТ = 3289,04 >> 1282,5 Па, поэтому принимаем диаметр труб стояка – 15 мм вместо 10.

Р СТ = 1364,5 ≈ 1282,5 Па, но если увеличить диаметр труб ещё, то потери давления на стояке составят намного меньше 10% от РЦ (около 2%).

P МАГ = 0,9 (8549,4 –1364,5) = 6467 Па, L МАГ =54,7 м, Р У.ОР. = 118 Па/м.

Р ЦК = 6986,9 + 1364,5 = 8351,4 Па

Р ЗАП = (8549,4 – 8351,4) / 8549,4  100% = 2,3% < 5%

Окончательный расчет:

Принимаем диаметр участка №15 32 мм вместо 25 мм, чтобы увеличить запас:

Р ЗАП = (8549,4 – 7982,3) / 8549,4  100% = 6,6%.

5.4 Расчет поверхности и подбор отопительных приборов:

Для расчета по заданию принимаем тип отопительных приборов – радиатор чугунный секционный М-140-АО.

Техническая характеристика (для одной секции):

    номинальный тепловой поток одной секции q H = 595 Вт/секц.

Требуемое число секций отопительного прибора рассчитывается по формуле 5.11:

q оп – расчетный тепловой поток одной секции, Вт/секц, вычисляемый по формуле 5.12:

q H = 595 Вт/секц – номинальный тепловой поток одной секции, Вт/секц;

n, p – экспериментальные показатели, учитывающие влияние типа отопительного прибора, направление движения и количество проходящей воды;

 1 – коэффициент, учитывающий направление движения воды в приборе;

Δt – разность средней температуры воды в радиаторе и температуры воздуха в помещении, o C, можно найти по формуле 5.13:

Δt = 0,5  (t ВХ +t ВЫХ) – t В (5.13)

t ВХ ≈ t Г = 95 o C, t ВЫХ ≈ t 0 = 95 o C

Значение коэффициента приборов β1 и показателей степени n и р берутся из таблицы 5.2.

Таблица 5.2

Схема подводки теплоносителя к прибору

Значения коэффициентов

Сверху - вниз

Снизу - вверх

Снизу - вниз

Отметим, что при двухтрубной системе у всех приборов схема присоединения сверху-вниз.

Расчет приборов сведён в таблицу 5.3.

Полученное число секций N P округляют до целого Nуст следующим образом:

    если десятичная часть больше 0,28 - в сторону увеличения,

    если меньше или равна 0,28 - в сторону уменьшения.

Таблица 5.3

47. Расчет водоструйного элеватора

1. Расход сетевой (эжектирующей) воды, т/ч

где Q 0 - расход тепла на отопление, Гкал/ч;

t о - расчетная температура воды в обратной трубе тепловой сети, 0 С;

t под - расчетная температура воды в подающей трубе тепловой

2. Расход смешанной воды, т/ч

,

где t` под - расчетная температура воды в подающей трубе местной системы отопления 0 С;

t` о - расчетная температура воды в обратной трубе местной системы отопления 0 С.

3. Приведенный расход смешанной воды, т/ч

,

где Δp 0 - гидравлическое сопротивление местной системы отопления, МПа.

4. Количество подмешиваемой воды из обратной трубы местной системы отопления, т/ч

.

5. Расчетный коэффициент смешения элеватора

6. Диаметр горловины (камеры смешения) элеватора, мм

7. Диаметр сопла элеватора при минимальном располагаемом давлении перед элеватором, мм

8. Требуемое минимальное располагаемое давление перед элеватором, МПа

.

9. Расчетный диаметр сопла при фактическом располагаемом давлении перед элеватором, мм

,

где Δp ф э - фактическое располагаемое давление перед элеватором, МПа.

В случаях, когда фактическое располагаемое давление перед элеватором Δр ф э меньше минимального Δр мин э , элеватор не может работать исправно и должен быть заменен смесительным насосом. В тех случаях, когда Δр ф э > Δр мин э , диаметр сопла элеватора должен быть соответственно уменьшен.

При выборе номера элеватора по расчетному диаметру камеры смешения следует брать стандартный элеватор с ближайшим меньшим диаметром камеры смешения.

Водоструйные элеваторы типа ВТИ-Теплосеть Мосэнерго по производительности и размерам делятся на семь номеров. Номер элеватора можно определить по номограммам или из таблицы.

Для обеспечения элеваторами требуемой точности регулирования необходимо, чтобы были удовлетворены следующие три условия:

1) потери давления в местной системе отопления за элеватором должны быть постоянными. Желательно, чтобы в отопительной системе потери при наладке были установлены на уровне Δр = 0,01 МПа и периодически проверялись;

2) В элеваторе должен быть обеспечен постоянный расход теплоносителя. Это относится как к подающему, так и к подмешивающему трубопроводу. Постоянство расхода теплоносителя в подающем трубопроводе целесообразно поддерживать автоматически действующим регулятором расхода типа РР, устанавливаемым перед каждым элеватором и одновременно в определенной мере регулирующим давление перед элеватором;

3) Диаметр сопла элеватора должен быть рассчитан в соответствии с конкретными параметрами и условиями работы, однако он должен быть не менее 2,5 мм во избежание его засорения и прекращения работы системы отопления.

48. Выбор типоразмера регулирующего клапана

1. Пропускная способность клапана:

, м 3 /ч

2. Пропускная способность полностью открытого клапана:

4. Проверка на отсутствие кавитации

X F £ Z отсутствие кавитации;

X F – коэффициент дросселирования;

p V – давление парообразования при температуре среды;

Z – коэффициент клапана.

Коэффициент клапана Z Y

Малая серия

Фланцевая (большая) серия

Пример

Нагрузка на систему отопления Q = 14 кВт;

Перепад температур в системах отопления DT = 20 °C;

Потери давления на клапане DP КЛ = 0,15 бар.

Решение:

Расход теплоносителя через клапан:

м 3 /ч.

Пропускная способность полностью открытого клапана:

м 3 /ч.

Данное значение К VS можно также найти по диаграмме.

По К VS = 1,6 м 3 /ч выбирается клапан Д У = 15 мм.

49. Расчет дроссельных шайб

Определение необходимого диаметра дроссельной шайбы d ш, мм, выполняется на основании расчета по формуле

,

где Δр ш - избыточное давление, гасимое дроссельной шайбой, МПа;

G – расход воды, протекающей через дроссельную шайбу, т/ч;

При расчете дроссельной шайбы, устанавливаемой на тепловом вводе

Δр ш =р в - Δр р,

где Δр р – потеря давления в системе отопления при расчетном расходе воды, МПа;

р в – располагаемый напор на тепловом вводе, МПа.

Отопительная система является одной из важнейших систем жизнеобеспечения дома. В каждом доме применяется определенная система отопления, но не каждый пользователь знает, что такое элеваторный узел отопления и как он работает, его назначение и те возможности, которые предоставляются с его применением.

Элеватор отопления с электроприводом

Принцип функционирования

Наилучшим примером, который покажет элеватор отопления принцип работы, будет многоэтажный дом. Именно в подвале многоэтажного дома среди всех элементов можно отыскать элеватор.

Первым делом, рассмотрим, какой в данном случае имеет элеваторный узел отопления чертеж. Здесь два трубопровода: подающий (именно по нему горячая вода идет к дому) и обратный (остывшая вода возвращается в котельную).

Схема элеваторного узла отопления

Из тепловой камеры вода попадает в подвал дома, на входе обязательно стоит запорная арматура. Обычно это задвижки, но иногда в тех системах, которые более продуманы, ставят шаровые краны из стали.

Как показывают стандарты, есть несколько тепловых режимов в котельных:

  • 150/70 градусов;
  • 130/70 градусов;
  • 95(90)/70 градусов.

Когда вода нагреет до температуры не выше 95-ти градусов, тепло будет распределено по отопительной системе при помощи коллектора. А вот при температуре выше нормы – выше 95 градусов, все становится намного сложнее. Воду такой температуры нельзя подавать, поэтому она должна быть уменьшена. Именно в этом и состоит функция элеваторного узла отопления. Заметим также и то, что охлаждение воды таким образом – это самый простой и дешевый способ.

Назначение и характеристики

Элеватор отопления охлаждает перегретую воду до расчетной температуры, после этого подготовленная вода попадает в отопительные приборы, которые размещены в жилых помещениях. Охлаждение воды случается в тот момент, когда в элеваторе смешивается горячая вода из подающего трубопровода с остывшей из обратного.

Схема элеватора отопления наглядно показывает, что данный узел способствует увеличению эффективности работы всей отопительной системы здания. На него возложено сразу две функции – смесителя и циркуляционного насоса. Стоит такой узел недорого, ему не требуется электроэнергия. Но элеватор имеет и несколько недостатков:

  • Перепад давления между трубопроводами прямого и обратного подавания должен быть на уровне 0,8-2 Бар.
  • Нельзя регулировать выходной температурный режим.
  • Должен быть точный расчет для каждого компонента элеватора.

Элеваторы широко применимы в коммунальном тепловом хозяйстве, так как они стабильны в работе тогда, когда в тепловых сетях изменяется тепловой и гидравлический режим. За элеватором отопления не требуется постоянно следить, все регулирование заключается в выборе правильного диаметра сопла.

Элеватор отопления состоит из трех элементов – струйного элеватора, сопла и камеры разрежения. Также есть и такое понятие, как обвязка элеватора. Здесь должна применяться необходимая запорная арматура, контрольные термометры и манометры.

На сегодняшний день можно встретить элеваторные узлы системы отопления, которые могут с электрическим приводом отрегулировать диаметр сопла. Так, появится возможность автоматически регулировать температуру носителя тепла.

Подбор элеватора отопления такого типа обусловлен тем, что здесь коэффициент смешения меняется от 2 до 5, в сравнении с обычными элеваторами без регулирования сопла, этот показатель остается неизменным. Так, в процессе применения элеваторов с регулируемым соплом можно немного снизить расходы на отопление.

Конструкция данного вида элеваторов имеет в своем составе регулирующий исполнительный механизм, обеспечивающий стабильность работы системы отопления при небольших расходах сетевой воды. В конусообразном сопле системы элеватора размещается регулирующая дроссельная игла и направляющее устройство, которое закручивает струю воды и играет роль кожуха дроссельной иглы.

Этот механизм имеет вращающийся от электропривода или вручную зубчатый валик. Он предназначен для перемещения дроссельной иглы в продольном направлении сопла, изменяет его эффективное сечение, после чего расход воды регулируется. Так, можно повысить расход сетевой воды от расчетного показателя на 10-20%, или уменьшить его практически до полного закрытия сопла. Уменьшение сечения сопла может привести к увеличению скорости потока сетевой воды и коэффициента смешения. Так температура воды снижается.

Неисправности элеваторов отопления

Схема элеваторного узла отопления неисправности может иметь такие, которые вызваны поломкой самого элеватора (засорение, увеличение диаметра сопла), засорением грязевиков, поломкой арматуры, нарушениями настройки регуляторов.

Поломка такого элемента, как устройство элеватора отопления, может быть замечена по тому, как появляются перепады температуры до и после элеватора. Если разница большая – то элеватор неисправен, если разница незначительная – то он может быть засорен или диаметр сопла увеличен. В любом случае, диагностика поломки и ее ликвидация должны быть произведены только специалистом!

Если сопло элеватора засоряется, то он снимается и прочищается. Если расчетный диаметр сопла увеличивается вследствие коррозии или своевольного сверления, то схема элеваторного узла отопления и отопительная система в целом – придет в состояние разбалансированности.

Приборы, которые установлены на нижних этажах, перегреются, а на верхних – недополучат тепло. Такая неисправность, которую претерпевает работа элеватора отопления, ликвидируется заменой на новое сопло с расчетным диаметром.

Засорение грязевика в таком устройстве, как элеватор в системе отопления, можно определить по тому, как увеличился перепад давления, контролируемого манометрами до и после грязевика. Такое засорение удаляется при помощи сброса грязи через краны спуска грязевика, которые размещены в его нижней части. Если так засор не удаляется, то грязевик разбирается и очищается изнутри.

Элеваторный узел системы отопления используется для подключения дома к внешней тепловой сети (источнику теплоснабжения) при необходимости снижения температуры теплоносителя посредством подмешивания к нему воды из обратного трубопровода.

Функции и характеристики

При правильной установке элеваторный узел системы отопления выполняет циркуляционную и смесительную функции. Данное устройство имеет следующие преимущества:

  • Отсутствие подключения к электрической сети.
  • Эффективность работы.
  • Простота конструкции.

Недостатки:

  • Невозможность регулирования температуры на выходе.
  • Требуется точный расчет и подбор.
  • Между обратным и подающим трубопроводом необходимо соблюдать перепад давлений.

Элеваторный узел системы отопления: схема

Конструкцией данного устройства предусмотрено наличие следующих элементов:

  • Сопло.
  • Камера разряжения.
  • Струйный элеватор.

Дополнительно элеваторный узел системы отопления комплектуется манометрами, термометрами и запорной арматурой.

В качестве альтернативы данному устройству можно использовать оборудование с автоматическим регулированием температуры. Оно экономичнее, более энергосберегающее, но стоит значительно дороже. А главное, что это оборудование не способно работать при отсутствии электричества.

По этой причине установка элеватора на сегодняшний день является актуальной. Для него характерен ряд неоспоримых преимуществ, и он будет еще долгое время использоваться коммунальными предприятиями.

Роль элеваторного узла

Обогрев отечественных многоквартирных домов осуществляется за счет централизованной отопительной системы. Для этой цели в маленьких и больших городах возводятся небольшие ТЭЦ и котельные. Каждый из этих объектов вырабатывает тепло для нескольких домов или микрорайонов. Недостатком такой системы является существенная потеря тепла.

При слишком продолжительном пути теплоносителя невозможно регулировать температуру перемещаемой жидкости. По этой причине каждый дом должен быть оборудован элеваторным узлом. Это позволит решить многие проблемы: существенно уменьшит расход тепла, предотвратит аварии, которые могут возникнуть в результате обесточивания или выхода из строя оборудования.

Этот вопрос особенно актуальным становится в осенний и весенний периоды года. Теплоноситель нагревается в соответствии с установленными стандартами, однако его температура зависит от наружной температуры воздуха.

Таким образом, в ближайшие дома, по сравнению с теми, что расположены дальше, поступает более горячий теплоноситель. Именно по этой причине так необходим элеваторный узел системы центрального отопления. Он разбавит перегретый теплоноситель холодной водой и тем самым компенсирует потери тепла.

Принцип действия

Элеваторный узел системы отопления функционирует следующим образом:

  • Из магистральной сети теплоноситель направляется в суженное на выходе сопло, а затем благодаря перепаду давлений происходит его ускорение.
  • Перегретый теплоноситель из сопла выходит с повышенной скоростью и с пониженным давлением. Таким образом создается разряжение и подсасывание жидкости в элеватор из обратного трубопровода.
  • Регулирование количества перегретого и охлажденного обратного теплоносителя должно происходить таким образом, чтобы температура жидкости, выходящей из элеватора, соответствовала проектной величине.

Элеваторный узел системы отопления: размеры

Номер Расход теплоносителя Диаметр горловины Масса Размеры
L l1 l2 h Фланец 1 Фланец 2
0 0,1-0,4 т/час 10мм 6,4кг 256мм 85мм 81мм 140мм 25мм 32мм
1 0,5-1 т/час 15мм 8,1кг 425мм 110мм 90мм 110мм 40мм 50мм
2 1-2 т/час 20мм 8,1кг 425мм 100мм 90мм 110мм 40мм 50мм
3 1-3 т/час 25мм 12,5кг 625мм 145мм 135мм 155мм 50мм 80мм
4 3-5 т/час 30мм 12,5кг 625мм 135мм 135мм 155мм 50мм 80мм
5 5-10 т/час 35мм 13кг 625мм 125мм 135мм 155мм 50мм 80мм
6 10-15 т/час 47мм 18кг 720мм 175мм 180мм 175мм 80мм 100мм
7 15-25 т/час 59мм 18,5кг 720мм 155мм 180мм 175мм 80мм 100мм

Виды

Различают два вида этих устройств:

  • Элеваторы, не поддающиеся регулированию.
  • Элеваторы, регулирование работы которых осуществляется посредством электропривода.

В процессе установки любого из них очень важно соблюдать герметичность. Данное оборудование устанавливается в систему отопления, которая уже функционирует. Поэтому перед монтажом рекомендуется изучить место, где планируется последующее размещение этого оборудования. Данный вид работ рекомендуется доверить специалистам, которые способны разобраться в схеме, а также разработать чертежи и выполнить расчеты.

Системы теплоснабжения, применяемые в настоящее время, состоят из магистральных трубопроводов и теплопунктов, с помощью которых тепло распределяется по потребителям. Любой многоквартирный дом оснащен специальным тепловым узлом, в котором регулируется давление и температура воды. С этой задачей призваны справляться специальные устройства, называемые элеваторными узлами.

Элеваторный узел представляет собой модуль, с помощью которого любой многоквартирный дом подключается к общей теплосети. Теплоноситель часто имеет температуру, превышающую допустимые пределы. Сильно нагретая вода не должна поступать в радиаторы квартир. Для охлаждения воды в отопительных системах домов применяются элеваторные узлы.

Данные модули понижают температуру поступающего в подвалы домов теплоносителя из внешней теплосети путем добавления в него воды из обратной трубы. Элеваторы являются наиболее простыми вариантами охлаждения теплоносителей в жилых домах.

Устройство и принцип работы элеватора отопления

Элеватор системы отопления состоит из трех основных элементов:

  • смесительная камера;
  • сопло;
  • струйный элеватор.

Дополнительно в конструкции устройства предусматриваются различные термометры с манометрами. Элеваторы также оснащаются запорной арматурой.

Элеватор представляет собой устройство, сделанное из чугуна или стали. Устройство снабжено тремя фланцами. Принцип его работы заключается в следующем:

  • разогретая до высоких температур вода движется к элеватору и попадает в его сопло;
  • происходит усиление скорости потока теплоносителя при сужающемся сопле и уменьшении давления;
  • в то место, где возникло низкое давление, поступает холодная вода из обратного трубопровода;
  • обе жидкости (холодная и горячая) перемешиваются в смесительном узле элеватора.

Благодаря холодной воде, поступающей из обратной трубы, в отопительной системе снижается общее давление. Температура теплоносителя опускается до нужного показателя, после чего он распределяется по квартирам жилого дома.

По своей структуре элеваторный узел является устройством, одновременно выполняющим функции и смесителя, и циркуляционного насоса.

Основными достоинствами конструкции являются:

  • невысокая стоимость установки в многоквартирных домах;
  • несложность самой установки;
  • экономия используемого теплоносителя, достигающая 30%;
  • энергонезависимость данного оборудования.

Любой элеваторный узел требует обвязки. Нагретая вода движется по магистрали через трубопровод подачи. Ее возвращение происходит по обратному трубопроводу. От магистральных труб внутренняя система дома может отключаться благодаря задвижкам. Элементы теплового узла крепятся друг с другом фланцевым соединением.

Схема элеватора системы отопления

На входе в систему, как и на ее выходе, фиксируются специальные грязевики. Их функция сводится к сбору твердых частиц, которые попадают в теплоноситель. Благодаря грязевикам частицы не проникают дальше в отопительную систему, оседая в них. Используются грязевики прямого и косого типов. Данные элементы нуждаются в очищении от накопившихся в них осадков.

Обязательным элементом являются манометры. Данные контрольные приборы выполняют функцию регулирования показателей давления теплоносителя внутри труб.

При попадании в узел управления системой отопления теплоноситель может иметь давление, достигающее 12 атмосфер. На выходе из элеватора давление значительно снижается. Его показатель зависит от числа этажей в многоквартирном доме.

В системе предусматриваются термометры, регулирующие температуру внутритрубной жидкости.

Установка самого элеватора предусматривает особые правила монтажа:

  • наличие в системе свободного прямого участка длиной 25 см;
  • при помощи входного патрубка устройство соединяется с трубой подачи из централи (соединение происходит посредством фланца);
  • патрубком с противоположной стороны элеватор соединяется с трубой, являющейся частью внутридомовой разводки;
  • к обратной трубе элеваторный узел вместе с фланцем подключается при помощи перемычки.

Любая внутридомовая отопительная конструкция подразумевает присутствие задвижек и дренирующих элементов. Задвижки позволяют отключить элеватор от внутренней отопительной сети, а дренирующие элементы осуществляют слив теплоносителя из системы. Обычно это происходит в рамках плановых профилактических мероприятий или при авариях на теплосетях.

Элеватор с автоматической регулировкой

Используется два основных типа элеваторных узлов:

  • без регулировки;
  • устройства с автоматическим регулированием.

Второй тип устройств имеет свои особенности работы. Их конструкция позволяет электронными методами регулирования менять сечение сопла. Внутри такого элемента располагается специальный механизм, посредством которого происходит перемещение дроссельной иглы.

Дроссельная игла оказывает воздействие на сопло и меняет его просвет. В результате изменения просвета сопла существенно изменяются показатели расходования теплоносителя.

Изменение просвета не только оказывает влияние на расход жидкости внутри отопительных труб, но и на скорость ее перемещения. Все это становится результатом изменения коэффициента, при котором происходит смешивание холодной воды из обратного трубопровода и горячей воды, идущей по внешней магистральной трубе. Так происходит изменение температуры теплоносителя.

Посредством элеватора происходит регулировка не только подачи жидкости, но и ее давления. Давление самого устройства направляет поток теплоносителя в отопительном контуре.

Поскольку элеватор отчасти является циркуляционным насосом, то в его конструкцию удачно вписываются распределительные устройства. Это необходимо в многоэтажных домах, где проживает сразу несколько потребителей.

Основным распределительным устройством выступает коллектор или гребенка. В данную емкость попадает теплоноситель, выходящий из элеваторного узла. Жидкость выходит из гребенки через множество выходов, распределяясь по квартирам дома. При этом напор в системе остается неизменным.

Можно ремонтировать отдельных потребителей без необходимости остановки всего контура отопления.

Использование клапана трехходового

В качестве распределительного устройства используется клапан трехходовой. Механизм способен функционировать в нескольких режимах:

  • постоянном;
  • переменном.

Клапаны бывают чугунными, латунными, стальными. Внутри него имеется запорное устройство цилиндрического, шарового или конусного типа. По своей форме клапан напоминает тройник. Работая в отопительной системе, он выполняет функции смесителя.

Чаще используются клапаны шарового типа. Их назначение сводится к:

  • регулированию температуры радиаторов;
  • регулированию температуры внутри теплых полов;
  • направлению теплоносителя по двум направлениям.

Трехходовые клапаны, входящие в элеваторный узел, подразделяются на два вида - регулировочные, запорные. Оба вида во многом схожи по функционалу, но второй тип сложнее справляется с задачей плавной регулировки температурного режима.

Основные неисправности элеваторов

Среди достоинств устройства имеется несколько его недостатков, среди которых:

  • не допускается сильный перепад давления, который возникает в двух трубах (подающей и обратной);
  • допустимой нормой перепада давления является 2 Бар;
  • устройство не позволяет регулировать температуру теплоносителя на выходе из системы;
  • каждый элемент элеваторного узла нуждается в составлении расчетов, без чего невозможна точность их работы.

Среди частых случаев неисправностей, происходящих с данными устройствами, бывают:

  • засорение грязевиков;
  • засор всего оборудования;
  • выход из строя арматуры;
  • увеличение диаметра сопла, происходящее со временем и затрудняющее возможность регулировки температуры воды в отопительных трубах;
  • поломка регуляторов.

Один из примеров засорения грязевиков

Частыми причинами неисправностей являются различные засоры оборудования и увеличивающееся в диаметре сопло. Любая неисправность быстро дает о себе знать сбоем в работе узла. В системе возникает резкий перепад температуры теплоносителя. Серьезным перепадом является изменение температуры на 5 0 С. В подобных случаях требуется диагностика конструкции и проведение ее ремонта.

Сопло увеличивается в своем диаметре по двум главным причинам:

  • из-за непроизвольного сверления;
  • из-за коррозии в результате постоянного контакта с водой.

Проблема приводит к нарушению баланса в системе и регулировки температуры в ней. Ремонтные работы при этом должны быть проведены в кратчайшие сроки.