Меню
Бесплатно
Главная  /  Растения  /  Главный циркуляционный контур. Опыт проектирования и эксплуатации узлов присоединения независимых от тепловой сети контуров циркуляции без подпиточных насосов и расширительных сосудов

Главный циркуляционный контур. Опыт проектирования и эксплуатации узлов присоединения независимых от тепловой сети контуров циркуляции без подпиточных насосов и расширительных сосудов

Как отмечают грамотные инженеры, главным минусом системы отопления с естественной циркуляцией теплоносителя можно назвать низкий напор циркулирующей жидкости, в результате чего необходимо заботиться об увеличенном диаметре труб. При этом стоит лишь слегка ошибиться с диаметром при установке подходящей трубы, как теплоноситель уже не сможет преодолеть гидравлического сопротивления.

Чтобы вновь восстановить работоспособность системы отопления, вам необязательно потребуется совершать слишком большой объём работы. Достаточно лишь включить в схему циркуляционный насос и перенести расширяющий бачок с передачи на обратку. Хотя, при этом стоит заметить, что второй пункт выполнять всегда вовсе не обязательно. При простой переделке, к примеру, квартирной, бачок можно оставить на месте и не трогать. Если же система переустанавливается глобально, то бачок заменяется с открытого на закрытый и переносится на обратку.

Вообще, стоит упомянуть и ещё об одном случае в котором вам способен помочь циркуляционный насос. Владельцы частного дома, обладающие собственной системой отопления, могут столкнуться с тем, что тепло по их дому распределяется неравномерно. В комнатах, которые расположены дальше от котла может быть просто холодно зимой, так как эти комнаты недостаточно прогреваются. Конечно, тут можно и заменить всю отопительную систему , установив новую с трубами более широкого диаметра. Но как показывает практика, этот способ гораздо более дорогостоящ и не совсем оправдан.

О типах насосов и их питании

Для бытовых систем отопления используются насосы с энергопотреблением в 60-100 ватт. Это сравнимо с обычной электрической лампочкой. Из-за чего столь низкое потребление энергии? Дело в том, что циркуляционный насос не поднимает воду , а только помогает преодолеть ей местное сопротивление в отопительных системах. Попросту говоря, насос циркуляционного типа можно сравнить с винтом корабля. Винт обеспечивает движение корабля, толкая воду, однако воды в океане при этом не убавляется, сохраняется баланс.

Однако, тут кроется свой минус. При длительном отключении электричества, владельца дома может ждать крайне неприятный сюрприз. Перегрев теплоносителя может вызвать разрушение контура, а остановка циркуляции поведёт за собой и последующую разморозку.

Поэтому при отключении электричества должна оставаться возможность для функционирования системы на условиях естественной циркуляции. Для этого необходимо минимизировать всевозможные повороты и изгибы в контуре , а также важно использование в качестве запорной арматуры именно современных шаровых вентилей. В отличие от своих винтовых собратьев, они оказывают минимальное сопротивление току жидкости в открытом виде.

В схему системы отопления могут быть включены два типа насосов:

  • циркулярные;
  • повысительные.

Циркуляционный насос толкает воду, при этом сколько бы он её ни вытолкнул, с другой стороны к нему поступит такое же количество воды. Опасения, что насос может вытолкнуть теплоноситель через открытый расширитель необоснованны. Системы отопления имеют замкнутый контур и количество воды в них всегда одинаковое.

В системы централизованного отопления также могут быть включены повысительные насосы , которые называть насосами будет более корректнее, так как они и поднимают воду при помощи повышения давления. Приведём аналогию с вентилятором. Сколько бы обычный вентилятор ни гонял воздух по квартире, количество воздуха не изменится. Образуется лишь лёгкий ветерок и циркуляция воздуха. Атмосферное же давление останется прежним.

Важные нюансы эксплуатации

В результате использования насосной циркуляции воды увеличивается радиус действия системы отопления, а диаметры труб уменьшаются. Появляется возможность присоединения к котлам с повышенными параметрами. Для того чтобы обеспечить постоянную циркуляцию воды требуется установить не менее двух таких устройств. Один будет основным, рабочим, а другой - резервным.

В отопительной системе подобный насос постоянно заполнен водой и испытывает гидростатическое давление с двух сторон - со стороны всасывающего и нагнетательного (выходного) патрубков.

Насосы, сделанные с водяной смазкой подшипников, тем не менее можно размещать на подающем и обратном трубопроводе. Однако наиболее частое их использование можно обнаружить на обратке. Хотя это и происходит скорее по привычке, потому что раньше имело смысл ставить циркуляционный насос на обратке потому, что при размещении в более холодной воде срок службы подшипников увеличивался. Теперь же, если судить объективно, место установки не имеет существенного значения.

Тем не менее, чтобы воздушные пробки не оставили подшипники без охлаждения и смазки, вал двигателя должен располагаться строго горизонтально. Да, конструкция устройства такова, что ротор и вал с подшипниками должны непрерывно охлаждаться , чтобы не произошёл непредусмотренный сбой в работе. На корпусе данного оборудования обычно обозначают стрелку, показывающую направление по которому должен двигаться теплоноситель в системе.

Крайне желательна, но необязательна, установка перед насосом грязевика. Функция этого оборудования заключается в отфильтровывании неизбежного песка и прочих абразивных частиц. Они способны разрушить крыльчатку и подшипники. Так как диаметр врезки обычно достаточно невелик , то подойдёт и обычный фильтр грубой очистки. Бочонок для сбора взвесей должен быть направлен вниз - так даже при частичном заполнении водой он не будет препятствовать её циркуляции. Фильтры также зачастую снабжены стрелкой. Если вы проигнорируете её, то чистить фильтр придётся намного чаще.

Резервный источник питания

Когда система отопления установлена по принципу принудительной циркуляции, то имеет смысл позаботиться также и об резервном источнике питания. Обычно, его устанавливают с расчётом на то, что его работы хватит на пару часов в случае отключения электричества. Примерно такого количества времени обычно хватает специалистам для установки причины аварийного отключения тока и восстановления функционирования. Чтобы продлить время работы резервного источника питания, вам понадобятся внешние аккумуляторы , которые подключаются к нему.

Термостойкий кабель

При подключении электрического оборудования, в систему отопления нужно исключить вероятность попадания влаги или конденсата в клеменную коробку. Если теплоноситель разогревается в системе отопления более чем на 90 градусов, то используется термостойкий кабель. Соприкосновение кабеля со стенками труб, корпусом насоса, двигателем ни в коем случае не допускается. С левой или правой стороны к клеменной коробке подключается кабель. При этом переставляется заглушка. Если расположение клеменной коробки боковое, то кабель подводят исключительно снизу. При этом естественной мерой безопасности является обеспечение заземления.

Байпас

Популярна схема установки циркулярного насоса на байпасе, который отсекается от основной системы при помощи двух кранов. Такая установка может помочь произвести ремонт или замену устройства без ущерба для всей отопительной системы дома. В межсезонье всё может функционировать и без насоса, который перекрывается при помощи всё тех же вентилей. С приходом морозов его работа возобновляется. Достаточно открыть запорную арматуру по краям и закрыть шаровой вентиль, расположенный на основном контуре.

Особенности выбора

Для благополучного отопления дома, как правило, не имеет смысла покупать огромный прибор с заоблачной мощностью. Подобный аппарат будет создавать огромное количество шума. Жильцам частного дома это будет неприятно. Помимо прочего и стоить он будет на порядок дороже. В плане обеспечения тепла при отоплении же подойдёт и более дешёвый, меньший по мощностям вариант. Поэтому и надобность в мощном насосе по сути отпадает для бытовых случаев.

Однако важно рассчитать необходимую для вас мощность. Важными параметрами является диаметр трубопровода, температура воды и уровень напора теплоносителя. Для того чтобы рассчитать уровень расхода теплоносителя, его нужно сравнить с показателем расхода воды для котла. Требуется знать какова мощность котла. Какое количество теплоносителя может пройти через его систему в минуту.

Показатели мощности циркуляционного насоса напрямую зависят от длины трубопровода. Если говорить напрямую, то на десять метров отопительной системы вам потребуется полметра насосного напора.

Классифицировать помпы принято на два типа:

  • сухие;
  • мокрые.

Первые во время работы не соприкасаются с теплоносителем, а вторые погружены в него. Сухие помпы обычно достаточно шумные , поэтому такой тип помп подходит для установок:

  • на фирмах;
  • в производственных цехах;
  • на предприятиях.

Второй тип подходит для того чтобы устанавливать их в загородные дома. В правильном варианте их корпуса делаются из бронзы или латуни, с нержавеющими деталями.

Завершение установки

После завершения монтажных работ система заполняется водой. Удаляется воздух путём открытия центрального винта на крышке корпуса. Как только появится вода, то это будет сигнализировать о том, что воздушные пузырьки удалены из устройства. И теперь насос можно запускать в рабочий режим.

Правильно установленный циркуляционный насос в вашей системе отопления поможет согреть ваш дом очень эффективно. Но важно помнить всю сложность системы насосного типа. Возможно, гораздо более благоразумным решением будет обратиться к услугам грамотных профессионалов , которые помогут вам в установке и выборе оборудования. Сломать систему отопления неправильной эксплуатацией может выйти гораздо дороже по деньгам, чем обратиться к квалифицированному специалисту.

Если же вы решили, что достаточно разбираетесь в нюансах отопления вашего дома, то будьте внимательны к деталям, внимательно изучите схему установки циркуляционного насоса, составьте точный план действий, в том числе и в непредвиденной ситуации и не забудьте о мерах безопасности.

Принцип работы циркуляционного контура

Движение продуктов сгорания по газоходам котла осуществляется за счет разряжения, создаваемого дымососом. В верхней части топки разряжение составляет не более 30 мм водяного столба, а перед дымососом 200 мм. Поэтому для устранения присосов холодного воздуха по длине газохода обмуровку котла тщательно уплотняют. Воздух необходимый для горения, через воздухоподогреватель подается в топку котла с помощью дутьевого вентилятора. Питательная вода, прошедшая предварительную подготовку подается в экономайзер, где подогревается до температуры насыщения, а затем подается в барабан котла. В барабане она смешивается с котловой водой, затем по опускным трубам попадает в нижний коллектор, из которого по подъемным экранным трубам вода, а затем пароводяная смесь, поднимается обратно в барабан. В барабане происходит разделение пароводяной смеси на пар и воду. Пар скапливается в верхней части барабана, а затем направляется в пп, где нагревается до заданной температуры. Вода находящиеся в нижней части барабана, снова направляется в опускные трубы. Этот замкнутый контур состоящий из барабана опускных труб нижнего коллектора и подъемных экранных труб называется циркуляционным контуром котла

Движение воды в опускных и пароводяной смеси в испарительных обогреваемых трубах происходит за счет разности плотностей воды и пароводяной смеси. Пароводяная смесь образ в подъемных трубах за счет теплоты, излучаемым факелом и раскаленными продуктами сгорания. Поднимаясь в барабан, пароводяная смесь разделяется на пар и воду, при этом пар скапливается в верхней части барабана, а оставшая вода подается обратно в опускные трубы, по которым спускается в нижний коллектор, и далее направляется в подъемные трубы. В циркуляционном контуре вода находится в состоянии насыщения. Высота контура для котлов различной производительности сильно отличается. Для котлов низкой производительности она составляет от 3 до 5 м, для котлов средней производительности до 12 м и котлов высокой производительности 30-40 м. в результате такой значительной высоты вода в нижней части контура имеет некоторый недогрев за счет статического давления столба воды.

ПРИМЕР. Котел с давлением 13 атм, высота контура 10 м. Значит давление в нижней части будет 14 атм. Давлению 13 атм соответствует температура насыщения 194 градуса С, а давлению 14 атм – 197 градусов С. Таким образом, в нижнем коллекторе температура котловой воды будет на 3 градуса ниже температуры насыщения. Поэтому в нижней части подъемных труб происходит нагрев воды до температуры насыщения. Испарения здесь не происходит и поэтому эту часть называют экономайзерной частью. По высоте обогревательных труб становится меньше, а паросодержание растет.

Движущая сила естественной циркуляции определяется:

S дв = H*(ρ 1 – ρ пв)*g H-высота контура; ρ 1 - плотность воды в опускных трубах; ρ пв - средняя плотность пароводяной смеси

Напор естественной циркуляции может достигать до 0,5-0,8 атм. Котлы, работающие за счет разности плотностей воды и пароводяной смеси, называются котлами с естественной циркуляцией . Если движущей силы циркуляции не достаточно для обеспечения заданной кратности в котле, то тогда в циркуляционный контур устанавливают дополнительный циркуляционный насос. Такие котлы называются котлами с многократно принудительной циркуляцией . В тех случаях, когда в котлах очень высокое давление и разность плотностей воды и пароводяной смеси становится незначительной, а высокая температура не позволяет использовать циркуляционный насос для получения пара, используют прямоточные котлы, в которых отсутствует контур циркуляции.

Использование: в струйной технике. Сущность изобретения: устройство отвода тепла подключено трубопроводами /ТП/ подачи и возврата жидкости соответственно к выходу пароструйного инжектора и его патрубку подвода пассивной среды. Адиабатный испаритель установлен на ТП возврата жидкости. Инжектор пускоразгрузочным ТП подключен к водосборнику. Поплавок размещен в водосборнике и жестко соединен с обратным клапаном /ОК/, установленным на конце пускоразгрузочного ТП. ТП подачи жидкости на выходе инжектора снабжен ОК. Испаритель снабжен ОК и подключен через него к пускоразгрузочному ТП. ТП возврата жидкости на участке между инжектором и испарителем снабжен ОК. ТП подпитки подключен к ТП возврата на участке между инжектором и ОК. 1 з.п. ф-лы, 1 ил.

Изобретение относится к струйной технике и может быть использовано в технологиях, связанных с подводом и отводом тепла при циркуляции жидкости по замкнутому контуру, например, в системах водяного отопления, пастеризации пищевых продуктов и т.п. Известны аналогичные системы , в которых циркуляция жидкости в контуре осуществляется электронасосами, а отвод и подвод тепла - поверхностными теплообменниками. Недостатками аналогичных систем являются: невозможность использования тепловой энергии источника тепла для создания напора для циркуляции, использование механических устройств для создания циркуляции жидкости в контуре. Известна система , позволяющая использовать в качестве источника энергии для циркуляции жидкости по замкнутому контуру энергию пара, отбираемого от горячей жидкости перед поступлением к теплопотребителю. Недостатком такой системы нагрева и транспортирования жидкости являются: малая эффективность использования для создания циркуляции низкопотенциального пара (при адиабатном вскипании горячей жидкости с температурой 95 о С генерируется пар с давлением ниже атмосферного на 50 кПа). При таких низких давлениях пара и при обычной, например для замкнутых контуров отопления, температуре воды ("холодной"), возвращаемой от потребителя тепла к источнику тепла, около 70 о С, работа пароструйных аппаратов становится неустойчивой. К недостаткам этой системы следует отнести необходимость увеличения расхода горячей жидкости, т.к. до потребителя тепла часть тепловой энергии жидкости будет использована для получения пара, а также невозможность превратить в контуре непосредственно часть тепловой энергии подводимой в поверхностном теплообменнике в механическую энергию движения жидкости. Для запуска этой системы необходим сторонний побудитель циркуляции жидкости. Наиболее близким аналогом является система , в которой энергия пара в паровом инжекторе обеспечивает принудительное движение - циркуляцию жидкости в танке, совмещая нагрев жидкости и создание напора для ее циркуляции. Предусмотренное системой наличие поплавкового регулятора на линии подпитки воды обеспечивает постоянство уровня жидкости в танке. Недостатками прототипа являются: паровой инжектор обеспечивает нагрев жидкости и создает напор для циркуляции жидкости в танке и не обеспечивает циркуляцию нагретой жидкости к потребителю и ее возврат; при высокой температуре жидкости в танке возможна неполная конденсация пара, что обусловит появление дополнительных энергетических потерь; так как нагрев жидкости осуществляется в объеме танка за счет многократной циркуляции жидкости через паровой инжектор, то всегда будет иметь место определенная неравномерность температуры жидкости по объему танка и следовательно температуры жидкости, направляемой к потребителю; для циркуляции нагретой жидкости к потребителю необходимо расположение танка на большей относительно потребителя высоте ("гравитационная" циркуляция предусмотрена в аналоге) либо устанавливать электронасосы; с увеличением производительности системы (расхода нагретой жидкости к потребителю) для сохранения допустимой неравномерности нагрева необходимо увеличивать объем танка; система имеет значительную тепловую инерционность, обусловленную процессами нагрева жидкости в объеме танка. Для ликвидации перечисленных недостатков необходимо: использовать энергию пара одновременно для нагрева жидкости и для транспортирования ее к потребителю и обратно по замкнутому контуру. Это позволит повысить надежность и экономичность работы системы в целом; понизить температуру жидкости, возвращаемой от теплопотребителя перед поступлением на вход пароструйного аппарата, что повысит надежность и устойчивость циркуляции; уменьшить тепловую инерционность системы. Сущность изобретения заключается в том, что подвод тепла и создание напора для циркуляции жидкости к потребителю тепла и обратно осуществляется в пароструйном инжекторе, в котором энергия пара используется одновременно для нагрева жидкости и создания напора для циркуляции в замкнутом контуре. Предлагаемая система содержит трубопровод подпитки, трубопровод подачи активной (паровой) среды, пароструйный инжектор и устройство отвода тепла, подключенное посредством трубопроводов подачи и возврата жидкости соответственно к выходу инжектора и его патрубку подвода пассивной среды, адиабатный испаритель, водосборник, пускоразгрузочный трубопровод с обратным клапаном и поплавком, при этом адиабатный испаритель установлен на трубопроводе возврата жидкости, инжектор посредством пускоразгрузочного трубопровода подключен к водосборнику, поплавок размещен в последнем и жестко соединен с обратным клапаном, установленным на конце пускоразгрузочного трубопровода, трубопровод подачи жидкости на выходе инжектора снабжен обратным клапаном, адиабатный испаритель снабжен обратным клапаном и подключен через последний к пускоразгрузочному трубопроводу, трубопровод возврата жидкости на участке между инжектором и испарителем снабжен обратным клапаном, а трубопровод подпитки подключен к трубопроводу возврата на участке между инжектором и обратным клапаном. Для систем с высокой температурой возвращаемой от потребителя тепла пассивной среды дополнительно система снабжена пароструйным эжектором, установленным на трубопроводе подачи активной среды перед инжектором, при этом патрубок подвода пассивной среды эжектора через обратный клапан подключен к адиабатному испарителю. Устойчивость работы предлагаемой системы обеспечивается понижением температуры жидкости на входе в инжектор, оснащением системы предохранительным клапаном (устройством ограничения давления жидкости в системе циркуляции), а также системой подпитки контура циркуляции, используемой при заполнении замкнутого контура жидкостью, пуске системы и при ограниченной разгерметизации контура. Для повышения надежности пуска замкнутая система циркуляции жидкости оснащается обратными клапанами на выходе нагретой жидкости из пароструйного аппарата, на выходе пара из адиабатного испарителя и между зоной сверхзвукового двухфазного течения в пароструйном аппарате и атмосферой. При этом повышение экономичности пуска системы и устранение возможности подсоса воздуха в контур циркуляции жидкости осуществляется за счет того, что обратный клапан на линии связи зоны сверхзвукового двухфазного потока пароструйного аппарата с атмосферой помещается под уровень жидкости в дополнительную емкость, в которой известными способами автоматически обеспечивается минимально допустимый уровень жидкости. При температурах жидкости на выходе из устройств отвода тепла до 70 о С достаточен отсос пара из адиабатного испарителя в инжектор, при этом будет обеспечиваться поддержание глубокого вакуума в испарителе и, следовательно, достаточного охлаждения жидкости в испарителе. При температурах жидкости на выходе более 70 о С для обеспечения более глубокого охлаждения жидкости отсос паров из испарителя дополнительно осуществляется пароструйным эжектором, установленным на паропроводе перед инжектором. Указанная сущность представлена на чертеже. Система включает трубопровод подачи активной среды (пара) 1, соединенный через вентиль 2 с пароструйным инжектором 3 непосредственно или через пароструйный эжектор 4 с патрубком 5. Выход из пароструйного инжектора 3 соединен трубопроводом подачи нагретой жидкости 6 с устройством отвода тепла 7 и на этом трубопроводе установлен обратный клапан 8. Выход жидкости из устройства 7 соединен трубопроводом возврата 9 с патрубком 10 инжектора 3, образуя таким образом замкнутый контур циркуляции. На трубопроводе возврата 9 после вентиля 11 размещен адиабатный испаритель 12, который трубопроводами с обратными клапанами 13, 14, 15 соединен соответственно с инжектором 3, эжектором 4 и пускоразгрузочным трубопроводом 16, соединяющим патрубок 17 инжектора 3 с водосборником 18 через обратный клапан 19, соединенный с поплавком 20. К трубопроводу возврата 9 между инжектором 3 и обратным клапаном 15 подсоединен трубопровод подпитки 21 системы с вентилем 22. На трубопроводе возврата 9 между устройством отвода тепла 7 и вентилем 11 установлен предохранительный клапан 23. На чертеже условно показаны зона I - зона сверхзвукового течения в эжекторе 4 и зона II - зона сверхзвукового двухфазного течения в инжекторе 3. При относительно невысоких температурах жидкости на выходе из устройства отвода тепла 7 (не выше 70 о С) можно упростить приведенную на чертеже систему, а именно исключить из системы пароструйный эжектор 4 и трубопровод с обратным клапаном 14, соединяющий эжектор с испарителем 12. Система при этом работает следующим образом. Для заполнения обезвоженной системы открывают вентиль 22 и по трубопроводу подпитки 21 вода под давлением через патрубок 10 поступает в пароструйный инжектор 3, оттуда через патрубок 17 по пускоразгрузочному трубопроводу 16 в водосборник 18, при этом всплывающий при повышении уровня поплавок 20 оказывает усилие на открытие обратного клапана 19. При закрытом вентиле 11 открывают вентиль 2 и по трубопроводу подачи активной среды 1 подают пар в пароструйный инжектор 3. Уже при минимальной подаче пара в инжекторе 3 формируется сверхзвуковая газожидкостная зона течения II, в которой в связи с большими скоростями течения создается вакуум. На выходе из зоны II в сверхзвуковом газожидкостном потоке происходит переход в дозвуковое течение жидкости в скачке давления с полной конденсацией пара в потоке, при этом за счет энергии пара происходит нагрев жидкости и создается напор для транспортирования потока дальше, вызывающий открытие обратного клапана 8 и заполнение всей системы до вентиля 11. Так как пускоразгрузочный трубопровод 16 оказывается при этом сообщенным с вакуумированной зоной II инжектора 3, то через принудительно открытый всплывшим при поступлении жидкости в водосборник 18 поплавком 20, обратный клапан 19 жидкость из водосборника 18 отсасывается в систему до тех пор, пока из-за падения уровня воды не прекратится воздействие поплавка 20 на клапан 19. Заполнение системы жидкостью прекратится, когда увеличение давления в системе приводит к открытию настроенного на определенное давление срабатывания предохранительного клапана 23 и жидкость из системы будет отводиться, например, в предназначенную для сбора емкость. Открывая вентиль 22 и закрывая вентиль 11, включают в работу адиабатный испаритель 12, при этом образовавшийся в испарителе пар, как пассивная для создания циркуляции среда, будет отсасываться через обратный клапан 13, трубопровод 16 и патрубок 17 в устройство 3 с последующей конденсацией в скачке давления. Охлажденная за счет адиабатного вскипания жидкость через обратный клапан 15 и трубопровод 9 подается в патрубок 10 инжектора 3. Это понижение температуры жидкости делает возможным сохранение сверхзвукового газожидкостного потока II в зоне II инжектора 3. Степень нагрева жидкости в устройстве и максимально достижимый напор для циркуляции нагретой жидкости зависит от давления пара перед инжектором 3 и регулируется вентилем 2. При наличии неплотности в контуре можно временно вентилем 22 обеспечивать подпитку системы. Роль предохранительного клапана 23 могут выполнить также и часто используемые в системах отопления расширительные баки, располагаемые на достаточной высоте. При высоких (более 70 о С) температурах жидкости в трубопроводе возврата 9 на выходе из устройства отвода тепла 7 возникает необходимость более глубокого охлаждения жидкости, поступающей в патрубок 10 инжектора 3. Это требует более интенсивного вскипания жидкости в испарителе 12 и увеличения количества пара, отводимого из испарителя. В этом случае необходимо дополнительное устройство - пароструйный эжектор 4 для отсосов паров из испарителя 12 и кроме процессов в системе, описанных выше, дополнительно будут происходить следующие процессы. При открытии вентиля 2 и подаче достаточного для работы эжектора 4 пара создается вакуумированная зона сверхзвукового течения пара 1, в которую по трубопроводу через открывающийся за счет вакуума в зоне 1 обратный клапан 14 отсасываются образовавшиеся в испарителе 12 пары, которые при этом являются пассивной средой относительно активной - пара, поступающего через вентиль 2. К инжектору 3 через вентиль 22 подается подпиточная вода с температурой не выше 40 о С и давлением не ниже 50 кПа. Вода поступает по трубопроводу 16 в водосборник 18. При открытии парового вентиля 2 и поднятия давления пара перед инжектором 3 до 100 кПа возникает сверхзвуковая зона II в инжекторе 3 и открывается обратный клапан 8, жидкость из трубопровода подпитки 21 и водосборника 18 поступает в трубопровод подачи 6, заполняя систему. Вентилем 2 увеличивают подачу пара с тем, чтобы увеличить температуру жидкости на выходе из инжектора 3 до значения близкого к номинальному - 95 о С. При давлении пара перед устройством равным 300 кПа будет достигнута эта температура. При этом в зоне I инжектора 4 создается вакуум 90 кПа. После заполнения системы и поднятия в ней давления жидкости перед предохранительным клапаном до 150 кПа, клапан открывается и начинается отвод избытка жидкости из системы. При открытии вентиля 11 жидкость из устройства для отвода тепла 7 поступает в испаритель 12, где осуществляется ее вскипание и температура ее на выходе из испарителя к инжектору 3 снизится с 75 о С до 45 о С, при этом за счет отсоса паров в эжектор 4 и через пускоразгрузочный трубопровод 16 в инжектор 3 будет поддерживаться вакуум в испарителе 90 кПа. После закрытия вентиля 22 положением вентиля 2 поддерживают температуру нагретой жидкости перед устройством отвода тепла 7 равным 95 о С. Предлагаемая система позволяет повысить надежность и экономичность работы системы за счет использования тепловой энергии пара одновременно для нагрева и создания напора для циркуляции жидкости в замкнутом контуре к потребителю тепла и обратно, исключив применение для этих целей механических устройств, металлоемких теплообменников. Повышается надежность и устойчивость циркуляции жидкости в контуре, т.к. с помощью адиабатного испарителя понижается температура жидкости, поступающей в пароструйный инжектор при создании напора циркуляции. Созданы возможности простого и надежного пуска системы без использования специальных для этого устройств (побудителей циркуляции).

Формула изобретения

1. СИСТЕМА НАГРЕВА И ТРАНСПОРТИРОВАНИЯ ЖИДКОСТИ В ЗАМКНУТОМ КОНТУРЕ ЦИРКУЛЯЦИИ, содержащая трубопровод подпитки, трубопровод подачи активной среды, пароструйный инжектор и устройство отвода тепла, подключенное посредством трубопроводов подачи и возврата жидкости соответственно к выходу инжектора и его патрубку подвода пассивной среды, отличающаяся тем, что система дополнительно снабжена адиабатным испарителем, водосборником и пускоразгрузочным трубопроводом с обратным клапаном и поплавком, при этом адиабатный испаритель установлен на трубопроводе возврата жидкости, инжектор посредством пускоразгрузочного трубопровода подключен к водосборнику, поплавок размещен в последнем и жестко соединен с обратным клапаном, установленным на конце пускоразгрузочного трубопровода, трубопровод подачи жидкости на выходе инжектора снабжен обратным клапаном, адиабатный испаритель снабжен обратным клапаном и подключен через последний к пускоразгрузочному трубопроводу, трубопровод возврата жидкости на участке между инжектором и испарителем снабжен обратным клапаном, а трубопровод подпитки подключен к трубопроводу возврата на участке между инжектором и обратным клапаном. 2. Система по п.1, отличающаяся тем, что система дополнительно снабжена пароструйным эжектором, установленным на трубопроводе подачи активной среды перед инжектором, при этом патрубок подвода пассивной среды эжектора через обратный клапан подключен к адиабатному испарителю.

1.
2.
3.
4.
5.
6.

Отопительная система – это целый комплекс устройств, которые объединены в единый контур при помощи трубопровода. Работа отопления в таком случае заключается в постоянном движении теплоносителя (как правило, жидкости). Нагреваясь, теплоноситель расширяется, и в закрытой отопительной системе для нейтрализации этого явления используется расширительный бак. Эти устройства делятся на два типа, и именно от них зависит, будет система закрытой или открытой. Замкнутая система отопления подразумевает наличие бака, который не контактирует с окружающей средой, а в открытой отопительной системе бак взаимодействует с воздухом.

Для циркуляции теплоносителя в закрытых отопительных системах используются насосы, которые обеспечивают постоянное движение жидкости на достаточном уровне. Использование насосов позволяет закрытой системе работать гораздо эффективнее, варьируя скорость движения теплоносителя (прочитайте: " ").

Принудительная циркуляция хороша еще и тем, что в такую систему можно подключать дополнительные контуры с подключенными отопительными приборами. Конечно, такие системы становятся энергозависимыми, поскольку для функционирования насосов требуется электричество, но этот недостаток компенсируется высоким КПД всей конструкции.

Насосы в замкнутой отопительной системе монтируется на трубе обратки непосредственно перед котлом. В этом же месте можно разместить и расширительный бачок. Закрытая система отопления имеет ряд плюсов, которые становятся очевидными при сравнении с другими типами отопительных систем: установка системы осуществляется без особых затруднений, поскольку не нужно соблюдать постоянный уклон. Трубопроводу не потребуется утепление, да и сам трубопровод можно сделать потоньше, что скажется не только на его эстетических качествах, но и на стоимости конструкции.

В закрытой отопительной системе теплоноситель не может испаряться, поэтому следить за его уровнем придется гораздо реже. Кроме того, использование циркуляционных насосов обеспечивает ускоренный прогрев помещений, а если установить в контуре термостаты, то появляется возможность тонкой настройки температурного режима во всем доме.

Элементы системы отопления замкнутого типа

Схема замкнутой системы отопления содержит большое количество элементов:
  • отопительный котел;
  • мембранный расширительный бачок;
  • циркуляционный насос;
  • отопительные приборы;
  • трубы для прокладки контура, установки стояков и подводок;
  • фитинги;
  • краны;
  • фильтры;
  • крепежные элементы.

Принцип работы замкнутой отопительной системы

В котле происходит нагрев теплоносителя, после чего он разносится по отопительным приборам через трубопровод. Когда теплоноситель заполняет все пространство контура, к работе присоединяется расширительный бак, вмещая в себя излишки жидкости. Мембранный расширительный бачок состоит из двух полостей: в одну из них поступает лишний теплоноситель, а вторая часть заполнена газом или воздухом. Читайте также: " ".

При монтаже в закрытой отопительной системе создается давление, которое в дальнейшем задает давление всему контуру. Нагрев теплоносителя провоцирует увеличение давления в системе, и его излишки вместе с возникшим давлением поступают в бак, прогибая расположенную в нем мембрану. Дальнейший путь теплоносителя пролегает через циркуляционный насос, и работа системы продолжается в штатном режиме.

Особенности схемы замкнутой системы отопления

В закрытой отопительной системе с принудительной циркуляцией есть несколько особенностей:
  1. Возможность установки расширительного бачка и циркуляционного насоса рядом с отопительным котлом, что позволяет снизить затраты на трубы и упрощает монтаж всей системы.
  2. Полная герметичность бака приводит к тому, что теплоноситель не может испаряться из системы, а сам трубопровод надежно защищен от попадания воздуха.
  3. Устанавливать расширительный бачок и насос нужно на трубе обратки. Эксплуатация насоса возможна лишь в том случае, когда через него проходит жидкость, имеющая низкую температуру.
  4. По сравнению с открытой отопительной системой, замкнутая может располагаться в помещениях любой площади.

Плюсы и минусы замкнутой отопительной системы

Схема замкнутой системы отопления, в которой движение теплоносителя осуществляется принудительно, имеет свои преимущества и недостатки. Отрицательных моментов меньше, но они в некоторых случаях являются решающими.

Достоинства замкнутой системы отопления:

  • высокий КПД;
  • невозможность испарения жидкости;
  • использование труб уменьшенного диаметра;
  • повышение срока службы котла за счет разности температур на подающем и обратном контурах;
  • снижение коррозийного влияния на трубопровод;
  • возможность применения антифриза.
Недостатки замкнутой системы отопления:
  • зависимость от электричества, особенно в регионах, где перебои с электроэнергией – не редкость;
  • необходимость установки более сложного, вместительного и дорогого расширительного бачка.

Переоборудование открытой системы в закрытую

Замкнутая система отопления с естественной циркуляцией теплоносителя используется довольно редко, но исключительно из-за своих особенностей. О каких особенностях идет речь, и как осуществляется переход от одного типа системы к другой? При монтаже открытой отопительной системы мысль о переходе на замкнутую систему приходит нечасто, но сделать это довольно просто – достаточно установить мембранный расширительный бак, и конструкция сразу же станет закрытой.
Конечно, всегда есть возможность спроектировать подобную схему, но она будет обладать некоторыми минусами двух типов систем. Для обеспечения естественного движения теплоносителя трубопровод необходимо укладывать с соблюдением постоянного уклона, что нередко приводит к появлению воздушных пробок и существенно усложняет монтаж.

Какие преимущества даст такая конструкция? Независимость от электричества в данном случае является единственным плюсом, но его необходимость можно подвергнуть сомнению: как правило, в большинстве домов электричество есть всегда. Стоимость насоса и эксплуатационные расходы, связанные с его использованием, достаточно невысоки, поэтому классическая замкнутая схема все же гораздо лучше, чем открытая.

Установка системы отопления

Перед монтажом отопительной системы составляется проект, согласно которому и будут устанавливаться все элементы. Чтобы выбранная схема оправдывала себя, необходимо грамотно подобрать устройства, которые будут работать в контуре, и начать стоит с выбора отопительного котла. Выбирая котел, нужно отталкиваться от типа котла, зависящего от используемого топлива, и его мощности.
В последние годы получают распространение твердотопливные котлы, которые практически не требуют эксплуатационных затрат, но можно выбрать и другой вариант из числа представленных на рынке.

Как рассчитывается мощность системы? При проведении усредненных расчетов обычно берется соотношение 1 кВт мощности на 10 квадратных метров помещения. Выбрав подходящий котел, можно начинать расчет отопительных приборов. Лучшим вариантом являются радиаторы, характеристики которых индивидуальны, но отличий в них обычно немного, поэтому выбирать подходящие устройства можно, исходя из личных предпочтений. Кроме котла и отопительных приборов, потребуются и остальные элементы, да и установку системы тоже нужно включать в расчеты.

Приблизительная стоимость конструкции может колебаться в пределах от 4000 до 4500 тысяч долларов, но при желании можно найти варианты дешевле или дороже. Важно помнить, что слишком дешевая конструкция может не обеспечить дом необходимым количеством тепла, а чересчур дорогие варианты часто не оправдывают возложенных надежд.

Заключение

Какие выводы можно сделать из всего вышесказанного? Замкнутая система отопления с принудительной циркуляцией достаточно надежна и долговечна, и такая конструкция прослужит дому на протяжении многих лет. При необходимости можно использовать в закрытой схеме и естественную циркуляцию, но этот вариант создаст некоторые неудобства, без которых вполне можно было бы обойтись.

К.т.н. В.Ф. Гершкович, Центр Энергосбережения, г. Киев

Расширительный сосуд нужен для того, чтобы поддерживать в независимом контуре циркуляции нужное давление и компенсировать изменения объема воды в этом контуре, связанные с ее температурным расширением или сжатием.

Открытые расширительные сосуды , применявшиеся прежде, справлялись с этими задачами легко и надежно. Давление в системе отопления с открытыми сосудами было относительно невелико и практически постоянно, потому что оно определялось уровнем воды, который никогда существенно не менялся.

Расширительные сосуды закрытого типа , применяющиеся теперь в новом строительстве почти повсеместно, выполняют свои функции с трудом, а надежность узлов присоединения с такими сосудами оставляет желать лучшего. Давление в системе отопления с закрытыми сосудами постоянно колеблется, и только при правильном их выборе и надежной работе автоматики системы подпитки удается ограничить колебания давления, хотя и в желаемом, но все же в достаточно широком диапазоне.

Европейский опыт, однозначно сориентированный на применение в местных системах замкнутых контуров циркуляции теплоносителя с закрытыми расширительными сосудами, исходит из многолетней практики применения автономных отопительных систем с местными котельными, где без расширительных сосудов обойтись никак невозможно. Даже теперь, когда на Западе стали широко применять централизованные системы теплоснабжения, системы отопления обычно заполняют водой из водопровода, и подпитка из тепловой сети применяется там редко.

Отечественные отопительные системы с независимым от тепловой сети контуром циркуляции традиционно заполняются и подпитываются водой из тепловой сети. Эта наша обычная и во многом более эффективная практика позволила подойти к нетрадиционному техническому решению узлов подпитки независимых контуров циркуляции, позволяющему в большинстве случаев отказаться от применения в них расширительных сосудов.

На рисунке показаны четыре схемы узла подпитки, каждой из которых соответствует показанный справа от нее условный пьезометрический график тепловой сети в точке подключения здания, показанного в виде вытянутого прямоугольника.

Рассмотрим эти схемы.

Независимый от тепловой сети 1 контур циркуляции системы отопления 2 включает в себя циркуляционный насос 3 и теплообменник 4, тепловую мощность которого задает регулятор 5. На линии подпитки устанавливают фильтр 6 и водосчетчик 7. Эти элементы обязательны для любого теплового пункта, в котором имеется независимый контур циркуляции.

В схеме А имеется ручной вентиль 8, который открывают при заполнении системы отопления водой. На обводной вокруг вентиля 8 линии, на которой не должно быть никакой запорной арматуры, устанавливают дроссельную шайбу 9.

После того, как система отопления заполнена водой, вентиль 8 закрывают. При температурном расширении воды ее избыток удаляется через отверстие (диаметром 2 мм) дроссельной шайбы 9 в тепловую сеть, а при температурном сжатии или в результате утечек из системы отопления вода из тепловой сети проникнет в систему через ту же шайбу.

Схема А будет надежно работать при условии, что давление в обратном трубопроводе тепловой сети больше статического давления (Р2>Р ст), как это показано на пьезометрическом графике.

Схема Б с клапаном подпора 10 на обратном трубопроводе должна применяться в том случае, когда статическое давление столба воды, заполняющей отопительную систему, превышает давление в обратном трубопроводе тепловой сети (Р2<Р ст). Клапан 10, поддерживая до себя давление Р3, равное Рст, поднимет давление в обратном трубопроводе на величину ЛР, и тогда узел подпитки сможет работать в режиме, описанном для схемы А.

Схема В найдет применение там, где статическое давление превышает давление в обратном трубопроводе настолько, что клапан подпора установить невозможно или нецелесообразно, потому что он будет препятствовать нормальной работе системы теплоснабжения. В этом случае, поскольку Р1>Р ст, можно организовать подпитку из подающего трубопровода теплосети. Нужно только исключить возможность (пусть даже теоретическую) подачи в систему перегретой воды из тепловой сети. С этой целью на линии подпитки установлен теплообменник 12.

И только в тех редких случаях, когда статическое давление в системе отопления превышает давление в подающем трубопроводе тепловой сети (Р1 < Р ст), приходится применять схему Г со всеми ее деталями - подпиточным насосом 12, нагнетающим воду из обратного трубопровода теплосети в систему отопления, закрытым расширительным сосудом 13, компенсирующим температурные приращения объема воды, предохранительным клапаном 14, защищающим систему отопления от повышенного давления, и автоматической системой поддержания нужного давления с датчиком давления 15, по команде которого должен открыться электрический клапан 16 и включиться насос. Весьма габаритный мембранный расширительный сосуд (в мощных отопительных системах нужно 2-3 таких сосуда) в комплекте с повысительным насосом, управляемым приборами автоматического регулирования, и предохранительным клапаном обеспечит вполне безопасную эксплуатацию системы отопления при условии безотказной работы всех многочисленных элементов подпитки - такой узел обычно применяется для автоматизированной подпитки современных систем отопления.

Действующий узел подпитки с дроссельной шайбой, выполненный по схеме В (см. рис.), находится в одном из высотных домов, недавно построенных по проекту КиевЗНИИЭП в Киеве. Узел, прямо скажем, не слишком красив, но он предельно прост и компактен, лишен какой-либо автоматики и потому абсолютно надежен. А разве не это главное?