Меню
Бесплатно
Главная  /  Шторы и жалюзи  /  Печь с высоким КПД своими руками: харьковский рационализатор предложил использовать водяной пар (видео). Водородные генераторы для автомобиля своими руками: чертежи, схемы и руководство

Печь с высоким КПД своими руками: харьковский рационализатор предложил использовать водяной пар (видео). Водородные генераторы для автомобиля своими руками: чертежи, схемы и руководство

Водород практически идеальный вид топлива, но проблема заключается в том, что он на нашей планете встречается только в виде соединений с другими химическими элементами. Доля «чистого» вещества в атмосфере составляет не более 0,00005%. Учитывая такие реалии, становится актуальным вопрос о водородном генераторе. Рассмотрим принцип работы такого устройства, его конструктивные особенности, сферу применения и возможность самостоятельного изготовления.

Описание и принцип работы водородного генератора

Есть несколько методик выделения водорода и из других веществ, перечислим наиболее распространенные:

  1. Электролиз, данная методика наиболее простая и может быть реализована в домашних условиях. Через водный раствор, содержащий соль, пропускается постоянный электрический ток, под его воздействием происходит реакция, которую можно описать следующим уравнением: 2NaCl + 2H 2 O→2NaOH + Cl 2 + H 2 . В данном случае пример приведен для раствора обычной кухонной соли, что не лучший вариант, поскольку выделяющийся хлор является ядовитым веществом. Заметим, что полученный данным способом водород наиболее чистый (порядка 99,9%).
  2. Путем пропускания водяного пара над каменноугольным коксом, нагретым до температуры 1000°С, при таких условиях протекает следующая реакция: Н 2 О + С ⇔ СО + H 2 .
  3. Добыча из метана путем конверсии с водяным паром (необходимое условие для реакции – температура 1000°С): СН 4 + Н 2 О ⇔ СО + 3Н 2 . Второй вариант – окисление метана: 2СН 4 + О 2 ⇔ 2СО + 4Н 2 .
  4. В процессе крекинга (переработки нефти) водород выделяется в качестве побочного продукта. Заметим, что в нашей стране все еще практикуется сжигание этого вещества на некоторых нефтеперерабатывающих заводах ввиду отсутствия необходимого оборудования или достаточного спроса.

Из перечисленных вариантов последний наименее затратный, а первый наиболее доступный, именно он положен в основу большинства генераторов водорода, в том числе и бытовых. Их принцип действия заключается в том, что в процессе пропускания тока через раствор, положительный электрод притягивает отрицательные ионы, а электрод с противоположным зарядом – положительные, в результате происходит расщепление вещества.

Конструктивные особенности и устройство генератора водорода

Если с получением водорода проблем сейчас практически нет, то его транспортировка и хранение до сих пор остается актуальной задачей. Молекулы этого вещества настолько малы, что могут проникать даже сквозь металл, что несет определенную угрозу безопасности. Хранение в абсорбированном виде пока не отличается высокой рентабельностью. Поэтому наиболее оптимальный вариант – генерация водорода непосредственно перед его использованием в производственном цикле.

Для этой цели изготавливаются промышленные установки для генерации водорода. Как правило, это электролизеры мембранного типа. Упрощенная конструкция такого устройства и принцип работы приведен ниже.


Обозначения:

  • А – трубка для отвода хлора (Cl 2).
  • B – отвод водорода (Н 2).
  • С – анод, на котором происходит следующая реакция: 2CL – →CL 2 + 2е – .
  • D – катод, реакцию на нем можно описать следующим уравнением: 2Н 2 О + 2е – →Н 2 + ОН – .
  • Е – раствор воды и хлористого натрия (Н 2 О & NaCl).
  • F – мембрана;
  • G – насыщенный раствор хлористого натрия и образование каустической соды (NaОН).
  • H – отвод рассола и разбавленной каустической соды.
  • I – ввод насыщенного рассола.
  • J – крышка.

Конструкция бытовых генераторов значительно проще, поскольку в большинстве своем они не вырабатывают чистый водород, а производят газ Брауна. Так принято называть смесь кислорода и водорода. Этот вариант наиболее практичен, не требуется разделять водород и кислород, то можно значительно упростить конструкцию, а значит и сделать ее дешевле. Помимо этого полученный газ сжигается по мере его выработки. Хранить и накапливать его в домашних условиях не только проблематично, но и небезопасно.


Обозначения:

  • а – трубка для отвода газа Брауна;
  • b – впускной коллектор подачи воды;
  • с – герметичный корпус;
  • d – блок пластин электродов (анодов и катодов), с установленными между ними изоляторами;
  • e – вода;
  • f – датчик уровня воды (подключается к блоку управления);
  • g – фильтр водоотделения;
  • h – подвод питания, подаваемого на электроды;
  • i – датчик давления (подает сигнал блоку управления при достижении порогового уровня);
  • j – предохранительный клапан;
  • k – отвод газа с предохранительного клапана.

Характерная особенность таких устройств – использование блоков электродов, поскольку не требуется сепарирование водорода и кислорода. Это позволяет сделать генераторы довольно компактными.


Сферы применения водородного генератора

Ввиду проблем, связанных с транспортировкой и хранением водорода, такие устройства востребованы в производствах, где наличие этого газа требует технологический цикл. Перечислим основные направления:

  1. Производства, связанные с синтезом хлороводорода.
  2. Изготовление топлива для ракетных двигателей.
  3. Создание удобрений.
  4. Производство нитрида водорода (аммиака).
  5. Синтез азотной кислоты.
  6. В пищевой промышленности (для получения твердых жиров из растительных масел).
  7. Обработка металла (сварка и резка).
  8. Восстановление металлов.
  9. Синтез метилового спирта
  10. Изготовление соляной кислоты.

Несмотря на то, что производство водорода в процессе переработки нефти дешевле, чем его получение путем электролиза, как уже указывалось выше, возникают сложности с транспортировкой газа. Строить опасные химические производства, непосредственно, рядом с перерабатывающими нефть заводами не всегда позволяет экологическая обстановка. Помимо этого водород, полученный путем электролиза, значительно чище, чем при крекинге нефти. В связи с этим на промышленные водородные генераторы всегда высокий спрос.

Бытовое применение

В быту также есть применение водороду. В первую очередь это автономные отопительные системы. Но здесь некоторые особенности. Установки по производству чистого водорода стоят значительно дороже, чем генераторы газа Брауна, последние даже можно собрать самостоятельно. Но при организации отопления дома необходимо учитывать, что температура горения газа Брауна значительно выше, чем у метана, поэтому потребуется специальный котел, который несколько дороже обычного.


В интернете можно встретить немало статей, в которых написано, что для гремучего газа можно использовать обычные котлы, это делать категорически нельзя. В лучшем случае они быстро выйдут из строя, а в худшем могут стать причиной печальных или даже трагических последствий. Для смеси Брауна предусмотрены специальные конструкции с более термостойким соплом.

Необходимо заметить, что рентабельность отопительных систем на основе водородных генераторов вызывает большое сомнение ввиду низкого КПД. В таких системах имеются двойные потери, во-первых, в процессе генерации газа, во-вторых, при нагреве воды в котле. Дешевле для отопления сразу нагревать воду в электрическом бойлере.

Не менее спорная реализация для бытового использования, при которой газом Брауна обогащают бензин в топливной системе двигателя автомобиля с целью экономии.


Обозначения:

  • а – генератор ННО (принятое обозначение для газа Брауна);
  • b – отвод газа в камеру сушки;
  • с – отсек для удаления водяных паров;
  • d – возвращение конденсата в генератор;
  • е – подача осушенного газа в воздушный фильтр топливной системы;
  • f – автомобильный двигатель;
  • g – подключение к аккумулятору и электрогенератору.

Нужно заметить, что в некоторых случаях такая система даже работает (если ее собрать правильно). Но точные параметры, коэффициент прироста мощности, процент экономии вы не найдете. Эти данные сильно размыты, и достоверность их вызывает сомнения. Опять же не ясен вопрос, насколько уменьшится ресурс двигателя.

Но спрос порождает предложения, в интернетах можно найти подробные чертежи таких приспособлений и инструкцию по их подключению. Есть и готовые модели, сделанные в стране Восходящего Солнца.

Делаем простейший генератор водорода своими руками пошагово

Расскажем, как можно сделать самодельный генератор для получения смеси водорода и кислорода (ННО). Его мощности на отопления дома не хватит, но для газовой горелки для резки металла количество полученного газа будет достаточным.


Рис. 8. Схема газовой горелки

Обозначения:

  • а – сопло горелки;
  • b – трубки;
  • c – водные затворы;
  • d – вода;
  • е – электроды;
  • f – герметичный корпус.

В первую очередь делаем электролизер, для этого нам понадобится герметичная емкость и электроды. В качестве последних используем стальные пластины (их размер выбираем произвольно, в зависимости от желаемой производительности), прикрепленные к диэлектрическому основанию. Соединяем между собой все пластины каждого из электродов.

Когда электроды готовы их надо укрепить в емкости таким образом, чтобы места подключения проводов питания были выше предполагаемого уровня воды. Провода от электродов идут к блоку питания на 12 вольт или автомобильному аккумулятору.

В крышке емкости делаем отверстие под трубку для выхода газа. В качестве водных затворов можно использовать обычные стеклянные банки емкостью 1 литр. Заполняем их на 2/3 водой и подключаем к электролизеру и горелке, как показано на рисунке 8.

Горелку лучше взять готовую, поскольку не каждый материал может выдержать температуру горения газа Брауна. Подключаем ее к выходу последнего водного затвора.

Наполняем электролизер водой, в которую добавлена обычная кухонная соль.

Подаем напряжение на электроды и проверяем работу устройства.

Многие владельцы машин ищут способы экономии топлива. Кардинально решить этот вопрос позволит водородный генератор для автомобиля. Отзывы тех, кто установил себе это устройство, позволяют говорить о существенном снижении затрат при эксплуатации транспорта. Так что тема достаточно интересная. Ниже пойдёт речь о том, как сделать водородный генератор собственными силами.

ДВС на водородном топливе

На протяжении нескольких десятилетий идут поиски возможности приспособить двигатели внутреннего сгорания для полной или гибридной работы на водородном топливе. В Великобритании ещё в 1841 году был запатентован двигатель, работающий на воздушно-водородной смеси. Концерн «Цеппелин» в начале ХХ века в качестве движущей установки своих знаменитых дирижаблей использовал двигатели внутреннего сгорания, работающие на водороде.

Развитию водородной энергетики способствовал и мировой энергетический кризис, разразившийся в 70 годах прошлого века. Однако с его окончанием водородные генераторы быстро были забыты. И это несмотря на массу преимуществ по сравнению с обычным топливом:

  • идеальная воспламеняемость топливной смеси на основе воздуха и водорода, что даёт возможность лёгкого пуска двигателя при любой температуре окружающей среды;
  • большое выделение тепла при сгорании газа;
  • абсолютная экологическая безопасность - отработавшие газы превращаются в воду;
  • выше в 4 раза скорость сгорания по сравнению с бензиновой смесью;
  • способность смеси работать без детонации при высокой степени сжатия.

Основной технической причиной, являющейся непреодолимой преградой в использовании водорода в качестве топлива автомобилей стала невозможность уместить достаточное количество газа на транспортном средстве. Размер топливного бака для водорода будет сравним с параметрами самого автомобиля. Большая взрывоопасность газа должна исключать возможность малейшей утечки. В жидком виде необходима криогенная установка. Этот способ также мало осуществим на автомобиле.

Газ Брауна

Сегодня водородные генераторы у автолюбителей приобретают популярность. Однако это не совсем то, о чем шла речь выше. Путём электролиза вода превращается в так называемый газ Брауна, который и добавляют к топливной смеси. Основная задача, которую решает этот газ, - полное сгорание топлива. Это и служит увеличением мощности и снижением расхода топлива на приличный процент. Некоторым механикам удалось добиться экономии на 40 %.

Решающее значение в количественном выходе газа имеет площадь поверхности электродов. Под действием электрического тока молекула воды начинает разлагаться на два атома водорода и один кислорода. Такая газовая смесь при сгорании выделяет почти в 4 раза больше энергии, чем при сгорании молекулярного водорода. Поэтому использование этого газа в двигателях внутреннего сгорания приводит к более эффективному сгоранию топливной смеси, уменьшает количество вредных выбросов в атмосферу, увеличивает мощность и уменьшает величину затраченного топлива.

Универсальная схема водородного генератора

Тем, у кого нет способностей к конструированию, водородный генератор для автомобиля можно купить у народных умельцев, поставивших на поток сборку и установку таких систем. Сегодня есть множество таких предложений. Стоимость агрегата и установки составляет порядка 40 тысяч рублей.

Но можно собрать такую систему и самостоятельно - сложного в ней нет ничего. Состоит она из нескольких простых элементов, соединённых в одно целое:

  1. Установки для электролиза воды.
  2. Накопительного резервуара.
  3. Улавливателя влаги из газа.
  4. Электронного блока управления (модулятора тока).

Ниже приведена схема, по которой можно легко собрать водородный генератор своими руками. Чертежи главной установки, производящей газ Брауна, достаточно просты и понятны.

Схема не представляет какой-либо инженерной сложности, повторить её может каждый, кто умеет работать с инструментом. Для автомобилей с инжекторной системой подачи топлива необходимо еще установить контроллер, регулирующий уровень подачи газа в топливную смесь и связанный с бортовым компьютером автомобиля.

Реактор

От площади электродов и их материала зависит количество получаемого объёма газа Брауна. Если в качестве электродов брать медные или железные пластины, то реактор не сможет работать продолжительное время по причине быстрого разрушения пластин.

Идеальным выглядит применение титановых листов. Однако их использование повышает затраты на сборку агрегата в несколько раз. Оптимальным считается применение пластин из высоколегированной нержавеющей стали. Металл этот доступен, его не составит труда приобрести. Также можно использовать отработавший своё бак от стиральной машины. Сложность составит только вырезание пластин нужного размера.

Типы установок

На сегодняшний день водородный генератор для автомобиля может быть укомплектован тремя различными по типу, характеру работы и производительности электролизёрами:


Первый тип конструкции вполне достаточен для множества карбюраторных двигателей. Отсутствует необходимость в установке сложной электронной схемы регулятора производительности газа, да и сама сборка такого электролизёра не представляет сложности.

Для более мощных автомобилей предпочтительна сборка второго типа реактора. А для двигателей, работающих на дизельном топливе, и большегрузных машин используют третий тип реактора.

Необходимая производительность

Для того чтобы можно было действительно экономить топливо, водородный генератор для автомобиля должен ежеминутно вырабатывать газ из расчёта 1 литр на 1000 рабочего объёма двигателя. Исходя из этих требований подбирается количество пластин для реактора.

Для увеличения поверхности электродов необходимо провести обработку поверхности наждачной бумагой в перпендикулярном направлении. Такая обработка крайне важна - она увеличит рабочую площадь и позволит избежать «прилипания» пузырьков газа к поверхности.

Последнее приводит к изоляции электрода от жидкости и препятствует нормальному электролизу. Не стоит также забывать, что для нормальной работы электролизёра вода должна быть щелочной. Катализатором может служить обычная сода.

Регулятор тока

Водородный генератор на авто в процессе работы увеличивает свою производительность. Это связано с выделением тепла при реакции электролиза. Рабочая жидкость реактора испытывает нагрев, и процесс протекает гораздо интенсивнее. Для контроля над течением реакции используют регулятор тока.

Если не понижать его, может произойти просто закипание воды, и реактор перестанет выдавать газ Брауна. Специальный контролер, регулирующий работу реактора, позволяет изменять производительность с увеличением оборотов.

Карбюраторные модели оборудуют контроллером с обычным переключателем двух режимов работы: "Трасса" и "Город".

Безопасность установки

Многие умельцы размещают пластины в пластиковых ёмкостях. Не стоит экономить на этом. Нужен бак из нержавеющего металла. Если его нет, можно использовать конструкцию с пластинами открытого типа. В последнем случае необходимо применять качественный изолятор тока и воды для надёжной работы реактора.

Известно, что температура горения водорода составляет 2800. Это самый взрывоопасный газ в природе. Газ Брауна - не что иное, как «гремучая» смесь водорода. Поэтому водородные генераторы на автомобильном транспорте требуют качественной сборки всех узлов системы и наличия датчиков для слежения за течением процесса.

Датчик температуры рабочей жидкости, давления и амперметр не будут лишними в конструкции установки. Особое внимание стоит уделить гидрозатвору на выходе из реактора. Он жизненно необходим. Если произойдёт воспламенение смеси, такой клапан предотвратит распространение пламени в реактор.

Водородный генератор для отопления жилых и производственных помещений, работающий на тех же принципах, отличается в несколько раз большей производительностью реактора. В таких установках отсутствие гидрозатвора представляет смертельную опасность. Водородные генераторы на автомобилях в целях обеспечения безопасной и надёжной работы системы также рекомендуется оборудовать таким обратным клапаном.

Пока без обычного топлива не обойтись

В мире есть несколько экспериментальных моделей, которые полностью работают на газе Брауна. Однако технические решения пока ещё не достигли своего совершенства. Простым жителям планеты такие системы недоступны. Поэтому пока автолюбителям остаётся довольствоваться «кустарными» разработками, которые дают возможность сократить затраты на топливо.

Немного о доверчивости и наивности

Некоторые предприимчивые дельцы предлагают на продажу водородный генератор на авто. Рассказывают про обработку лазером поверхности электродов или про уникальные секретные сплавы, из которых они сделаны, специальные катализаторы воды, разработанные в научных лабораториях мира.

Всё зависит от способности мысли таких предпринимателей к полёту научной фантазии. Доверчивость может сделать вас за ваши же средства (иногда даже не малые) владельцем установки, у которой через два месяца эксплуатации разрушатся контактные пластины.

Если уж вы решили таким способом экономить, то лучше собирать установку самостоятельно. По крайней мере, не на кого потом будет пенять.

Генераторы водорода, которые в настоящее время используются в автомобилях для экономии энергии, бывают двух видов: “мокрый” электролизер и “сухой”. У каждого из них есть свои преимущества и недостатки, но сухой электролизер является разработкой второго поколения устройств, вырабатывающих водород для авто, так как в нем устранены значительные недостатки мокрого предшественника.

При экспериментах своими руками с генерированием водорода следует предельно осторожно соблюдать технику безопасности! Необходимо сначала изучить опыт других исследователей и практиков. Ссылки на ресурсы по данной теме с практическими примерами в конце статьи.

Всякие генераторы и устройства в этом китайском магазине .

На видео показана схема сухого генератора. Подробнее, как его сделать – на втором ролике.

Подробное описание

Для изготовления «сухих батарей» вам понадобится перфорированная нержавеющая сталь марки 316L или 316T. Толщина листа 0,4 мм, или 0,5 мм, не толще,с диаметром отверстий 2 мм, или 3 мм. Шаг отверстий в шахматном порядке, как это показано на картинке. Каждый лист слегка зашкурьте грубой наждачкой так, чтоб поверхность была покрыта царапинами. Это увеличит площадь соприкосновения стали с водой.

В изготовлении «сухих батарей» для автомобиля вам понадобится 20 листов перфорированной стали 10X10 см, с выступом 3X3 см, для электрического контакта; 19 прокладок, толщиной 2 мм, и 2 прокладки, толщиной 10 мм. Их можно вырезать из камер для автомобилей, или листов резины. Нужны также два листа из пластика 16X16 см. Лучше всего изготовить их из стенок ёмкости аккумулятора, отработавшего свой ресурс. Остальные детали вы увидите в видео-показе модели многополярной «сухой батареи». Первая и последняя прокладки 10 мм толщиной, нужны для того, чтобы пластиковые детали для поступления и выхода воды в системе батарей не упирались плотно в первый и последний стальные листы. В стальных пластинах, в выступах для электрических контактов, просверлите отверстие такого диаметра, чтобы болт в них входил как по резьбе, то есть плотно! Пластины должны чередоваться контактами. Одна пластина контактами на правый болт; другая – контактом на левый болт. И так далее.

Система электролиза

Система электролиза состоит из следующих частей: Аккумулятор. «Сухая батарея». Первая ёмкость для дистиллированной воды с примесью гидроксида калия. Гидроксид калия должен иметь 95% насыщенности!. Вторая ёмкость с обычной, чистой водой для очистки газа. Прибор давления. Клапан, предотвращающий возврат газа обратно к системе.

Подсоединение от аккумулятора плюсового и минусового кабеля к «сухой батарее». Поступление воды, с примесью гидроксида калия в батарею. Образующийся газ с остатками воды выходит из батареи и поступает в ёмкость. Затем, через фильтр, предотвращающий выход воды, газ из первой ёмкости поступает во вторую емкость, для очистки через воду. Для этого используется длинная трубка, идущая почти к самому дну второй ёмкости. В первую и вторую емкости можно поверх воды уложить устойчивый к кислотам, не тонущий и пористый материал для предотвращения всплесков воды при качке, тряске и наклонах автомобиля во время езды. Затем через фильтр, предотвращающий выход воды очищенный газ из второй емкости проходит через прибор, показывающий давление газа.

Из прибора давления газ проходит через клапан, который предотвращает возврат газа обратно по системе. Клапан состоит из медной трубки с герметично закручивающимися крышками по оба конца. В крышках устанавливаются ниппеля, пропускающие воздух в одном направлении, то-есть из системы электролиза наружу. А в медную трубку плотно набивается «стальная шерсть» марки 0000. Без этого клапана система электролиза будет взрывоопасна!

Сухие батареи» собираются и разбираются легко. Предложенные параметры стальных пластин избавят вас от головной боли вычислений. Если «сухая батарея», при мощности аккумулятора вашего авто, мало эффективна, тогда снизьте число пластин поровну на плюс и минус. Если же батарея сильно греется, тогда добавьте число пластин также поровну, одна на плюс, другая на минус и так далее. Первую и вторую ёмкости, в системе электролиза, делайте той площадью и формы, чтобы удобней их можно было разместить под капотом. Для надёжности, сделайте к ним и к «сухой батарее» стальные кожухи. Газ подаётся в двигатель через воздухозаборную систему. При этом надо снизить впрыск топлива. Марок автомобилей много, поэтому здесь подход нужен индивидуальный. В общем, думайте, экспериментируйте.

На этом сайте вы найдёте видео и чертежи водного инжектора и высоковольтного реле зажигания. А на этом русскоязычном сайте vodorod-na-avto.com много полезной информации с подробностями и испытаниями генераторов водорода для машин.

Еще средневековый ученый Парацельс во время одного из своих экспериментов заметил, что при контакте серной кислоты с феррумом образуются воздушные пузырьки. В действительности то был водород (но не воздух, как считал ученый) – легкий бесцветный газ, не имеющий запаха, который при определенных условиях становится взрывоопасным.

В нынешнее время отопление водородом своими руками – вещь весьма распространенная. Действительно, водород можно получать практически в неограниченном количестве, главное, чтобы были вода и электроэнергия.

Такой способ отопления был разработан одной из итальянских компаний. Водородный котел работает, не образуя никаких вредных отходов, из-за чего считается самым экологическим и бесшумным способом обогрева дома. Инновация разработки в том, что ученым удалось добиться сжигания водорода при относительно низкой температуре (порядка 300ᵒС), а это позволило изготавливать подобные отопительные котлы из традиционных материалов.

При работе котел выделяет только безвредный пар, и единственное, что требует затрат – это электроэнергия. А если совместить такое с солнечными панелями (гелиосистемой), то эти расходы можно и вовсе свести к нулю.

Обратите внимание! Зачастую котлы на водороде используются для нагрева систем «теплого пола», которые можно легко смонтировать своими руками.

Как же все происходит? Кислород вступает в реакцию с водородом и, как мы помним из уроков химии в средних классах, образует молекулы воды. Реакция провоцируется катализаторами, в результате выделяется тепловая энергия, нагревающая воду примерно до 40ᵒС – идеальной температуры для «теплого пола».

Регулировка мощности котла позволяет добиться определенного температурного показателя, необходимого для отопления помещения с той или иной площадью. Также стоит отметить, что такие котлы считаются модульными, т. к. состоят из нескольких независимых друг от друга каналов. В каждом из каналов имеется упомянутый выше катализатор, в результате в теплообменник поступает теплоноситель, уже достигший необходимого показателя в 40ᵒС.

Обратите внимание! Особенностью такого оборудования является то, что каждый из каналов способен вырабатывать разную температуру. Таким образом, один из них можно провести к «теплому полу», второй к соседнему помещению, третий к потолку и т. д.

Основные достоинства отопления на водороде

Данный способ обогрева дома имеет несколько существенных преимуществ, которыми обусловлена возрастающая популярность системы.

  1. Впечатляющий КПД, который нередко достигает 96%.
  2. Экологичность. Единственный побочный продукт, выделяющийся в атмосферу – это водяной пар, который не способен навредить окружающей среде в принципе.
  3. Водородное отопление постепенно заменяет традиционные системы, освобождая людей от необходимости в добыче природных ресурсов – нефти, газа, угля.
  4. Водород действует без огня, тепловая энергия образуется путем каталитической реакции.

Можно ли самостоятельно сделать водородное отопление?

В принципе, это возможно. Главный элемент системы – котел – можно создать на основе ННО генератора, то есть, обычного электролизера. Все мы помним школьные опыты, когда засовывали в емкость с водой оголенные провода, подключенные к розетке путем выпрямителя. Так вот, для сооружения котла вам потребуется повторить этот опыт, но уже в более крупных масштабах.

Обратите внимание! Водородный котел используется с «теплым полом», о чем мы уже говорили. Но обустройство такой системы – это тема уже другой статьи, поэтому мы будем опираться на то, что «теплый пол» уже устроен и готов к использованию.

Постройка водородной горелки

Приступаем к созданию водной горелки. Традиционно, начинать будем с приготовления необходимых инструментов и материалов.

Что потребуется в работе

  1. Лист «нержавейки».
  2. Обратный клапан.
  3. Два болта 6х150, гайки и шайбы к ним.
  4. Фильтр проточной очистки (от стиральной машины).
  5. Прозрачная трубка. Для этого идеально подходит водяной уровень – в магазинах стройматериалов он продается по 350 рублей за 10 м.
  6. Пластиковый герметичный контейнер для пищи емкостью 1,5 л. Примерная стоимость – 150 рублей.
  7. Штуцеры с «елочкой» ø8 мм (такие отлично подойдут для шланга).
  8. Болгарка для распиливания металла.

А теперь разберемся, какую именно нержавеющую сталь нужно использовать. В идеале для этого следует взять сталь 03Х16Н1. Но купить целый лист «нержавейки» порой весьма накладно, ведь изделие толщиной 2 мм стоит более 5500 рублей, к тому же его нужно как-то привезти. Поэтому, если где-то завалялся небольшой кусок такой стали (хватит и 0,5х0,5 м), то можно обойтись и им.

Мы будем использовать нержавеющую сталь, потому что обычная, как известно, в воде начинает ржаветь. Более того, в нашей конструкции мы намерены применять щелочь вместо воды, то есть среду более чем агрессивную, да и под действием электротока обычная сталь долго не прослужит.

Видео — Генератор газа Брауна простая модель ячейки из 16 пластин нержавеющей стали

Инструкция по изготовлению

Первый этап. Для начала берем лист стали и размещаем его на ровной поверхности. Из листа указанных выше размеров (0,5х0,5 м) должно получиться 16 прямоугольников для будущей горелки на водороде, вырезаем их болгаркой.

Обратите внимание! Один из четырех углов каждой пластины мы спиливаем. Это необходимо, чтобы в будущем соединить пластины.

Второй этап. С обратной стороны пластин просверливаем отверстия для болта. Если бы мы планировали сделать «сухой» электролизер, то просверлили отверстия и снизу, но в данном случае этого делать не надо. Дело в том, что «сухая» конструкция порядком сложнее, да и полезная площадь пластин в ней использовалась бы не на 100%. Мы же сделаем «мокрый» электролизер – пластины полностью погрузятся в электролит, а в реакции будет участвовать вся их площадь.

Третий этап. Принцип работы описываемой горелки основывается на следующем: электроток, проходя через погруженные в электролит пластины, приведет к тому, что вода (она должна входить в состав электролита) разложится на кислород (О) и водород (Н). Следовательно, мы должны располагать одновременно двумя пластинами – катодом и анодом.

С увеличением площади этих пластин увеличивается объем газа, поэтому в данном случае используем по восемь штук на катод и анод, соответственно.

Обратите внимание! Рассматриваемая нами горелка – это конструкция с параллельным включением, которая, честно говоря, является не самой эффективной. Но она более простая в выполнении.

Четвертый этап. Далее нам предстоит установить пластины в пластиковый контейнер так, чтобы они чередовались: плюс, минус, плюс, минус и т. д. Для изоляции пластин используем куски прозрачной трубки (мы купили ее целых 10 м, поэтому запас есть).

Нарезаем из трубки небольшие кольца, разрезаем их и получаем полоски толщиной примерно 1 мм. Это идеальное расстояние, чтобы водород в конструкции эффективно генерировался.

Пятый этап. Пластины крепим друг к другу с помощью шайб. Делаем это следующим образом: надеваем шайбу на болт, затем пластину, после нее три шайбы, еще одну пластину, опять три шайбы и т. д. Восемь штук вешаем на катод, восемь – на анод.

Обратите внимание! Это нужно делать зеркально, то есть, анод мы разворачиваем на 180ᵒ. Так «плюса» зайдут в зазоры между пластинами «минуса».

Шестой этап. Смотрим, куда именно в контейнере упираются болты, просверливаем в том месте отверстия. Если вдруг болты не помещаются в контейнер, то мы спиливаем их до требуемой длины. Затем вставляем болты в отверстия, надеваем на них шайбы и зажимаем гайками – для лучшей герметичности.

Далее проделываем дыру в крышке для штуцера, вкручиваем сам штуцер (желательно намазав место соединения силиконовым герметиком). Дуем в штуцер, чтобы проверить герметичность крышки. Если воздух все же выходит из-под нее, то промазываем и это соединение герметиком.

Седьмой этап. По окончании сборки тестируем готовый генератор. Для этого подключаем к нему любой источник, заполняем контейнер водой и закрываем крышку. Далее на штуцер надеваем шланг, который опускаем в емкость с водой (чтобы увидеть пузырьки воздуха). Если источник недостаточно мощный, то их в емкости не будет, но вот в электролизере они появятся обязательно.

Далее нам нужно повысить интенсивность выхода газа посредством увеличения напряжения в электролите. Здесь стоит отметить, что вода в чистом виде не является проводником – ток проходит через нее благодаря имеющимся в ней примесям и соли. Мы же разбавим в воде немного щелочи (к примеру, гидроксид натрия отлично подходит – в магазинах он продается в виде чистящего средства «Крот»).

Обратите внимание! На этом этапе мы должны адекватно оценить возможности источника питания, поэтому перед вливанием щелочи мы подключаем к электролизеру амперметр – так мы сможем проследить увеличение тока.

Видео — Отопление водородом. Аккумуляторы на водородном элементе

Далее поговорим о других составляющих водородной горелки – фильтре для стиралки и клапане. Оба предназначаются для защиты. Клапан не позволит загоревшемуся водороду проникнуть обратно в конструкцию и взорвать скопившийся под крышкой электролизера газ (пусть его там и немного). Если не установим клапан, то контейнер повредится и щелочь вытечет наружу.

Фильтр же потребуется для изготовления водяного затвора, который будет играть роль барьера, предотвращающего взрыв. Народные умельцы, не понаслышке знакомые с конструкцией самодельной горелки на водороде, называют этот затвор «бульбулятором». И правда, он по сути лишь создает пузырьки воздуха в воде. Для самой горелки используем все тот же прозрачный шланг. Все, водородная горелка готова!

Остается лишь подсоединить ее к входу системы «теплый пол», герметизировать соединение и начать непосредственно эксплуатацию.

В качестве заключения. Альтернатива

Альтернативой, пускай и весьма спорной, является газ Брауна – химическое соединение, которое состоит из одного атома кислорода и двух водорода. Горение такого газа сопровождается образованием тепловой энергии (притом в четыре раза мощнее, чем в описанной выше конструкции).

Для отопления дома газом Брауна тоже используются электролизеры, ведь этот способ получения тепла также основан на электролизе. Создаются специальные котлы, в которых под действием переменного тока молекулы химических элементов разъединяются, образуя заветный газ Брауна.

Видео – Обогащенный газ Брауна

Вполне возможно, что инновационные энергоносители, резерв которых практически безграничен, вскоре вытеснят невозобновляемые природные ресурсы, освободив нас от необходимости в перманентной добычи ископаемых. Такой ход событий позитивно скажется не только на окружающей среде, но и на экологии планеты в целом.

Также читайте на нашем статью — паровое отопление своими руками.

Видео – Отопление водородом

Водородный котел - устройство для обогрева дома, которое в качестве топлива использует газ водород. Так как этот газ в чистом виде в природе не встречается, водородные котлы оборудованы специальным устройством для выработки водорода из дистиллированной воды .

Водородный котел для отопления частного дома - одно из тех решений, которое сегодня привлекает к себе большое внимание. На «полях» интернета можно найти много предложений, сулящих обладателям такого оборудования огромные блага, например, радикальное снижение «счетов за отопление». Так ли это на самом деле, и что может, а что не может современный бытовой водородный котел, читайте в нашем обзоре.

Миф о том, что водородный котел - самый экономичный способ обогреть дом

Часто можно услышать, что водородный котел есть наиболее экономичный способ отопления для частного дома. Обычно для обоснования этого тезиса применяются ссылки на высокую теплоту сгорания водорода - более чем в 3 раза выше, чем у природного газа. Из этого делается нехитрый вывод - выгоднее топить дом водородом, чем газом.

Иногда в качестве аргумента эффективности водородного котла приводится так называемый «газ Брауна» или смесь атомов водорода и кислорода (HHO), которая выделяет при сгорании еще больше тепла, и на котором работают «продвинутые котлы». После этого обоснования эффективности просто заканчиваются, оставляя возможность воображению обывателя рисовать прекрасные картинки под общим названием «отопление почти даром». Подумать только - водород и горит «теплее», и получается из практически бесплатной воды, сплошная выгода!

Воображение подогревают и новости о постоянно растущем , работающих на водородном топливе, как альтернативе традиционным. Дескать, если уж автомобили «ездят» на водороде, то водородный котел - действительно стоящая вещь.

Но на деле все обстоит немного сложнее. Если бы чистый водород был легкодоступным в природе элементом - все так, или почти так, и было. Но дело в том, что чистый водород на Земле не встречается - только в связанном виде, например, в виде воды. Поэтому на практике сначала водород нужно откуда-то получить, причем, с помощью энергозатратных химических реакций.

Откуда берется чистый водород


Хозяину на заметку

«Чтобы привлечь внимание к своей продукции, некоторые производители водородных котлов делают ссылки на некий "секретный катализатор" или на использование "газа Брауна" в своих устройствах».

Например, можно извлечь водород из газа метана, где водорода аж 4 атома! Только вот, зачем? Метан и сам по себе - горючий газ, зачем терять дополнительную энергию на выработку чистого водорода? Где тут энергоэффективность? Поэтому чаще всего водород извлекают из воды, которая, как всем известно, не может гореть, применяя для этого метод электролиза. В самом общем виде этот метод можно описать как расщепление молекул воды на водород и кислород под действием электроэнергии.

Электролиз давно известен и широко применяется для получения чистого водорода. На практике ни один промышленный водородный котел, пока во всяком случае, не обходится без электролизной установки или электролизера. Все бы хорошо, но эта установка требует электроэнергии. Итак, водородный котел должен в обязательном порядке потреблять энергию. Вопрос в том, каковы же эти энергозатраты?


Все разговоры о «теплоте сгорания» водорода немного уводят нас в сторону от данного вопроса, а между тем, он наиболее важен. Итак, водородный котел может быть выгоден в единственном случае - произведенная им тепловая энергия должна быть выше, чем израсходованная на работу котла.

Энергоэффективность водородного котла

Чтобы понять, получится ли у нас «на выходе» котла энергия больше, чем затраченная, просто рассмотрим внимательнее молекулу воды - в ней два атома водорода и один кислорода, которые крепко связаны между собой. Чтобы разорвать эту связь, необходимо «приложить» довольно много энергии, это и делает электролизер за счет электричества. В результате получается смесь водорода и кислорода, которые обладают потенциальной (буквально, растворенной в них) энергией, и которая может выделиться в результате процесса горения и обеспечить тепло дому. Чтобы понять, сколько же энергии получится от горения, стоит присмотреться к тому, что получится в результате горения. А получится у нас… та же самая вода, которую мы расщепляли на атомы.

Фактически, после всех этих манипуляций, в лучшем случае мы получим ровно столько энергии, сколько было потрачено на разделение исходной молекулы воды. Так как, от воды мы уходили, и к воде же и пришли. Но это - в идеальном случае, где отсутствуют неизбежные в реальности потери. Т.е. даже в идеальном случае сколько электричества мы потратим, столько тепла получим.

Производитель указывает на наличие "секретного" катализатора

Дополнительные молекулы воды для расщепления тоже взять неоткуда - сколько сначала разделили, столько потом и соединим при сжигании водородно-кислородной смеси. Опять же, за вычетом потерь. Кроме того, не надо забывать, что водородный котел работает за счет дистиллированной воды, на производство которой тоже расходуется энергия. Как видно невооруженным глазом, эффективность водородного котла не может быть высокой.

Тогда встает закономерный вопрос - зачем все эти сложности с расщеплением, если существуют устройства, которые непосредственно переводят электроэнергию в тепло и называются ? Если просто нагревать воду за счет электрической энергии, вся эта энергия практически без потерь уйдет на нагрев воды - получается выгоднее, чем через электролизное разложение и последующее «восстановление» воды сжиганием смеси водорода и кислорода с сопутствующими потерями.

Сравнение водородного котла с другими устройствами отопления

Как известно, электрический котел считается самым неэффективным отопительным устройством, иначе говоря, стоимость тепла, произведенного за счет этого устройства, будет наиболее дорогой.

Сравнение отопления с помощью теплового насоса с другими способами.

Тип отопления

Энергоэффективность, %

Электрический котел

Водородный котел

Как мы уже выяснили, отопление за счет водородного котла уступает по эффективности даже электрическому. Правда, мир не стоит на месте. Вполне возможно, что настанет день, когда использование современных технологий позволит удешевить сотни бытовых процессов, а отопление за счет водородного котла или его аналогов станет действительно выгодным.

Перспективы использования водородных котлов

Почему же вообще стоит говорить о водородных котлах, как о перспективном способе отопления частного дома? Все дело в общемировой тенденции по переходу на «зеленые» технологии и растущему спросу на такие технологии. Водородный котел - бесспорно «номер один» в списке наиболее экологичных решений в сфере .

Во-первых, в процессе его эксплуатации не образуется углекислый газ - «главный бич» оборудования, работающего на углеводородном топливе: газе, жидком и твердом топливе.

Во-вторых, т.к. продуктом сгорания в водородном котле является чистая вода, он не требует для своей работы обустройства вентиляции, приборов для отвода продуктов сгорания. Которые, в свою очередь, могут потребовать дополнительной энергии для обеспечения своей работы. Да и просто нуждаются в большем пространстве внутри дома. Тое есть, устанаваливая водородный котел, можно сэкономить на площади котельной.


Хозяину на заметку

«На сегодняшний день устанавливать водородный котел для целей отопления своего дома рискуют или очень богатые люди, или заядлые оптимисты».

В-третьих, водяной пар, выделяющийся в результате сгорания водорода, увлажняет помещения дома.

Но самое главное - водородный котел неплохо сочетается с генераторами электроэнергии, работающими от возобновляемых источников энергии (ВИЭ) и имеющими ярко выраженный периодический характер работы. Например, с ветрогенераторами, и устройствами, работающими за счет био-газа. В этом случае - во время пиковых режимов - генераторы ВИЭ могут вырабатывать водород с помощью электролиза, который в дальнейшем будет использоваться как топливо для котла. Подключение же этих генераторов к сети напрямую потребует использования дополнительных дорогостоящих устройств.

Один из роликов, где расписываются "преимущества" водородного котла

С развитием технологий, дешевая энергия от ВИЭ может «конвертироваться» в водород, как это уже происходит в промышленных установках. Но пока устанавливать водородный котел для целей отопления своего дома рискуют или очень богатые люди, или заядлые оптимисты.