Меню
Бесплатно
Главная  /  Устройства  /  Устройство и принцип действия сепаратора непрерывной продувки. Сепаратор непрерывной продувки

Устройство и принцип действия сепаратора непрерывной продувки. Сепаратор непрерывной продувки

Для получения чистого пара необходима его осушка, которая осуществляется в различных сепарационных устройствах. При нормальной эксплуатации судовых паровых котлов влажность пара на выходе из парового коллектора должна быть не более 0,5 %. Для парогенераторов атомных установок эти требования еще выше - от 0,001 до 0,01 %, так как наличие в паре примесей может привести к уносу радиоактивных веществ с большими периодами полураспада в машинные отделения.

Процесс сепарации пара основывается на различии удельных весов насыщенного пара и капель воды.

Сепарация пара в осадительном объеме

Этот способ сепарации является наиболее простым. Капля влаги находится под действием силы подъемного движения пара и силы тяжести. Соотношение этих сил приводит либо к уносу капли влаги с паром либо к выпадению ее из парового потока. В старых конструкциях котлов, имевших больШи Е объемы парового пространства, применялись простейшие сепарационные устройства: сухопарники и отбойные щитки.

Капли влаги вместе с потоком пара по пароотводящим трубам поступают в

Сухопарник, осаждаются на его стенках и стекают в водяной объем парового коллектора через дренажную трубу. Дополнительной преградой для уноса влаги является

Пароотбойный щиток, на котором осаждается значительная часть влаги.

1 - паровой коллектор; 2 - дренажная труба; 3 - сухопарник;

4 - пароотводящие трубы; 5 - отбойный щиток

Как показывает опыт эксплуатации котлов, сухопарник не дает улучшения качества пара и его роль лишь сводится к ликвидации последствий нарушений нормального режима работы - например забросов воды в пароперегреватель.

Схема сепарации пара с дырчатыми щитами

Основным способом

Устранения отрицательного

Воздействия от сосредоточенного подвода пароводяной смеси в коллекторе котла является

Равномерное распределение

Паровой нагрузки по всей площади зеркала испарения. С этой целью в паровых коллекторах котлов

Устанавли-ваются дырчатые щиты, расположенные на 50 ^ 150 мм ниже минимального уровня воды.

Основным назначением погруженного дырчатого щита является создание на пути движения пара дополнительного сопротивления, одинакового по всему сечению коллектора. В Щи Те расположены отверстия диаметром 5 ^ 20 мм. Живое сечение щита составляет обычно 10 ^ 15 % от сечения коллектора. Причем над подъемными трубами живое сечение отверстий меньше и составляет 5 ^ 6 % от общей площади зеркала испарения, а над опускными трубами больше - 9 ^ 10 %. Довольно часто отверстия в погружном щите располагают равномерно. В результате дополнительного сопротивления, под щитом образуется устойчивая паровая подушка, обеспечивающая равномерное распределение пара по площади зеркала испарения.

Применение погружного дырчатого щита является обязательным но недостаточным условием получения чистого пара. Обычно пар из коллектора отбирается через один-два патрубка.

Большая часть пара направляется к патрубкам кратчайшим путем. В результате скорости движения пара в паровом пространстве оказываются различными. Из-за повышенной скорости пара в районе пароотводящих труб его влажность может превышать допустимые значения.

Для выравнивания скоростей пара в верхней части парового объема устанавливают потолочные дырчатые щиты. Отверстия в них расположены неравномерно - реже у места отбора пара и чаще на
периферии - в результате чего его сопротивление возрастает от периферии к месту отбора пара. Потолочный дырчатый щит является также дополнительным препятствием, на котором оседают капли влаги, содержащейся в паре.

В современных паровых котлах часто устанавливается также средний дырчатый щит, расположенный выше верхнего уровня воды на 50 ^ 80 мм. Его назначением является выравнивание неравномерности уровня воды от сосредоточенного подвода пара и успокоение колебаний уровня при качке судна.

Недостатками схемы сепарации с дырчатыми щитами являются:

Чувствительность к изменению нагрузки котла (при уменьшении нагрузки котла возникает большое сопротивление для прохода пара);

Возможность нарушения работы опускных труб при захвате в них пара;

Способствие пенообразованию при большом солесодержании котловой воды.

Жалюзийные сепараторы

Эффективным средством для осушки пара являются жалюзийные сепараторы. Отличительной особенностью их является высокая эффективность при сравнительно небольших гидравлических сопротивлениях. Жалюзийные сепараторы компонуются как в горизонтальном, так и в вертикальном исполнении.

Принцип действия жалюзийных сепараторов основан на разделении фаз при изменении движения пароводяного потока в криволинейных каналах за счет центробежного эффекта. Пароводяная смесь со скоростью w поступает в криволинейные каналы. Влага выпадает на пластинку

Жалюзи и водяной пленкой стекает вниз со скоростью w", а осушенный пар направляется в паропровод со скоростью ww. Стекающая пленка влаги отрывается от нижних кромок жалюзи и в виде отдельных струй и капель выпадает в водяной объем коллектора.

При определенных расходах пароводяной смеси на пластинках жалюзи может осесть столько влаги, что она полностью перекроет все сечение канала. Этот режим называется режимом захлебывания жалюзи.

Для вертикальных жалюзи режим захлебывания наступает при больших расходах пароводяной смеси. Это объясняется условиями дренажа, которые в вертикальных жалюзи более благоприятные. Поэтому при прочих равных условиях эффективность вертикальных жалюзи выше, чем горизонтальных.

Горизонтальные или вертикальные жалюзи могут устанавливаться в коллекторе вместо потолочного дырчатого щита либо в отдельных корпусах - в таких случаях они называются выносными сепараторами.

Внутриколлекторные циклоны

Внутриколлекторные циклоны являются очень эффективными сепарационными устройствами.

Диаметр циклона обычно равен 300 мм. При больших диаметрах усложняется их монтаж внутри коллектора; уменьшение диаметра циклона ведет к увеличению их числа внутри коллектора и усложняет равномерность подвода пароводяной смеси к каждому из циклонов.

В циклоне осуществляется двухступенчатая сепарация пара. В первой ступени происходит грубое

Разделение пара и воды вследствие

Центробежной раскрутки при

Тангенциальном подводе пароводяной смеси в корпус циклона. Вода под

Действием центробежных сил

Прижимается к стенке корпуса и стекает вниз, а пар поднимается вверх. В верхней части циклона обычно устанавливается дырчатый щит либо жалюзийный

Сепаратор, в котором происходит окончательная тонкая осушка пара.

Внутриколлекторные циклоны

Обеспечивают равномерную подачу пара в паровой объем коллектора по его длине, не чувствительны к повышенному солесодержанию воды и работают устойчиво при резких изменениях нагрузки.

Недостатками внутриколлекторных циклонов являются;

Большие гидравлические сопротивления движению пароводяной смеси, что в котлах и ПГ с ЕЦ может повлиять на устойчивость циркуляции;

Небольшие производительности (0,6 ^ 2,0 кг/с на один циклон);

Загромождение парового коллектора и сложность в установке.

Сепараторы с осевым подводом потока

Сепараторы с осевым подводом потока аналогичны внутриколлекторным циклонам. Они имеют различные конструкции. Основой таких сепараторов является лопаточный завихритель смеси. Поток, поступая вдоль оси сепаратора, закручивается лопатками и разделяется на паровой вихрь, движущийся по оси потока, и водяной вращающийся поток, движущийся вдоль стенок внутреннего цилиндра. Основная масса жидкости переливается через верхний край корпуса циклона и по стенкам стакана стекает вниз. Дальнейшее осушение пара осуществляется с помощью жалюзийного сепаратора или дырчатого перфорированного листа.

Сепараторы с осевым подводом пароводяной смеси широко применяются в парогенераторах ядерных энергетических установок.

Выносные пленочные сепараторы

При движении влажного пара по трубам основное количество влаги оседает на внутренней поверхности труб в виде пленки и лишь небольшая ее часть остается во взвешенном состоянии. Таким образом, любая труба, по которой движется пар, является своеобразным пленочным сепаратором. Осуществив отвод влаги, можно получить пар довольно высокого качества.

Наиболее распространена следующая конструкция пленочного сепаратора; подвод влажного пара происходит сверху. При повороте направления пара его основная часть оседает на стенках трубы и стекает вниз, откуда удаляется через дренажную трубу. Пар отбирается из центральной части сепаратора.

Производительности пленочных сепараторов невелики, а влажность пара составляет ~ 1 %, что является довольно высоким значением для современных установок. Поэтому широкого распространения такие устройства не получили.

Выносные центробежные сепараторы

В центробежных сепараторах подвод смеси может осуществляться как радиально, так и в осевом направлении. Закручивание потока осуществляется с помощью специальных лопаток. Отсепарированная влага стекает вниз по кольцевому пространству между стенкой цилиндра и перфорированным листом, а пар поступает в верхнюю часть объема и

Через перфорированный лист с влажность 0,5-1,0 % уходит в трубопровод насыщенного пара. В нижней части сепаратора может быть установлен успокоитель для гашения вращательного движения жидкости. Вода из сепаратора отводится через патрубок в нижней части. Объем воды в сепараторе составляет 1/7-1/10 от часовой паропроизводи-тельноси котла или парогенератора для обеспечения явления гидравлического затвора и исключения возможности проскока пара на всасывание

Циркуляционного насоса.

Необходимость водоподготовки в СЭУ возникает из-за вредного действия примесей, содержащихся в питательной и котловой воде на работу паровых котлов и парогенераторов. При нарушении показателей качества воды наблюдаются накипеобразование и коррозия в котлах, интенсивный унос солей с паром. Поэтому вода, предназначенная для использования в паровых котлах, должна соответствовать определенным норма качества.

В зависимости от назначения в паросиловой установке различают следующие типы воды;

Исходная (природная) вода - источником этой воды являются реки, озера, моря, океаны и содержит природные примеси в виде растворенных веществ и механических частиц. Такая вода направляется для удаления примесей и загрязнений;

Добавочная вода - является продуктом химически обработанной исходной воды или конденсатом вторичного пара испарителей - используется для восполнения потерь пара и воды в цикле ПСУ;

Питательная вода - подаваемая насосами в котлы и парогенераторы для получения пара заданных параметров - представляет собой смесь конденсата турбин и добавочной воды;

Котловая вода - находящаяся внутри контуров циркуляции котла;

Продувочная вода - продуваемая из котлов и испарителей для поддержания в них допустимой концентрации примесей.

Основными показателями качества воды являются;

Соленость воды, 0Бр (градус Брандта) - 1 °Бр соответствует содержанию 10 мг NaCl или 6,06 мг СГ в 1 л дистиллированной воды. Основные водоемы мира имеют следующую соленость; Черное море - 1800 °Бр, Северный Ледовитый океан - 5500 °Бр, Тихий океан - 3500 °Бр, Атлантический океан - 3600 °Бр, Белое море

От 100 до 3300 °Бр.

Жесткость воды, 0Н (градус жесткости) - зависит от содержания в воде солей кальция и магния. 1 0Н соответствует содержанию 10 мг CaO или 7,14 мг MgO в 1 л дистиллированной воды. Различают временную (карбонатную) жесткость, которая устраняется кипячением воды, постоянную (некарбонатную) жесткость, которая не устраняется кипячением воды, и общую жесткость, равную сумме карбонатной и некарбонатной жесткости.

Повышенная жесткость воды вызывает образование накипи на стенках труб поверхностей нагрева. Образование накипи приводит;

К перегреву, пережогу и разрыву труб поверхностей нагрева, образованию свищей и выпучин;

Усилению процессов коррозии под слоем накипи;

Образованию окалины на внешней стороне труб;

Перерасходу топлива и снижению КПД котлоагрегата.

Воде растворимого силиката натрия Na2SiO3 и ионов кремнекислоты SiO2, которая находится в коллоидном состоянии. В отличие от других солей, кремнекислота способна растворяться

Непосредственно в паре при высоких давлениях. Она в основном содержится в водах рек и озер, и практически отсутствует в морской воде. Поэтому этот показатель важен только для стационарных ЭУ, использующих для питания котлов пресноводные водоемы - реки и озера.

Водородный показатель воды - pH. Различают кислую, нейтральную и щелочную реакции воды.

Для питания котлов вода должна иметь значение pH близкое к 7.

Обычно рассматривают не сам водородный показатель pH, а щелочное число (мг-Экв/л), которое является критерием оценки качества котловой воды, характеризующим ее защитные свойства против образования накипи. Большие значения щелочного числа могут привести к пенообразованию и вызвать щелочную коррозию элементов котла.

Общее солесодержание, мг/л - суммарное количество растворенных в воде нелетучих веществ минерального и органического происхождения. Характеризуется сухим остатком, определяемым путем выпаривания пробы профильтрованной воды и высушивания остатка при 120 °С.

Загрязнение котловой воды маслом или топливом может произойти очень быстро и привести к крупной аварии котла. В водотрубных котлах топливо или масло разносится по всей нагревательной поверхности котла циркулирующей водой, приводя к перегреву и разрыву трубок поверхностей нагрева.

При обнаружении загрязнения котла маслом или топливом следует немедленно прекратить его действие; установить источник попадания ГСМ в питательную воду; удалить загрязненную воду; котел выпарить и тщательно вычистить. До полной очистки котла и всей питательной системы, а также полного устранения источников

Попадания ГСМ в котловую воду, вводить котел в действие запрещается (п. 75 ПЭКУ).

Признаками наличия масла или топлива в котловой или питательной воде являются (п. 81 ПЭКУ);

Беловато-мутный вид котловой или питательной воды, взятой на пробу, и наличие характерного запаха;

Вспенивание воды в котле, резкие колебания уровня воды в ВУП;

Следы масла или топлива на поверхности уровня воды в

Водоуказательных приборов котлов, нефтеподогревателей,

Запасных цистерн и цистерн грязных конденсатов.

Для ВНК типа КВГ-Э показатели качества питательной и котловой воды приведены в таблицах;

Основным способом борьбы с накипеобразованием и коррозией котельного металла является поддержание заданных параметров качества питательной и котловой воды за счет проведения обработки воды. Различают докотловую и внутрикотловую обработки воды.

Текст

Я не робот (поставьте Галочку что не спам)


Назначение паровых котлов заключается в получении пара и его дальнейшем использовании.
Одним из устройств, которое применяется для разделения пароводяной смеси на пар и воду,
является .
Если представить геометрически, то ввод смеси можно представить тангенциально.
Таким образом отделение пара происходит за счет центростремительных (центробежных) сил.
Сопло на входе в сепаратор сплющено, что усиливает центробежный эффект разделения пароводяной смеси.

Пар, сохраняя вращательное движение, направляется в паровое пространство и отводится через патрубок. Вода стекает по внутренней стенке сепаратора в водяной объем.

Поплавковый регулятор уровня автоматически поддерживает в сепараторе уровень воды, который визуально определяют по указателю уровня.

Поплавок можно зафиксировать в верхнем положении поворотом рукоятки фиксатора на 30°

Чтобы купить сепаратор непрерывной продувки Ду 300 , нажмите «оставить заявку» или позвоните.

В комплект сепаратора входит:

  • сам сепаратор;
  • поплавковый регулятор уровня;
  • запорное устройство со стеклом;
  • 2 вентиля

Установка и монтаж сепаратора непрерывной продувки Ду-300

1. Сепаратор устанавливается в вертикальном положении на заранее смонтированные опорные балки.

2. После установки сепаратора на опорах, устанавливаются контрольно-измерительные приборы, предохранительные устройства, поплавковый регулятор уровня, производится обвязка трубопроводами.

3. Установка сепаратора должна обеспечивать возможность осмотра, ремонта и очистки его как с внутренней, так и с наружной стороны, должна исключать опасность его опрокидывания. Зависание сепаратора на подсоединяющих трубопроводах не допускается.

4. При монтаже для удобства обслуживания сепаратора могут быть устроены площадки и лестницы, которые не должны нарушать прочности, устойчивости и возможности свободного осмотра и очистки наружной поверхности. Приварка их к аппарату должна быть выполнена по проекту в соответствии с «Правилами устройства и безопасной эксплуатации сосудов, работающих под давлением».

5. После установки и крепления сепаратора, обвязки и оснащения его арматурой необходимо вполнить гидравлическое (пневматическое) испытание.

6. После гидравлического испытания проводится промывка сепаратора и трубопроводов, проверка работоспособности арматуры, поплавкового регулятора уровня, предохранительного клапана, после чего сепаратор включается в работу.

Порядок работы и запуска сепаратора непрерывной продувки Ду-300
Принципиальная схема работы сепаратора

Убедившись в исправности трубопроводов, арматуры и контрольноизмерительных приборов, приступайте к включению (пуску) сепаратора в работу, для чего необходимо:

— плавно открыть задвижки 1 (рис. 29), заполнить сепаратор непрерывной продувки смесью от продувочного вентиля котла;
— открыть задвижку 4 на дренаж и задвижку 2 выхода отсепарированного пара;
— закрыть задвижку 4 и следить по водоуказательному стеклу за уровнем воды;
— при достижении нормального уровня воды плавно открыть вентиль 3 выхода отсепарированнои воды, которым отрегулировать процесс сепарации пароводяной смеси и установить постоянный уровень воды в нижней части корпуса.
После пуска сепаратора, при установлении в корпусе давления, соответствующего технической характеристике, сепаратор считается включенным в нормальную эксплуатацию.

Техническое обслуживание сепаратора непрерывной продувки Ду-300

Сепаратор должен находиться под постоянным наблюдением обслуживающего персонала.

Для обеспечения бесперебойной работы сепаратора необходимо не реже 3-х раз в смену производить следующий контроль:

— за давлением пара;

— за наличием нормального уровня конденсата в корпусе по водоуказательному стеклу (нормальной работой системы регулирования конденсата в корпусе).

Периодически необходимо производить продувку водоуказательных стёкол.

Периодическая ревизия сепаратора должна производиться как с профилактическими целями, так и для выявления причин возникших неполадок.

Осмотр и очистка корпуса сепаратора должны производиться не реже одного раза в 2-3 года во время останова сепаратора для текущего и капитального ремонта.

Сепараторы непрерывной продувки должны подвергаться техническому освидетельствованию после монтажа, до пуска в работу, периодически в процессе эксплуатации и в необходимых случаях внеочередному освидетельствованию.

При длительном ремонте, а также недостаточной плотности отключающей арматуры ремонтируемое оборудование следует отглушить. Толщина заглушек должна соответствовать параметрам рабочей среды.

При ослаблении болтов на фланцевых соединениях необходимо соблюдать осторожность с тем, чтобы находящиеся внутри сепаратора и трубопроводов пар и вода не могли вызвать ожоги у людей.

Непрерывная продувка барабанных котлоагрегатов осуществляется для уменьшения солесодержания котловой воды и получения пара надлежащей чистоты. Величина продувки (в процентах от производительности котлоагрегатов) зависит от солесодержания питательной воды, типа котлоагрегатов и т.п.

Сепаратор представляет собой вертикальный цилиндрический сосуд (см. рисунок7) с плоскими или эллиптическими донышками, подводящим сплющенным патрубком или патрубком кругового сечения и паро- и водоотводящими патрубками и поплавковым регулятором, который автоматически поддерживает уровень воды. Закрутка потока осуществляется за счет организованного подвода воды на внутреннюю стенку сепаратора или за счет установки внутренних направляющих устройств. Обычно расход продувочной воды на сепаратор составляет от 1% до 5% производительности котла. Разделение на фракции происходит за счет падения давления у потока котловой воды, при его попадании в меньший объем.

Разделение на пар и воду происходит в средней части сепаратора. Пар, сохраняя вращательное движение, направляется в паровое пространство и отводится через патрубок, расположенный на верхнем днище. Вода стекает по внутренней поверхности сепаратора в водяной объем и отводится через патрубок, расположенный в нижней части корпуса. На нижнем днище предусмотрен штуцер для отвода воды из сепаратора при его отключении и для периодической очистки нижней части водяного объема от шлама и загрязнений.

Рисунок 7 - Сепаратор непрерывной продувки

А – подвод продувочной воды; Б – отвод отсепарированного пара; В – дренаж;Г – отвод отсепарированной воды.

1 – задвижка выхода отсепарированной воды; 2 – регулятор уровня воды; 3 – сопло для входа продувочной пароводяной смеси; 4 – опоры; 5 – патрубок для выхода пара; 6 – верхнее и нижнее донышко; 7 – корпус сепаратора; 8 – указатель уровня воды; 9 – задвижка на дренаж.

Для уменьшения потерь тепла и конденсата с продувочной водой применяются сепараторы – расширители. Давление в расширителе непрерывной продувки принимается равным, пар из расширителя непрерывной продувки обычно направляют в деаэраторы.

Тепло продувочной воды (от сепаратора непрерывной продувки) экономически целесообразно использовать при количестве продувочной воды больше 0,27 кг/с. Эту воду обычно пропускают через теплообменник подогрева сырой воды. Вода из сепаратора подается в охладитель или барботер, где охлаждается до 40 – 50ºС, а затем сбрасывается в канализацию.

Рисунок 8- Схема непрерывной продувки

Расход продувочной воды из котлоагрегата определяется по заданному его значению в процентах от:

,

кг/с.

Количество пара, выделяющегося из продувочной воды, определяется из уравнения теплового баланса:

и массового баланса сепаратора:

Рисунок 9- Узел сепаратора непрерывной продувки

Энтальпию влажного пара в расширителе при определимпо формуле:

,

,

кг/с.

Количество сливаемой воды в барботёр:

,

Сепаратор непрерывной продувки циклонного типа предназначен для разделения продувочной воды котла на пар и воду образующейся из продувочной воды паровых котлов при снижении её давления от внутрикотлового до давления в сепараторе и с целью последующего использования тепла воды и пара. Разделение происходит за счёт действия центробежных сил, обусловленных тангенциальным вводом воды в сепаратор. После этого к потребителю поступает пар высокой степени сухости.

Сепараторы могут применяться в системах сбора конденсата с целью сокращения расхода потребляемого пара и потерь тепла с отводимой пароконденсатной смесью.
В сепараторах помимо тангенциального подвода конденсата (продувочной воды) установлены вертикальные жалюзийные каплеуловители для осушки пара вторичного вскипания.
Сепаратор применяется в схемах с деаэратором атмосферного типа.

Основные параметры и технические характеристики

Наименование

СНП-0,15-0,06 (Ду-300)

СНП-0,15-0,8 (Ду-300)

СНП-0,15-1,4 (Ду-300)

Давление рабочее

Температура

Давление пробное

Паропроизводительность

Вместимость

Масса сухого без комплектующих

Масса комплектующих

Устройство и принцип работы
Сепаратор представляет собой вертикальный цилиндрический сосуд (см. Рис.1) с эллиптическими донышками, подводящими противоположно размещенными патрубками, паро- и водоотводящими патрубками, указателем уровня для визуального контроля, клапаном предохранительным пружинным, и поплавковым конденсатоотводчиком, который автоматически поддерживает уровень воды. Закрутка потока осуществляется за счет организованного подвода пароводяной смеси на внутреннюю стенку сепаратора с установкой внутренних направляющих устройств. Обычно расход продувочной воды на сепаратор составляет от 1% до 5% производительности котла.
Разделение на пар и воду происходит в средней части сепаратора. Пар, сохраняя вращательное движение, направляется в паровое пространство и отводится через патрубок, расположенный на верхнем днище. Вода стекает по внутренней поверхности сепаратора в водяной объем и отводится через патрубок, расположенный в нижней части корпуса. На нижнем днище предусмотрен штуцер для отвода воды из сепаратора при его отключении и для периодической очистки нижней части водяного объема от шлама и загрязнений.

Рис. 1. Сепаратор непрерывной продувки

Рис. 2. Схема обвязки сепаратора непрерывной продувки

На цилиндрической части корпуса приварены две опоры для установки сепаратора и сопла для тангенциального подвода пароводяной смеси продувочной воды котла в сепаратор. В верхнем донышке сепаратора установлен патрубок с фланцем для выхода отсепарированного пара, а в нижнем донышке - штуцер с вентилем для спуска воды из сепаратора при его отключении и для осуществления возможности периодического вывода из нижней части водяного объёма шлама и загрязнений.
В нижней цилиндрической части корпуса имеется поплавковый конденсатоотводчик и указатель уровня. С помощью указателя уровня ведется визуальное наблюдение за уровнем воды. Поплавковый конденсатоотводчик предназначен для автоматического поддержания постоянного уровня воды в сепараторе.


Рис. 3. Схема подключения сепаратора к непрерывной продувке котлов.

1 – ввод непрерывной продувки котлов; 2 – трубопроводы высокого давления; 3 – узел регулирования продувки котлов; 4 – ограничительные шайбы; 5 – отключающая арматура; 6 – подводящий трубопровод низкого давления; 7 – подводящие патрубки (сопла); 8 – выход пара; 9 – дренаж; 10 – выход отсепарированной воды.

Пар направляется в паровое пространство, а отделившаяся вода стекает по внутренней стенке сепаратора в водяной объем.

Порядок установки
Монтаж сепаратора производится в соответствии с технической документацией, разработанной специализированными проектными организациями и требованиями инструкции по монтажу.

Для предотвращения возможного повышения давления на корпусе сепаратора предусмотрен клапан предохранительный пружинный.
Сепаратор устанавливается в вертикальном положении на заранее смонтированные опорные балки. Далее устанавливаются контрольно-измерительные приборы, предохранительные устройства, поплавковый конденсатоотводчик и производится обвязка трубопроводами.
Установка сепаратора должна обеспечивать возможность осмотра, ремонта и очистки его как с внутренней, так и с наружной стороны, должна исключать опасность его опрокидывания. Зависание сепаратора на подсоединяющих трубопроводах не допускается.
При монтаже для удобства обслуживания сепаратора могут быть устроены площадки и лестницы, которые не должны нарушать прочности, устойчивости и возможности свободного осмотра и очистки наружной поверхности.
После установки и крепления сепаратора, обвязки и оснащения его арматурой, необходимо выполнить гидравлическое (пневматическое) испытание. После гидравлического испытания проводится промывка сепаратора и трубопроводов, проверка работоспособности арматуры, поплавкового конденсатоотводчика, предохранительного клапана, после чего сепаратор включается в работу.

Техническое обслуживание и эксплуатация
Условием нормальной и надежной эксплуатации сепаратора является обеспечение непрерывного отвода пара и воды из сепаратора и поддержание давления в сепараторе в установленных пределах. Это достигается при исправном состоянии поплавкового конденсатоотводчика и клапана предохранительного.
Сепаратор должен находиться под постоянным наблюдением обслуживающего персонала. За исправным состоянием поплавкового конденсатоотводчика следует установить надлежащий контроль:
- один раз в смену проверять смотровое стекло, которое необходимо установить за конденсатоотводчиком;
- не реже 3-х раз в смену производить контроль за давлением пара;
- не реже 3-х раз в смену производить контроль за наличием нормального уровня конденсата в корпусе по водоуказательному стеклу.
- не реже одного раза в смену производить продувку указателя уровня в зависимости от качества продувочной воды.
Клапан предохранительный необходимо принудительно подрывать не реже одного раза в смену с последующим контролем за возвращением клапана в исходное положение и отсутствие пропусков пара. Периодическая ревизия сепаратора должна производиться как с профилактическими целями, так и для выявления причин возникших неполадок.
Осмотр и очистка корпуса сепаратора должны производиться не реже одного раза в 2-3 года во время останова сепаратора для текущего и капитального ремонта.
Сепараторы непрерывной продувки должны подвергаться техническому освидетельствованию после монтажа, до пуска в работу, периодически в процессе эксплуатации и в необходимых случаях внеочередному освидетельствованию.
При длительном ремонте, а также недостаточной плотности отключающей арматуры ремонтируемое оборудование следует отглушить. Толщина заглушек должна соответствовать параметрам рабочей среды.
При ослаблении болтов на фланцевых соединениях необходимо соблюдать осторожность с тем, чтобы находящиеся внутри сепаратора и трубопроводов пар и вода не могли вызвать ожоги у людей.

В отличие от ставших уже традиционными фильтров, сепараторы, не создавая гидравлического сопротивления, способны снижать количество воздуха и газов и удалять из системы самые мелкие частицы. Отсутствие воздуха и шлама в теплоносителе значительно увеличивает эффективность работы системы в целом и приборов отопления в частности.

За счет устранения турбулентности и создания областей с ламинарным потоком или зоной покоя увеличиваются скорость осаждения частиц окислов и скорость подъема пузырьков воздуха. Конструкция сепаратора обеспечивает торможение вихревых потоков, в результате чего пузырьки поднимаются вверх в воздушную камеру, а частицы шлама опускаются вниз в специальный резервуар. При помощи автоматического неблокируемого клапана сепарированный воздух выводится наружу. Частицы грязи удаляются через сливной кран. Возможна полная автоматизация процесса удаления шлама с помощью электромагнитного клапана и таймера.

Сепаратор способен в течение 50 циклов убирать практически 98 % частиц размером до 30 микрон, и с увеличением количества проходов воды через сепаратор количество удаленных частиц возрастает, а размер уменьшается. Речь идет об удалении частиц размером от 5 до 30 микрон. Практически удаляются все частицы, которые тяжелее воды. Теоретически мы можем предложить сложную многоступенчатую установку на основе фильтров, с такими же характеристиками. Но такое устройство обойдется крайне дорого — надо поставить специальную насосную группу, которая преодолеет то сопротивление, которое окажет фильтрующий элемент, и обслуживание такой установки станет достаточно трудоемким. А здесь у каждого сепаратора неизменное гидравлическое сопротивление.

Конструкция доведена до совершенства — размер самого прибора и устройство подбиралось сначала на основе теоретических расчетов, потом проверялось на практике, таким образом, чтобы конструкция прибора была оптимальной. Расчетные значения габаритов сепараторов откорректированы на основе многолетнего практического опыта, мы можем предложить оборудование для самых разных условий, например, для систем охлаждения, где скорость потока значительно выше, чем 1 м/с. При применении сепараторов обслуживание систем существенно облегчается — нет необходимости спускать воздух вручную после запуска. Для сложных систем цена возрастает, но в стоимости системы в целом, она составляет несопоставимо низкую долю от того экономического эффекта, который даст применение сепараторов.

Каким образом решается вопрос применения сепараторов в России с точки зрения проектировщиков?

Что происходило ранее проектировщики, проектируя систему отопления, создавали очень большой запас по давлению в системе отопления. И так далее по цепочке. В итоге мы получали систему, далекую от совершенства с невозможностью нормальной балансировки, и с энергосбережением имеющей мало общего. При применении сепараторов совсем незачем добавлять сверхнормативные напорные показатели в проект для того, чтобы вода просто циркулировала. Можно поставить сепаратор воздуха гарантировано не будет завоздушивания и вы получите высокоэффективную систему. Используя, например, сепараторы грязи, вы убираете все частицы, которые находятся и в зоне стандартной фильтрации, и вне этой зоны.

Сегодня узлы отопительных систем конструктивно рассчитываются все ближе граничным параметрам. От «коэффициента запаса» сегодня повсеместно отказываются. Уменьшаются не только трубопроводы и другие элементы отопительной системы, но также, например, и сам водяной поток вдоль нагреваемых внутренних поверхностей и через клапаны. Десятилетиями сохраняется постоянная тенденция по созданию отопительных котлов с более высоким коэффициентом полезного действия. Кроме всего прочего, это приводит к довольно значительному снижению объема циркулирующей воды. Поэтому элементы системы гораздо чувствительней, чем это было раньше, реагируют на находящийся в системе воздух и шлам.

Что дает применение систем сепарации для крупных котельных?

Принципиально — это решение проблем, связанных с механическими примесями. Безусловно, надо отметить, что в системе с постоянными утечками эффективность работы сепараторов не может быть реализована на 100 %. Ни для кого не секрет, что котельная может быть переоборудована сколько угодно раз, а вот переоборудовать так быстро сети невозможно. Реконструируя котельное оборудование, власти и владельцы должны задумываться о сетях в комплексе. Включая в систему фильтр, мы понимаем, что постепенно он будет «зарастать». Если мы не будем его обслуживать в той мере, в какой это необходимо, мы можем получить абсолютную непроходимость этого фильтра. Поэтому, применяя наше оборудование, вы избавляетесь от мелкой спрессованной взвеси,

осевшей на стенках теплообменника. Снижая скорость «шламовой коррозии» можно ожидать, что и нерастворимые соли жесткости будут в меньшей степени поражать системы с гладкой поверхностью труб сложно реагировать. Очистить теплообменник, чиллер стоит примерно от 500 до 3000 долларов. Но помещая реагенты в систему, вы должны абсолютно четко представлять, чем вы рискуете. И к вопросу об оксидной пленке. Оксидная пленка практически нерастворима. Прибор постоянно испытывает линейное расширение, и вся оксидная пленка покрывается сначала микро, а потом и макротрещинами и сама становится источником загрязнения. Алюминиевые приборы эффективны при определенных условиях и имеют особенность покрываться этой пленкой, которая имеет в своем составе достаточно твердые частицы, и когда она начинает разрушаться и попадать в теплоноситель, вы получаете настоящий абразив.

Аргументом в пользу применения сепараторов является то, что возможно при обслуживании системы отопления, принять на работу человека с более низкой квалификацией. Для обслуживания такого оборудования вполне достаточно, чтобы человек просто подходил, открывал вентиль, и на этом обслуживание и заканчивалось.

Для каких отраслей предназначены сепараторы?

В общем это системы отопления, системы охлаждения, высокотехнологичные системы ГВС. Почему с оговоркой высоктехнологичные? Потому что у нас в системах ГВС принято считать, что можно использовать воду, неподготовленную, из водопровода,

которая подается непосредственно в теплообменник. Но вод «сырой воды» в теплообменник, усиливает коррозионные процессы в несколько раз, потому что вода из водопровода — абсолютно не подготовлена, она насыщена кислородом. Конечно, можно применить теплообменник из нержавеющей стали, но создать все коммуникации из нержавейки в системе стоит очень дорого, и экономически нецелесообразно. Гораздо проще пойти по цивилизованному пути и применять схемы ГВС с баком накопителем, использующимися во всем мире.

Существующая система ЖКХ только начинает разворачиваться к современным технологиям и когда люди, вкладывая деньги в этот сектор начинают просчитывать все затраты в течение жизненного цикла оборудования они обязательно приходят к необходимости применения сепараторов. Это касается не только ЖКХ, но и всех тех отраслей и процессов, где необходимо удаление воздуха и шлама из жидкостных систем. Сепараторы эффективны и в системах, где в качестве теплоносителя используются и этиленгиколи.