Меню
Бесплатно
Главная  /  Устройства  /  «Искусственные материалы: пластмасса, пластик, полиэтилен. Искусственные ткани: ненатуральные материалы из натурального сырья

«Искусственные материалы: пластмасса, пластик, полиэтилен. Искусственные ткани: ненатуральные материалы из натурального сырья

В деревообрабатывающей промышленности использу­ются многие производственные материалы, которые либо целиком состоят из искусственных материалов, на­пример лаки и клеи, либо искусственные материалы яв­ляются их важными компонентами, как, например, пла­стины ламината или древесностружечные плиты. Также готовые детали типа нажимной дверной ручки часто из­готавливаются из искусственных материалов (рис. 2.101).

2.11.1. Структура, обозначения, свойства искусственных материалов

Основными сырьевыми веществами для производства искусственных материалов являются нефть, газ, уголь, вода и воздух. Из них прежде всего производятся хи­мическим путем предварительные продукты, молекулы которых состоят из малого количества атомов, напри­мер, этилен (С2Н2) и формальдегид (СН20). Эти не­большие молекулы называют мономерами.

Благодаря химическому соединению тысяч мономе­ров (моно, от греч. - один) образуются большие моле­кулы, макромолекулы (макро, от греч. - большой). Мак­ромолекулы могут иметь нитевидную структуру или объединяться в пространственные структуры, что для дальнейших свойств искусственных материалов имеет Рис. 2.101. Примеры не­большое значение. Вещества, состоящие из макромо - пользования искусственных лекул, называют полимерами (поли, от греч. - много). материалов

Все искусственные материалы являются полимерами. Искусственные мате­риалы состоят, как и натуральные органические вещества, например хлопок, рог и целлюлоза , в основном из элементов углерода (С), водорода (Н) и кислорода (О). Поэтому они также относятся к органическим веществам. Однако некоторые искусственные вещества содержат в качестве важного элемента крем­ний. Такие вещества называются силиконами.

В соответствии с DIN EN ISO 1043 и DIN ISO 1629 искусственные материалы имеют условные обозначения, которые ведут свое начало от их химических на­званий. Например, поливинилхлорид обозначают как ПВХ (PVC), полиэтилен как ПЭ (РЕ) и фенолформальдегидная смола как ПФ (PF) (табл. 2.21, 2.22 и 2.23).

Так как искусственные материалы на некоторых стадиях обработки могут де­формироваться пластично, то их также можно назвать пластмассами.

Искусственные материалы - это произведенные химическим способом органические, макро - молекулярные вещества. Они состоят в основном из элементов углерода (С), водорода (Н), кислорода (О), азота (N), хлора (CI), серы (S), фтора (F) и кремния (Si).

Искусственные материалы производят в промышленных масштабах тремя спо­собами: полимеризацией, поликонденсацией и ступенчатой полимеризацией.

При полимеризации чаще всего одинаковые мономеры преобразуются в мак­ромолекулы с нитевидной или линейной структурой. Мономеры - это ненасы­щенные углеводородные соединения, например этилен (С2Н2). После разделе­ния двойной связи они могут полимезироваться в длинные молекулярные нити. Из этилена получают полиэтилен (ПЭ) (рис. 2.102).

Полиэтилен (полимер)

Рис. 2.102. Полимеризация (на примере полиэтилена)

Основными полимерами наряду с полиэтиленом (защитная пленка строитель­ных конструкций от коррозии, трубы) являются поливинилхлорид (кантовый профиль, покрытие полов, оконные переплеты) и поливинилацетат (клей ПВА).

Поликонденсацией называется химический процесс получения высокомоле­кулярных соединений из низкомолекулярных исходных веществ, например при реакции фенола (С6Н5ОН) с формальдегидом (СН20), при одновременном выде­лении побочных продуктов (веществ), например воды (Н20) (рис. 2.103).

Основными полимерами, полученными поликонденсацией, являются фенол­формальдегидная смола, резорцино-альдегидный полимер, мочевиноформаль - дегидная смола и полиамиды.

При ступенчатой полимеризации высокомолекулярные соединения, структу­ра которых нитевидная или пространственная, образуются благодаря соедине­нию различных молекул исходных веществ без выделения побочных продуктов, например при реакции диэтилового спирта (С4Н8(ОН)2) с диизоцианатом (С4Н|;(СМО)3).

Основными продуктами ступенчатой полимеризации являются полиуретано­вая смола - клеящее вещество и полиуретановая пена (рис. 2.104).

Благодаря соответствующему химическому составу и способу изготовления искусственных материалов, а также смешиванию различных искусственных ве­ществ можно достичь почти любых свойств материалов.

Типичными свойствами искусственных материалов являются:

Низкая плотность,

Регулируемые механические свойства,

Электрическая непроводимость,

Теплоизоляция,

Коррозионная и химическая стойкость,

Хорошая деформируемость и обрабатываемость,

Хорошая окрашиваемость,

Гладкие, декоративные поверхности.

Искусственные материалы имеют также свойства, которые ограничивают их применение:

В основном низкая термостойкость,

Частично воспламеняющиеся,

В основном невысокая прочность,

Частично неустойчивы против растворителей.

Высокая сопротивляемость искусственных материалов хоть и является пре­имуществом в случае их применения, но служит недостатком при их утилизации. Из-за возрастания количества применяемых продуктов из искусственных мате­риалов их утилизация стала проблемой для охраны окружающей среды.

Разнообразие природы безгранично, но есть материалы, которые не появились бы на свет без человеческого участия. Предлагаем вашему вниманию 10 веществ, созданных руками человека и проявляющих фантастические свойства.

1. Одностороннее пуленепробиваемое стекло

У самых богатых людей есть проблемы: судя по растущим продажам этого материала, им необходимо пуленепробиваемое стекло, которое спасло бы жизнь, но не мешало им отстреливаться.
Это стекло останавливает пули с одной стороны, но в то же время пропускает с другой - этот необычный эффект заключается в «сэндвиче» из хрупкого акрилового слоя и более мягкого эластичного поликарбоната: под давлением акрил проявляет себя как очень твёрдое вещество, и при попадании пули он гасит её энергию, трескаясь при этом. Это даёт возможность амортизирующему слою выдержать удар пули и осколков акрила, не разрушаясь при этом.
При выстреле с другой стороны упругий поликарбонат пропускает через себя пулю растягиваясь и разрушая ломкий акриловый слой, что не оставляет никакого дальнейшего барьера для пули, но не стоит отстреливаться слишком часто, поскольку из-за этого в защите образуются дыры.

2. Жидкое стекло

Было время, когда средства для мытья посуды не существовало - люди обходились содой, уксусом, серебряным песком, трением или проволочной щёткой, но новое средство поможет сэкономить немало времени и сил и вообще оставить мытьё посуды в прошлом. «Жидкое стекло» содержит диоксид кремния, образующий при взаимодействии с водой или этанолом материал, который затем высыхает, превращаясь в тонкий (более чем в 500 раз тоньше человеческого волоса) слой эластичного, сверхстойкого, не токсичного и влагоотталкивающего стекла.

С таким материалом отпадает необходимость в чистящих и дезинфицирующих средствах, так как он способен отлично предохранять поверхность от микробов: бактерии на поверхности посуды или раковины просто изолируются. Также изобретение найдёт применение в медицине, ведь стерилизовать инструменты теперь можно с помощью лишь горячей воды, без использования химических дезинфицирующих средств.

Это покрытие может использоваться для борьбы с грибковыми инфекциями на растениях и герметизации бутылок, его свойства действительно уникальны - оно отталкивает влагу, дезинфицирует, при этом оставаясь эластичным, прочным, пропускающим воздух, и совершенно незаметным, а также дешёвым.

3. Бесформенный металл

Это вещество позволяет игрокам в гольф сильнее бить по мячу, увеличивает поражающую способность пули и продлевает срок службы скальпелей и деталей двигателя.

Вопреки своему названию, материал сочетает прочность металла и твёрдость поверхности стекла: на видео видно, как отличается деформация стали и бесформенного металла при падении металлического шарика. Шарик оставляет на поверхности стали множество маленьких «ям» - это означает, что металл поглощает и рассеивает энергию удара. Бесформенный металл остался гладок, значит, он лучше возвращает энергию удара, о чём также говорит более продолжительный отскок.

Большинство металлов имеет упорядоченное кристаллическое молекулярное строение, и от удара или другого воздействия, кристаллическая решётка искажается, из-за чего на металле и остаются вмятины. В бесформенном металле атомы расположены хаотично, поэтому после воздействия атомы возвращаются на первоначальную позицию.

4. Старлит

Это пластик, выдерживающий невероятно высокую температуру: его тепловой порог настолько высок, что сначала изобретателю просто не поверили. Лишь после демонстрации возможностей материала в прямом эфире на телевидении, с создателем старлита связались сотрудники Британского Центра Атомного Вооружения.
Учёные облучили пластик вспышками высокой температуры, эквивалентными мощности 75-ти бомб, сброшенных на Хиросиму - образец лишь немного обуглился. Один из испытателей заметил: «Обычно между вспышками приходится ждать несколько часов, чтобы материал остыл. Сейчас мы облучали его каждые 10 минут, а он остался невредим, будто в насмешку».

В отличие от других термостойких материалов, старлит не становится токсичным при высокой температуре, также он невероятно лёгок. Его можно применять при строительстве космических аппаратов, самолётов, огнезащитных костюмов или в военной промышленности, но, к сожалению, старлит так и не покинул пределы лаборатории: его создатель Моррис Уард умер в 2011-м году, не запатентовав своё изобретение и не оставив никаких описаний. Всё, что известно о строении старлита - что в его состав входит 21 органический полимер, несколько сополимеров и небольшое количество керамики.

5. Аэрогель

Представьте себе пористое вещество такой низкой плотности, что 2,5 см³ его заключает в себе поверхности, сравнимые с размером футбольного поля. Но это не определённый материал, а, скорее, класс веществ: аэрогель - это форма, которую могут принимать некоторые материалы, а сверхмалая плотность делает его отличным теплоизолятором. Если сделать из него окно толщиной 2,5 см, оно будет иметь те же теплоизоляционные свойства, что и стеклянное окно толщиной 25 см.

Все самые лёгкие в мире материалы - аэрогели: например, кварцевый аэрогель (по сути, высушенный силикон) всего в три раза тяжелее воздуха и достаточно хрупок, зато может выдержать вес, в 1000 раз превышающий его собственный. Графеновый аэрогель (на иллюстрации выше) состоит из углерода, а его твёрдый компонент в семь раз легче воздуха: имея пористую структуру, это вещество отталкивает воду, но поглощает нефть - его предполагается использовать для борьбы с нефтяными пятнами на поверхности воды.

6. Диметилсульфоксид (DMSO)

Этот химический растворитель сначала появился, как побочный продукт выработки целлюлозы и никак не применялся до 60-х годов прошлого века, когда раскрыли его медицинский потенциал: доктор Джейкобс обнаружил, что DMSO может легко и безболезненно проникать в ткани тела - это позволяет быстро и без повреждения кожи вводить различные препараты.

Его собственные лечебные свойства снимают боль при растяжении связок или, например, воспалении суставов при артрите, также DMSO может использоваться для борьбы с грибковыми инфекциями.
К сожалению, когда его медицинские свойства были открыты, производство в промышленных масштабах уже давно было налажено, и его широкая доступность не позволяла фармацевтическим компаниям получать прибыль. Кроме того у DMSO есть неожиданный побочный эффект - запах изо рта использовавшего его человека, напоминающий чеснок, поэтому он используется в основном в ветеринарии.

7. Углеродные нано-трубки

Фактически это листы углерода толщиной в один атом, свёрнутые в цилиндры - их молекулярная структура напоминает рулон проволочной сетки, и это самый прочный материал, известный науке. В шесть раз легче, но в сотни раз крепче стали, нано-трубки обладают лучшей теплопроводностью, чем алмаз, и проводят электричество эффективнее меди.

Сами трубки не видны невооружённым взглядом, а в необработанном виде вещество напоминает сажу: чтобы проявились его необыкновенные свойства, надо заставить вращаться триллионы этих невидимых нитей, что стало возможным относительно недавно.
Материал может применяться в производстве кабеля для проекта «лифта в космос», достаточно давно разработанного, но до недавнего времени совершенно фантастичного из-за невозможности создать кабель длиной 100 тыс км, не согнувшийся бы под собственным весом.

Углеродные нано-трубки помогают и при лечении рака груди - их можно помещать в каждую клетку тысячами, а наличие фолиевой кислоты позволяет выявлять и «захватывать» раковые образования, затем нано-трубки облучают инфракрасным лазером, и клетки опухоли при этом погибают. Также материал может применяться в производстве лёгких и прочных бронежилетов…

8. Пайкерит

В 1942-м году перед англичанами стояла проблема недостатка стали для строительства авианосцев, необходимых для борьбы с немецкими подводными лодками. Джеффри Пайк предложил соорудить огромные плавучие аэродромы изо льда, однако она себя не оправдала: лёд хоть и недорог, но недолговечен. Всё изменилось с открытием нью-йоркскими учёными необыкновенных свойств смеси льда и древесных опилок, которая по прочности была подобна кирпичу, а также не трескается и не плавится. Зато материал можно было обрабатывать, как дерево или плавить, подобно металлу, в воде опилки разбухали, образуя оболочку и предотвращая таяние льда, за счёт чего любое судно можно было ремонтировать прямо во время плавания.

Но при всех положительных качествах, пайкерит был малопригоден для эффективного использования: для постройки и создания ледяного покрова судна весом до 1000 т достаточно было двигателя мощностью в одну лошадиную силу, но при температуре выше -26 °С (а для её поддержания необходима сложная система охлаждения) лёд имеет свойство проседать. Кроме того, целлюлоза, используемая также в производстве бумаги, была в дефиците, поэтому пайкерит так и остался неосуществимым проектом.

9. BacillaFilla - строительный микроб

У бетона есть свойство «уставать» со временем - он становится грязно-серым, и в нём образуются трещины. Если речь идёт о фундаменте здания, ремонт может быть достаточно трудоёмким и дорогим, при этом не факт, что он устранит «усталость»: многие здания сносят именно по причине невозможности восстановления фундамента.
Группа студентов Университета Ньюкасла разработала генно-модифицированные бактерии, способные проникать в глубокие трещины и вырабатывать смесь карбоната кальция и клея, укрепляя здание. Бактерии запрограммированы так, что они распространяются по поверхности бетона, пока не достигнут края очередной трещины, и тогда начинается производство цементирующего вещества, имеется даже механизм самоуничтожения бактерий, предотвращающий образование бесполезных «наростов».

Эта технология позволит уменьшить антропогенный выброс двуокиси углерода в атмосферу, ведь 5% его даёт именно производство бетона, а также с её помощью будет продлён срок службы зданий, восстановление которых традиционным способом обошлось бы в большую сумму.

10. Материал D3o

Устойчивость к механическому воздействию во все времена была одной из основных проблем материаловедения, пока не изобрели D3o - вещество, молекулы которого находятся в свободном движении при нормальных условиях и фиксируются при ударе. Строение D3o напоминает смесь кукурузного крахмала и воды, которой иногда наполняют бассейны. Специальные куртки из этого материала, удобные и обеспечивающие защиту при падении, ударе битой или кулаками, которые могут вам достаться, уже находятся в свободной продаже. Защитные элементы не заметны снаружи, что подходит для каскадёров и даже полиции.

Искусственные ткани: ненатуральные материалы из натурального сырья

Легкие, прочные, комфортные и невероятно красивые искусственные ткани заслуженно пользуются повышенным спросом у производителей одежды. По многим характеристикам ткани, изготовленные из искусственных нитей, превосходят даже натуральные материалы.

Многие, следуя многолетним традициям, отдают предпочтение натуральным тканям – хлопку, льну, шелку и шерсти, именуя синтетикой любые материалы, полученные в результате химических процессов, и относясь к ним с пренебрежением.

Такое название не совсем соответствует истине, поскольку весь ассортимент тканей, производимых химическим путем, можно разделить на две большие группы:

  1. Ткани, изготовленные из полимеров, не существующих в природе – именно их и можно с полным основанием называть синтетическими. Это капрон, нейлон, акрил и другие.
  2. Искусственные ткани, полученные из натуральных природных компонентов – целлюлозы, древесины, каучука и даже стекла. По внешнему виду их практически невозможно отличить от натуральных, к тому же они обладают весьма высокими гигиеническими свойствами.

Наиболее яркими представителями группы ненатуральных тканей из натурального сырья являются вискоза, модал, бамбук, ацетат и триацетат.

Вискоза – родоначальник искусственных тканей

Технология производства вискозы – искусственного шелка из древесной целлюлозы – была запатентована еще в 1884 году во Франции. С тех пор процесс неоднократно совершенствовался, а ткань по-прежнему пользуется популярностью.

Преимущества и недостатки вискозы

Вискозная ткань по внешнему виду может напоминать любой натуральный материал – от тончайшего шелка до мехового полотна.

Список основных достоинств вискозы:

  1. Одежда из вискозы очень приятна на ощупь – она мягкая и обволакивающая.
  2. Полотно отлично драпируется, образуя красивые складки.
  3. Материал гигроскопичен – может впитать воды в два раза больше, чем лен.
  4. Волокна с легкостью окрашиваются в различные цвета.
  5. Полотно диэлектрично.
  6. Вискоза не вызывает раздражения кожи.

Несомненным преимуществом вискозных тканей является их невысокая по сравнению с натуральными стоимость, что делает одежду из них хитом продаж.

Однако на фоне многочисленных достоинств, у вискозного полотна имеются и некоторые минусы:

  • повышенная сминаемость в процессе носки изделий;
  • деформация и скатывание во время стирки;
  • резкое снижение износостойкости под воздействием солнечных лучей или воды;
  • высокая возгораемость.

Интересный факт! Нередко положительные качества вискозы имеют негативные последствия. Так, высокая гигроскопичность материала может привести к тому, что в условиях повышенной влажности ткань заплесневеет.

Уход за изделиями из вискозы

Приобретая изделие из вискозы, следует обязательно ознакомиться с описанием на ярлычке. В целом же общие правила сводятся к следующему:

  1. Стирать следует руками или же используя самый щадящий машинный режим.
  2. Температура воды при стирке не должна превышать 30 0 С.
  3. Категорически запрещено использование отбеливающих средств.
  4. Изделие не выкручивают, а слегка отжимают, завернув в полотенце.
  5. Сушить следует в горизонтальном положении, избегая попадания прямых солнечных лучей.
  6. Гладить вискозу нужно, выставив регулятор утюга в положение «шелк».

Поскольку вискоза в чистом виде – достаточно деликатный и требовательный материал, то чаще всего можно видеть в продаже изделия из ее модификаций.

Модал – ткань без недостатков

Эту разновидность вискозного полотна впервые стали производить в 30-х годах ХХ века в Японии.

Для изготовления модала используется целлюлоза, полученная из древесины ценных пород – эвкалипта, бука, альпийской сосны. В результате переработки получаются легкие тонкие нитки, обладающие повышенной прочностью.

Основные свойства модала

Списку достоинств данной искусственной ткани могут позавидовать даже натуральные материалы:

  • комфортность – модал мягко струится по телу, создавая эффект прохлады. Обладает отличной воздухопроницаемостью;
  • гигроскопичность – ткань не только впитывает повышенное количество влаги, но и легко выводит ее из волокон;
  • легкость – материал практически не имеет веса, но в то же время обладает повышенной прочностью на разрыв;
  • износостойкость – модал не мнется, не меняет форму при носке, не садится при стирке;
  • экологичность – ткань производится только из натуральных компонентов;
  • безопасность – материал мягкий, не раздражает кожу и не вызывает неприятных ощущений.

Важно знать! В крайне редких случаях изделия из модала могут спровоцировать покраснение кожи и зуд. Поэтому использовать их людям, склонным к аллергии, следует с осторожностью.

Модал – очень красивый материал, отличающийся обилием ярких расцветок. Ткань с односторонним переплетением волокон напоминает плотный шелк или атлас с благородным отливом. При помощи двухстороннего переплетения получают махровый модал, весьма похожий по ощущениям на бархат.

Что можно сшить из модала

Отсутствие недостатков позволяет применять для изготовления следующих изделий:

  1. Летняя одежда – футболки, кофточки, майки и т п.
  2. Спортивная одежда.
  3. Нижнее белье.
  4. Чулки, носки, колготки.
  5. Одежда для дома – халаты, пижамы, ночные рубашки.
  6. Домашний текстиль – банные простыни и полотенца, тряпочки для уборки, мочалки, коврики и т. п.
  7. Постельные принадлежности.

За изделиями из модала несложно ухаживать. Если нет других указаний на ярлычке, то стирают их в прохладной воде, сушат в расправленном виде и гладят, нагрев утюг до средней температуры.

Бамбук – экологичность прежде всего

Бамбуковое вискозное полотно появилось на рынках совсем недавно, но сразу же нашло своих поклонников, в особенности среди людей, ведущих здоровый образ жизни.

При производстве ткани используется целлюлоза бамбука, содержащая много веществ, полезных для здоровья. Поэтому изделия из бамбуковых волокон – пушистых пустотелых нитей – обладают множеством достоинств.

Удобство и комфорт бамбуковой ткани

Производители одежды из бамбука утверждают, что его потребительские свойства выше, чем у хлопка и льна. С ними трудно не согласиться, увидев перечень положительных свойств материала.

  • Повышенная способность к впитыванию влаги и неприятных запахов.
  • Прочность, но вместе с тем и отличная воздухопроницаемость.
  • Высокая экологичность, гипоаллергенность.
  • Износостойкость – изделия из бамбуковой ткани выдерживают до 600 стирок, не теряя формы и внешнего вида.
  • Материя приятна на ощупь, не раздражает тело.

Интересный факт! Доказано, что одежда из бамбукового полотна может уничтожать бактерии, а также способствует заживлению мелких царапин и ссадин.

Применение бамбуковой ткани

Это полотно нередко называют «тканью матери и ребенка», поскольку ее абсолютная безопасность позволяет шить одежду для будущих мам и маленьких деток.

Кроме того, из бамбукового полотна делают:

  • банные простыни и халаты;
  • полотенца;
  • постельное белье;
  • платья, майки, футболки;
  • одежду для дома.

Бамбуковые изделия, также как и другие вискозные материалы, требуют щадящей стирки без применения отбеливателей. Учитывая повышенную гигроскопичность, они нуждаются в более длительной сушке. Гладить бамбуковую ткань в большинстве случаев нет необходимости.

Бамбуковое полотно может иметь различную фактуру – махровую, жаккардовую, имитировать джинс или мягкий трикотаж. В любом случае все изделия будут долго сохранять привлекательный внешний вид.

Ацетатный шелк – мода длиной в сто лет

Эта красивая искусственная ткань появилась в начале ХХ века в Англии благодаря счастливой случайности. Специалисты фирмы, занимающейся изготовлением лакокрасочных покрытий для самолетостроения, обработали растительную целлюлозу уксусной кислотой. Так в мир пришел удивительный материал, получивший за чрезвычайную схожесть с натуральным аналогом название « ».

Пик популярности ацетата пришелся на 50–60-е годы прошлого столетия, когда в гардеробе каждой модницы было как минимум одно платье из красивой блестящей ткани.

И в наши дни ацетатный шелк имеет своих поклонников. Ацетатные волокна входят в состав многих тканей, значительно улучшая их качества.

Ацетат – много «за», но много и «против»

Ацетатный шелк обладает целым рядом неоспоримых достоинств:

  1. Ткань прекрасно драпируется и держит форму, создавая интересный объем.
  2. Изделия из ацетата мягкие и приятные на ощупь.
  3. Материал очень быстро высыхает и практически не мнется.
  4. Ацетат не подвержен воздействию грибков, отлично отталкивает пыль, легко очищается от грязи.

Ацетатный шелк, в отличие от натурального, имеет низкую себестоимость, что делает изделия из него доступными для покупателей любых категорий.

Но «уксусная ткань», такое название дали ацетату производители, имеет и недостатки:

  1. Ткань сильно электризуется, буквально прилипая к телу.
  2. Весьма нестойка к воздействию химических веществ.
  3. Ацетат плохо впитывает влагу.
  4. Для окрашивания ткани требуются только специальные составы.

Кроме того, ацетатный шелк очень чувствителен к высоким температурам. При глажке горячим утюгом ткань может «потечь», прилипая к столу.

Интересно знать! Именно благодаря некоторым недостаткам ацетатный шелк и получил широкое применение. Его способность отталкивать влагу как нельзя лучше подходит для производства зонтиков, купальных костюмов, занавесок для ванных комнат.

Одной из разновидностей ацетатного шелка является триацетат, обладающий характерным шелковистым отливом. Из триацетата шьют шторы и занавески, используют как мебельную обивку.

Благодаря своему разнообразию и относительной дешевизне искусственные ткани по праву считаются одними из самых востребованных в современном текстильном производстве.

Cтраница 1


Так новые искусственные материалы, которые играют актив ную роль в процессе производства, в зависимости от тех нологического процесса могут выступать в виде средст труда. Использование современных материалов нередк приводит к принципиальному изменению орудий труд методов обработки. Новые технологические процессы свою очередь требуют более совершенных форм органа зации производства и труда.  

Создание новых искусственных материалов и выяснение возможных областей их использования неразрывно связано с всесторонним исследованием свойств уже известных материалов с целью выяснения их внутренней природы и разработки теоретических основ создания материалов с заранее заданными свойствами.  

Процесс создания новых искусственных материалов совершается стремительно.  

За последние 10 лет созданы сотни новых искусственных материалов, заменяющих металлы, шерсть, дерево, шелк и многое другое.  

Без знания физико-химических и механических законов, управляющих явлениями упруго-пластических деформаций и разрушения материалов, не мыслится ни решение проблем создания новых искусственных материалов и, в частности, решение вопросов строения и свойств высокополимерных органических соединений, ни решение современных задач геофизики, геологии, а также науки о прочности сооружений и инженерных конструкций, работающих в особо сложных условиях эксплуатации. Знание физико-химических и механических законов необходимо и при решении задач технологии обработки материалов давлением (пластической обработки) и резанием.  

Несколько подробнее следует остановиться на своеобразном психологическом барьере, который нам приходится преодолевать при использовании изделий из металлизированных пластмасс и из других новых искусственных материалов. Ведь они, имея вид привычных нам вещей, обладают совершенно непривычными свойствами. Например, статуэтка - изделие из металлизированной пластмассы - несмотря на солидный и внушительный вид старинной бронзы, имеет необычно малый вес. Или тонкая и длинная подвеска для полотенца не поддается изгибанию и неожиданно ломается, как хрупкое тело. Или прочный, на вид металлический ящик для аппаратуры вдруг разваливается при попытке сесть на него, так как изготовлен, оказывается, из металлизированной пластмассы. Такую психологическую несовместимость новых материалов со старыми представлениями следует учитывать как при конструировании изделий, так и при их эксплуатации, принимая заранее необходимые меры для предупреждения возможных в будущем недоразумений или даже аварийных ситуаций.  

Научно-технический прогресс в производстве материалов направлен, с одной стороны, на повышение качества традиционных конструкционных и других материалов, с другой - на создание новых искусственных материалов, заменяющих натуральные (синтетические заменители и композиционные материалы с заранее заданными и регулируемыми свойствами), и связан с прогрессивными изменениями в структуре потребляемых материалов.  

Особенно нетерпим разнобой в основных понятиях автоматизации, возникший из-за отсутствия единой терминологии в условиях химической промышленности, характеризующейся многообразием процессов переработки природного сырья, всевозможных веществ, создания новых искусственных материалов; использующей сложные процессы, как ни одна другая отрасль народного хозяйства.  

Этой задачей предусматривается создание новых высокоэффективных систем машин и автоматических линий, нового оборудования и технологических процессов, увеличение выпуска высококачественных материалов в состоянии, удобном для дальнейшей их переработки, выпуск новых искусственных материалов, заменяющих натуральные и превосходящих их по своим свойствам. Все это становится возможным при расширении научных исследований и использовании их результатов в производстве.  

Теперь их право на название галалит исключительно для продукции своего завода кончилось, другие производители галалита как в Германий, так н в некоторых других странах, а также и в СССР, на наших государственных заводах, вырабатывающих этот новый искусственный материал, стали употреблять название галалит, и это название мало-по-малу вошло в общее употребление.  

Очевидно, что многие материалы, созданные природой, давно перестали удовлетворять потребностям человека. Поэтому значительное внимание уделяется синтезу разнообразных новых искусственных материалов, в котором роль химии исключительно высока. Лишь немногим более ста лет назад братья Хайэтт в Нью-Джерси (США) создали хорошо деформируемый материал из низконитрованной бумаги и камфары, пригодный для изготовления типографских валиков. Так появился на свет первый искусственный органический материал, получивший название целлулоид. Сегодня же в нашем распоряжении имеется огромная палитра разнообразных синтетических органических веществ. Еще 10 - 15 лет назад наше будущее связывали с полимерами. Согласно последним прогнозам в ближайшие десятилетня наступит эра керамических материалов.  

Очевидно, что многие материалы, созданные природой, давно перестали удовлетворять потребностям человека. Поэтому значительное внимание уделяется синтезу разнообразных новых искусственных материалов, в котором роль химии исключительно высока. Лишь немногим более ста лет назад братья Хайэтт в Нью-Джерси (США) создали хорошо деформируемый материал из низконитрованной бумаги и камфары, пригодный для изготовления типографских валиков. Так появился на свет первый искусственный органический материал, получивший название целлулоид. Сегодня же в нашем распоряжении имеется огромная палитра разнообразных синтетических органических веществ. Еще 10 - 15 лет назад наше будущее связывали с полимерами. Согласно последним прогнозам в ближайшие десятилетня наступит эра керамических материалов. Однако независимо от характера тех или иных прогнозов ясно, что ни одна из проблем современного общества не может быть решена без создания и широкого использования материалов, обладающих необходимыми свойствами.  

Технический прогресс обусловливает все большие требования к конструкционным материалам. Качества их непрерывно совершенствуются, создаются новые искусственные материалы - пластические массы, которые все шире используются в практике. Одной из таких пластмасс (поливинилхлориду), имеющей огромное значение для развития нашего мирного хозяйства, посвящена настоящая книга.  

Задача этой новой науки заключается в исследовании природы механических свойств сред и материалов, используемых в технике, исходя из микростроения вещества. Важной целью этой науки является изучение проблемы создания новых искусственных материалов с наперед заданными свойствами.  

Еще 10-15 лет назад никто не предполагал, что человеку удастся создать такой искусственный материал, как, например, старлит или бесформенный металл.

Это было что-то из области фантастики, такое только показывали в научных фильмах. Однако технологии и наука не стоят на месте, и появляются различные идеи и проекты.

Не совсем новый материал, но названию соответствует. По сути, это щелочной материал, который состоит из воды и имеет частицы силиката калия и натрия. Процедура создания имеет различные варианты. Его могут создавать, как и обычное твёрдое стекло, используя температуру плавления, для того чтобы расплавить песок и питьевую соду. Второй способ основывается на воздействии лития на материал с кремнезем.

Жидкое стекло обладает высокой клеящей способностью, поскольку молекулы находятся на поверхности. Они соприкасаются с другими молекулами и отдают свою влагу, при этом повышая плотность и вязкость. Изоляция у такого стекла потрясающая: оно способно выдерживать температуру 1200-1300 градусов по Цельсию.

Почему же его добавляют в цементные растворы? Все потому что в сочетании с низкой ценой стекла и его способностями цементный раствор улучшает свои качества. Также из-за стойкости к влаге такое стекло рекомендуется использовать при строительстве домов и хозяйственных помещений. Также оно применяется как изолятор в электрике, в укладке линолеума и даже в садоводстве все из-за тех же клеящих свойств.

Бесформенный металл

Данный металл позволяет сильнее бить по мячу игрокам гольфа, увеличивает дальность и мощность поражения пули, скальпели делает устойчивее к износу. Это новшество в основном используется в создании оружия и клюшек для гольфа.

Старлит

Это вид пластика, способный выдержать большую температуру. При этом тепловой порог настолько большой, что сначала создателям вообще не поверили. И только после того, как они показали его свойство на камеру, их изобретение признали. Этот материал облучали несколько раз, но он оставался невредимым. Главная особенность старлита: он никогда не становится токсичным при высокой температуре. Также он лёгкий, его можно использовать в аэрокосмических технологиях, летательных аппаратах и огнезащитных костюмах.

Обычный лист углерода, который имеет толщину одного атома и свернут в цилиндр. Хоть он и лёгкий, все же крепче стали в 100 раз. К тому же, проводит электричество не хуже, чем медь. Трубки небольшие и не видны невооруженным глазом. Имеют форму сажи в необработанном состоянии. Применяются при производстве кабеля для «лифта в космос», ведь такой лист углерода может выдержать большой вес и при этом не согнуться.

Это далеко не все искусственно созданные материалы. Каждый год учёные разных стран делают открытия в синтезе новых. Ведь наука это – «неизведанный» мир, в котором каждый раз можно найти и открыть что-то новое.