Меню
Бесплатно
Главная  /  Окна  /  Проблемы и пути решения компенсации температурных деформаций теплопроводов в пенополиуретановой теплоизоляции при бесканальной прокладке. Большая энциклопедия нефти и газа

Проблемы и пути решения компенсации температурных деформаций теплопроводов в пенополиуретановой теплоизоляции при бесканальной прокладке. Большая энциклопедия нефти и газа

Любой материал: твердый, жидкий, газообразный в соответствии с законами физики изменяет свой объем пропорционально изменению температуры. Для предметов, длина которых значительно превышает ширину и глубину, например, трубы, главным показателем является продольное расширение по оси - тепловое (температурное) удлинение. Такое явление должно быть обязательно принято в расчет в ходе реализации тех или иных инженерных работ.

К примеру, во время поездки на поезде слышно характерное постукивание из-за термических стыков рельс (рис.1), или при прокладке линий электропередач, провода монтируют, так чтобы они провисали между опорами (рис.2).

рис.4

Все тоже самое происходит и в инженерной сантехнике. Под воздействием температурных удлинений, при применении несоответствующих случаю материалов и отсутствию мероприятий по тепловой компенсации в системе, трубы провисают (рис.4 справа), увеличиваются усилия на элементах крепления неподвижных опор и на элементы инсталляции, что уменьшает долговечность системы в целом, а, в крайних случаях, может привести и к аварии.

Увеличение длины трубопровода рассчитывается по формуле:

ΔL - увеличение длины элемента [м]

α - коэффициент теплового расширения материала

lo - начальная длина элемента [м]

T2 - температура конечная [K]

T1 - температура начальная [K]

Компенсация тепловых расширений для трубопроводов инженерных систем осуществляется преимущественно тремя способами:

  • естественная компенсация за счет изменения направления трассы трубопровода;
  • использование элементов компенсации, которые в состоянии погасить линейные расширения труб (компенсаторы);
  • предварительная натяжка труб (данный способ достаточно опасен и должен быть использован с крайней осторожностью).

рис.5


Естественная компенсация используется в основном при “скрытом” способе монтажа и представляет собой прокладку труб произвольными дугами (рис.5). Этот способ подходит для полимерных труб малой жесткости, таких как трубопроводы Системы KAN-therm Push: PE-X или PE-RT. Данное требование указано в СП 41-09-2005 (Проектирование и монтаж внутренних систем водоснабжения и отопления зданий с использованием труб из “сшитого” полиэтилена) в п. 4.1.11 В случае прокладки труб ПЭ-С в конструкции пола не допускается натягивание по прямой линии, а следует укладывать их дугами малой кривизны (змейкой) (...)

Такая укладка имеет смысл при монтаже трубопроводов по принципу “труба в трубе”, т.е. в трубе гофрированной или в трубной теплоизоляции, что указано не только в СП 41-09-2005, но и в СП 60.13330-2012 (Отопление, вентиляция и кондиционирование воздуха) в п.6.3.3 …Прокладку трубопроводов из полимерных труб следует предусматривать скрытой: в полу (в гофротрубе)…

Тепловое удлинение трубопроводов компенсируется за счет пустот в защитных гофрированных трубах или теплоизоляции.

При выполнении компенсации такого типа следует обращать внимание на исправность фитингов. Чрезмерное напряжение, возникающее из-за изгиба труб, могут привести к образованию трещин на тройнике (рис. 6). Чтобы этого гарантировано избежать, изменение направления трассы трубопроводов должно происходить на расстоянии - минимум 10 наружных диаметров от штуцера фитинга, а труба рядом с фитингом должна быть жестко закреплена, это, в свою очередь, минимизирует воздействие изгибающих нагрузок на штуцеры фитинга.

рис.6

Еще одним видом естественной температурной компенсации является, так называемое, “жесткое” крепление трубопроводов. Оно представляет собой разбивку трубопровода на ограниченные участки температурной компенсации таким образом, чтобы минимальное увеличение трубы значимым образом не влияло на линейность ее прокладки, а излишние напряжения уходили в усилия на крепления точек неподвижных опор (рис.7).

рис.7

Компенсация этого типа работает на продольный изгиб. Для защиты трубопроводов от повреждения необходимо разделить трубопровод точками неподвижных опор на участки компенсации не более 5 м. Следует обратить внимание, что при такой прокладке на крепления трубопроводов воздействует не только вес оборудования, но и напряжения от температурных удлинений. Это ведет к необходимости каждый раз рассчитывать предельно допустимую нагрузку на каждую из опор.

Силы, возникающие от тепловых удлинений и воздействующие на точки неподвижной опоры, рассчитываются по следующей формуле:

DZ - наружный диаметр трубопровода [мм]

s - толщина стенки трубопровода [мм]

α - коэффициент теплового удлинения трубы

E - модуль упругости (Юнга) материала трубы [Н/мм]

ΔT - изменение (прирост) температуры [K]

Кроме этого, на точку неподвижной опоры также действует собственный вес отрезка трубопровода, заполненного теплоносителем. На практике основной проблей является то, что ни один производитель крепежа не дает данных по предельно допустимым нагрузкам на свои элементы креплений.

Естественными компенсаторами температурных удлинений являются Г,П,Z-образные компенсаторы. Это решение применяется в местах, где возможно перенаправить свободные термические удлинения трубопроводов в другую плоскость (рис. 8).

рис.8

Размер компенсационного плеча для компенсаторов типа „Г” „П” и „Z” определяется в зависимости от полученных тепловых удлинений, типа материала и диаметра трубопровода. Расчет выполняется по формуле:

[м]

K - константа материала трубы

Dz - наружный диаметр трубопровода [м]

ΔL - тепловое удлинение отрезка трубопровода [м]

Константа материала K связана с напряжениями, которые может выдержать данный тип материала трубопровод. Для отдельных Систем KAN-therm значения постоянной материала K представлены ниже:

Push PlatinumK = 33

Компенсационное плечо компенсатора типа „Г” :

A - длина компенсационного плеча

L - начальная длина отрезка трубопровода

ΔL - удлинение отрезка трубопровода

PP - подвижная опора

A - длина компенсационного плеча

PS - точка неподвижной опоры (неподвижная фиксация) трубопровода

S - ширина компенсатора

Для расчета компенсационного плеча А необходимо принять за эквивалентную длину Lэ большее из значений L1 и L2. Ширина S должна составлять S = A/2, но не менее 150 мм.

A - длина компенсационного плеча

L1, L2 - начальная длина отрезков

ΔLx - удлинение отрезка трубопровода

PS - точка неподвижной опоры (неподвижная фиксация) трубопровода

Для расчета компенсационного плеча необходимо принять за эквивалентную длину Lэ сумму длин отрезков L1 и L2: Lэ = L1+L2.

рис.9


Кроме геометрических температурных компенсаторов существует большое количество конструктивных решений такого вида элементов:

  • сильфонные компенсаторы,
  • эластомерные компенсаторы,
  • тканевые компенсаторы,
  • петлеобразные компенсаторы.

Ввиду относительно высокой цены некоторых вариантов, такие компенсаторы чаще всего применяются в местах, где ограничено пространство или технические возможности геометрических компенсаторов или естественной компенсации. Эти компенсаторы имеют ограниченный срок эксплуатации, рассчитанный в рабочих циклах - от полного расширения до полного сжатия. По этой причине для оборудования, работающего циклически или с переменными параметрами, трудно определить конечное время эксплуатации устройства.

Сильфонные компенсаторы для компенсации тепловых удлинений используют упругость материала сильфона. Сильфоны часто изготавливаются из нержавеющей стали. Такая конструкция определяет срок службы элемента - приблизительно 1000 циклов.

Срок службы осевых компенсаторов сильфонного типа значительно снижается в случае несоосного монтажа компенсатора. Эта особенность требует высокой точности их монтажа, а также их правильного крепления:

  • возможно монтировать не более одного компенсатора на участке температурной компенсации между 2 соседними точками неподвижных опор;
  • подвижные опоры должны полностью охватывать трубы и не создавать большого сопротивления компенсации. Максимальный размер люфтов не более 1 мм;
  • осевой компенсатор рекомендуется, для большей стабильности, устанавливать на расстоянии 4Dn от одной из неподвижных опор;
  • Если у Вас возникают вопросы по температурным компенсациям трубопроводов Системы KAN-therm, Вы можете обратиться к .

    Теплопроводы системы отопления монтируют в «коробке» строящегося здания при различной температуре наружного воздуха. В весенне-осенний период эта температура близка к +5°С. В зимний период для удобства выполнения отделочных и монтажных работ в строящемся здании стремятся также поддерживать временными средствами положительную температуру.

    Так как эксплуатация различных отопительных труб проводится при температуре теплоносителя от 30 до 150°C, стальные трубы удлиняются по сравнению с монтажной их длиной в большей или меньшей степени.

    Температурное удлинение нагреваемой трубы - приращение ее длины Δl - определяется по формуле:

    Δl=α*{t т -t н)l,

    где α - коэффициент линейного расширения материала трубы (для мягкой стали в рассматриваемом интервале температуры близок к 1,2 10 -5);

    t т - температура теплопровода, близкая к температуре теплоносителя, °C (при расчетах учитывается наивысшая температура);

    tн - температура окружающего воздуха в период производства монтажных работ, °C;

    l - длина отопительной трубы, м.

    Δl=1,2*10 -2 *(t т -5)l, мм,

    удобном для ориентировочных расчетов.

    Можно установить, что при низкотемпературной воде 1 м подающей стальной трубы предельно удлиняется приблизительно на 1 мм, обратной трубы - на 0,8 мм, а при высокотемпературной воде и паре удлинение каждого метра трубы достигает 1,75 мм.

    Очевидно, что это необходимо учитывать при конструировании системы отопления, особенно при высокотемпературном теплоносителе, и принимать меры для уменьшения усилий, возникающих при температурном удлинении подводок, стояков и магистралей.

    Компенсация удлинения подводок к отопительным приборам предусматривается в горизонтальных однотрубных системах путем изгибов подводок (добавления уток) для того, чтобы напряжение на изгиб в отводах труб не превышало 78,5 МПа (800 кгс/см 2); между каждыми пятью-шестью приборами вставляют П-образные компенсаторы, которые рационально размещать в местах пересечения разводящей трубой внутренних стен и перегородок помещений.

    В системах отопления с вертикальными стояками подводки к приборам в большинстве случаев выполняются без изгибов, однако в высоких зданиях возможен специальный изгиб подводок к одному или нескольким приборам для обеспечения беспрепятственного перемещения труб стояка при температурном удлинении.

    При длинных гладкотрубных приборах, а также при установке нескольких приборов другого типа «на сцепке» необходимы такие же специальные изгибы подводок к ним для компенсации их температурного удлинения.
    Игнорирование этого явления приводит при эксплуатации системы если не к излому труб и арматуры, то к возникновению течи в резьбовых соединениях.

    Компенсация удлинения вертикальных стояков систем отопления малоэтажных зданий обеспечивается путем их изгиба в местах присоединения к подающим магистралям. В более высоких (4-7-этажных) зданиях вертикальные однотрубные стояки изгибают в местах присоединения не только к подающей, но и к обратной магистрали.

    Изгибы труб для компенсации удлинения вертикальных стояков систем отопления зданий

    а – одно - трехэтажных; б – четырех - семиэтажных; в - восьмиэтажных и более высоких.

    В зданиях, имеющих более семи этажей, таких изгибов стояков недостаточно и для компенсации удлинения средней части вертикальных стояков применяют либо специальные П-образные компенсаторы, либо дополнительные изгибы труб, удаляя отопительные приборы от оси стояка. В этом случае трубы стояков между компенсаторами в отдельных точках закрепляют, устанавливая неподвижные опоры (так называемые «мертвые») для обеспечения перемещения труб в заданном направлении при изменении их температуры.

    В местах пересечения междуэтажных перекрытий трубы заключают в гильзы для облегчения их перемещения при удлинении или при ремонте. При замоноличивании в панели стен трубы соединяют в разрывах между панелями с изгибами для компенсации усилий, возникающих при осадке зданий.

    В вертикальной однотрубной системе для компенсации удлинения используют изгибы труб каждого этаже-стояка.

    Для компенсации удлинения вертикальных главных стояков систем отопления многоэтажных зданий применяют П-образные компенсаторы, ширина и вылет которых определяются расчетом. Следует иметь в виду, что неподвижные опоры между компенсаторами в этом случае воспринимают не только силу упругости компенсатора, но и действие массы трубы с водой и изоляцией.

    Компенсация удлинения магистралей выполняется прежде всего естественными их изгибами, обусловленными планировкой конкретного здания, и только прямые магистрали значительной длины, особенно при высокотемпературном теплоносителе, снабжаются П-образными компенсаторами.

    Цель занятия. Ознакомление студентов с основными методами соединения труб в трубопроводах и их разгрузки от напряжений, возникающих вследствие температурных деформаций.

    Раздел 1. Соединения труб в технологических трубопроводах]

    Соединения, отдельных звеньев труб между собой и с арматурой производятся различными способами. Выбор способа зависит от необходимой надежности работы, начальной стоимости, требуемой частоты разборки, свойств материала соединяемых деталей, наличия соответствующего инструмента, навыков монтажного и эксплуатационного персонала.

    Все виды соединений можно подразделить на разъемные и неразъемные. К разъемным относятся соединения на резьбе (с помощью муфт, ниппелей), на фланцах, на раструбах и с помощью специальных приспособлений. К неразъемным относятся соединения с помощью сварки, пайки или склейки.

    Соединения на резьбе . Резьбовые соединения труб применяются, главным образом в трубопроводах тепло- водоснабжения и газовых линиях хозяйственно-бытового назначения. В химической промышленности такие соединения используют в трубопроводах сжатого воздуха. Для соединения на резьбе концы труб снаружи нарезаются трубной резьбой. Такая резьба отличается от нормальной (метрической) значительно меньшим шагом и меньшей глубиной. Поэтому она не вызывает значительного ослабления стенки трубы. Кроме того, трубная резьба имеет угол при вершине треугольника 55°, в то время как метрическая – 60°.

    Трубная резьба выполняется в двух вариантах: со срезом вершины по прямой, и скруглением. Трубные резьбы с прямым и закругленным профилем, изготовленные с надлежащими допусками, взаимозаменяемы.

    Для соединения труб в трубопроводах высокого давления применяется коническая резьба. Соединение на конической резьбе отличается исключительной герметичностью.

    Концы труб соединяют между собой и с арматурой с помощью резьбовых муфт. Муфтовые резьбовые соединения обычно применяют для трубопроводов диаметром до 75 мм. Иногда этот вид соединения применяется также при прокладке труб больших диаметров (до 600 мм).

    Муфта (рис. 5.1, а и б ) представляет собой короткий полый цилиндр, внутренняя поверхность которого сплошь нарезана трубной резьбой. Муфты изготовляются из ковкого чугуна для условных проходов диаметром от 6 до 100 мм и из стали для условных проходов диаметром от 6 до 200 мм. Для соединения с помощью муфты соединяемые трубы нарезают на половину длины муфты, и свинчивают. Если стыкуют две ранее смонтированные трубы, то применяют сгон (рис. 5.1, в). Для уплотнения муфтового соединения ранее применяли льняную прядь или асбестовый шнур. Для повышения герметичности газовых линий уплотнительный материал пропитывали краской. В настоящее время льняная прядь практически вытеснена фторпластовым уплотнительным материалом (ФУМ) и специальной пастой (гермепласт).



    Рис. 5.1.– Резьбовые фасонные части. а, 6 – муфты; в – согон; г – контргайка.

    Для разветвлений трубопроводов собранных на резьбе используют тройники и крестовины, для переходов с одного диаметра на другой – специальные муфты или вставки.

    Фланцевые соединения. Фланцы – металлические диски, которые привариваются или привинчиваются к трубе, а затем соединяются болтами с другим фланцем (рис. 5.2). Для этого по периметру диска делаются несколько отверстий. Соединить таким образом можно не только два участка трубопровода, но и присоединить трубу к резервуару, насосу, подвести ее к оборудованию или измерительному прибору. Фланцевые соединения применяются в энергетической промышленности, нефтегазовой, химической и других отраслях производства. Фланцы обеспечивают легкость монтажа и демонтажа.

    Больше всего производятся стальные фланцы, хотя для некоторых видов труб выпускают и пластиковые. При производстве учитывается диаметр трубы, к которой будет производиться крепление, и ее форма. В зависимости от формы трубы внутреннее отверстие во фланце может быть не только круглым, но и овальным или даже квадратным. На трубу фланец крепят, применяя сварку. Парный фланец крепится на другом участке трубы или оборудования, а затем оба фланца привинчиваются друг к другу болтами через имеющиеся отверстия. Фланцевые соединения делят на беспрокладочные и с прокладками. В первых герметичность обеспечивается за счет тщательной обработки и большого сжатия. Во вторых между фланцами помещается прокладка. Прокладки бывают нескольких видов, в зависимости от формы самих фланцев. Если фланец имеет гладкую поверхность, то прокладка может быть картонной, резиновой или паронитовой. Если один фланец имеет желоб для выступа, который находится на парном фланце, то применяют паронитовую и асбометаллическую прокладку. Делается это обычно при установке на трубах с высоким давлением.

    По способу посадки на трубу фланцы делят на приварные (рис. 5.3, е, ж, з), литые заодно с трубой (рис. 5.3, а, б), с шейкой на резьбе (рис. 5.3, в), свободные на отбортованной трубе (рис. 5.3, к) или кольцах (рис. 5.3, з), последние плоские или с шейкой под отбортовку.

    По другой классификации различают фланцы свободные (рис. 5.3, з, и, к), воротниковые (рис. 5.3, а, б, ж, з) и плоские (рис. 5.3, в, г, д, е).

    Фланцы имеют размеры, зависящие от диаметра трубы (Dy ) и давления (Py ), но присоединительные размеры всех фланцев одинаковы для одинаковых Dy и Py .

    Раструбные соединения. Раструбные соединения (рис. 5.4) применяются при прокладке некоторых видов стальных, чугунных, керамиковых, стеклянных, фаолитовых, асбоцементных труб, а также труб из пластмасс. Его преимущество – относительная простота и дешевизна. В то же время ряд недостатков: трудность разъема соединения, недостаточная надежность, возможность нарушения плотности при появлении незначительного перекоса смежных труб,– ограничивают применение этого вида соединений.

    Рис. 5.4.– Раструбное соединение. 1 – раструб, 2 – набивка

    Для уплотнения раструбного соединения (рис. 5.4) кольцевое пространство образуемое раструбом 1 одной трубы и телом другой, заполняют набивкой 2, в качестве которой используют промасленную прядь, асбестовый шнур или резиновые кольца. После чего наружный участок этого пространства зачеканивают или замазывают какой-либо мастикой. Метод ведения этих работ и род применяемых материалов зависят от материала труб. Так, раструбы чугунных водопроводных труб конопатят льняной прядью и зачеканивают увлажненным цементом, а в особо ответственных случаях заливают расплавленным свинцом, который затем также зачеканивают. Раструбы керамиковых канализационных труб заполняют до половины пеньковой смоляной прядью. Вторая половина заполняется белой, хорошо промятой глиной. В жилищном строительстве заделка раструбов чугунных труб осуществляется асфальтовой мастикой.

    Специальные приспособления . Используется большое количество разнообразных специальных соединений для труб. Однако наиболее распространенными являются легкоразборные. В качестве примера рассмотрим соединение с помощью соединительной гайки (рис. 5.5.)

    Соединительная гайка состоит из трех металлических частей (1, 2 и 4) и мягкой прокладки 3. Основные части гайки 1 и 4 навертываются на короткие резьбы труб. Средняя часть – накидная гайка 2 – стягивает между собой эти основные части. Герметичность соединения достигается мягкой (резиновой, асбестовой, паронитовой) прокладкой 3. Благодаря наличию прокладки накидная гайка не соприкасается с протекающей по трубам средой, а потому опасность заедания гайки сводится к минимуму.

    Соединение труб сваркой, пайкой и склеиванием. В промышленности широкое распространение получили методы соединения труб сваркой, пайкой и склейкой. Сваркой или пайкой можно соединять трубы из черных металлов (кроме чугунных), цветных металлов, а также из винипласта.

    Отличие сварки от пайки заключается в том, что в первом случае для соединения труб используется такой же материал, как и тот, из которого они изготовлены. Во втором – сплав (припой) с температурой плавления существенно меньшей, чем у материала трубы. Припои принято делить на две группы – мягкие и твёрдые. К мягким относятся припои с температурой плавления до 300 °С, к твёрдым – выше 300 °С. Кроме того, припои существенно различаются по механической прочности. Мягкими припоями являются оловянно-свинцовые сплавы (ПОС). Большое количество оловянно-свинцовых припоев содержит небольшой процент сурьмы. Наиболее распространёнными твёрдыми припоями являются медно-цинковые (ПМЦ) и серебряные (ПСр) с различными добавками.

    Стоимость подготовки труб под сварку и стоимость самой сварки во много раз ниже стоимости фланцевого соединения (пары фланцев, прокладки, болтов с гайками, работы по посадке фланца на трубу). Хорошо выполненное сварное соединение весьма долговечно и не требует ремонта и связанных с этим остановок производства, что имеет место, например, при вырывании прокладок у фланцевого соединения.

    На сварном трубопроводе фланцы ставят лишь в местах установки арматуры. Возможны, однако, случаи применения стальной арматуры с концами под приварку.

    Несмотря на преимущества сварки и пайки труб перед другими видами соединений, их не следует производить в трех случаях:

    · если передаваемый по трубам продукт действует разрушающе на наплавленный металл или на нагреваемые при сварке концы труб;

    · если трубопровод требует частой разборки;

    · если трубопровод находится в цехе, характер производства которого исключает работу с открытым пламенем.

    При соединении труб из углеродистой стали может быть применена как кислородно-ацетиленовая (газовая), так и электродуговая сварка. Газовая сварка имеет по сравнению с электродуговой следующие преимущества:

    · металл в шве получается более вязким;

    · работы могут быть произведены в трудно доступных местах;

    · потолочные швы выполняются гораздо легче.

    Электродуговая сварка имеет, однако, свои преимущества:

    · она в 3-4 раза дешевле газовой сварки;

    · свариваемые детали прогреваются слабее.

    При подготовке к сварке труб толщиой не менее 5 мм кромки труб запиливают под углом 30-45°. Внутренняя часть стенки остается нескошенной на толщине 2-3 мм. Для обеспечения хорошего провара труб между ними оставляют зазор 2-3 мм. Этот зазор предохраняет также концы труб от сплющивания и изгибания. По наружной поверхности шва наплавляют усиливающий валик высотой 3-4 мм. Для предохранения от попадания капелек расплавленного металла внутрь трубы шов не доваривают на 1 мм до внутренней поверхности трубы

    Соединение труб из цветных металлов с помощью сварки или пайки производится по одному из способов, показанных на рис. 5.6.

    Сварка встык (рис. 5.6, а) широко применяется при соединении свинцовых и алюминиевых труб. Сваркой (пайкой) с разбортовкой и подкаткой концов (рис.21, б, в и г) пользуются при соединении свинцовых и медных труб. В тех случаях, когда к соединению предъявляются требования особенно высокой прочности, сварной шов выполняется, как показано на рис. 5.6, д.

    Для усиления шва при соединении алюминиевых труб проводят наплавку металла валиком (рис. 5.6, а), а при соединении свинцовых и медных труб наружные края труб, кроме того, слегка отбортовывают (рис. 5.6, б, в, г).

    Соединение алюминиевых и свинцовых труб производится наплавкой металла, одинакового с основным металлом труб, т. е. сваркой; соединение медных труб – как сваркой, так и пайкой (твердым припоем).

    Трубы из фаолита можно соединять путем склеивания по способам, показанным на рис. 5.6, в, д. Трубы из винипласта соединяют по способам, показанным на рис. 5.6, а, б и в, причем соединение по способу, показанному на рис. 5.6, б, отличается большой прочностью.

    Раздел 2. Температурное удлинение трубопроводов и его компенсация.

    Температура нормальной эксплуатации трубопроводов отличается, часто существенно, от температуры при которой производился их монтаж. В результате температурных удлинений в материале труб возникают механические напряжения, которые, если не принять специальных мер, могут привести к их разрушению. Такие меры называются компенсацией температурных удлинений или просто – температурной компенсацией трубопровода.

    Рис. 5.7. Изгиб трубопровода при самокомпенсации

    Простейшим и наиболее дешевым методом температурной компенсации трубопроводов является так называемая «самокомпенсация». Сущ­ность этого метода заключается в том, что трубопровод прокладывается с поворотами таким образом, чтобы прямые участки не превышали определенной расчетной длины. Прямой участок трубы, расположенный под углом к другому его отрезку и составляющий с ним одно целое (рис. 5.7), может воспринять его удлинение за счет собственной упругой деформаций. Обычно оба расположенные под углом участка трубы взаимно воспринимают тепловые удлинения и таким образом играют роль компенсаторов. Для иллюстрации на рис. 5.7 сплошной линией изображен трубопровод после монтажа, а штрихпунктирной – в рабочем, деформированном состоянии (деформация утрирована).

    Самокомпенсация легко осуществляется на трубопроводах из стали, меди, алюминия и винипласта, так как эти материалы обладают значительной прочностью и эластичностью. На трубопроводах из других материалов удлинение воспринимается обычно с помощью компенсаторов, описание которых дается ниже.

    Пользуясь деформацией прямого участка трубы, можно, вообще говоря, воспринять тепловое удлинение любой величины при условии, что компенсирующий участок имеет достаточную длину. На практике, однако, обычно не идут дальше значений 400 мм для стальных труб и 250 мм для винипластовых.

    Если самокомпенсация трубопровода недостаточна для разгрузки температурных напряжений или ее невозможно осуществить, то прибегают к использованию специальных устройств, в качестве которых применяют линзовые и сальниковые компенсаторы, а также компенсаторы гнутые из труб.

    Линзовые компенсаторы. Работа линзового компенсатора основана на прогибе круглых пластин или волнообразных уширений, составляющих тело компенсатора. Линзовые компенсаторы могут быть изготовлены из стали, красной меди или алюминия.

    По способу выполнения различают следующие типы линзовых компенсаторов: сварные из отштампованных полуволн (рис. 5.8, а и б), сварные тарельчатые (рис. 5.8, в), сварные барабанные (рис. 5.8, г) и предназначенные специально для работы на вакуум-трубопроводах (рис. 5.8, д).

    Рис. 5.8.– Линзовые компенсаторы.

    Общими преимуществами линзовых компенсаторов всех без исключения типов является их компактность и нетребовательность в отношении обслуживания. Эти преимущества в большинстве случаев обесцениваются существенными их недостатками. Основные из них следующие:

    · линзовый компенсатор создает значительные осевые усилия, действующие на неподвижные опоры трубопровода;

    · ограниченная компенсирующая способность (максимальная деформация линзового компенсатора не превышает 80 мм):

    · непригодность линзовых компенсаторов для давлений выше 0,2-0,3 МПа;

    · сравнительно высокое гидравлическое сопротивление;

    · сложность изготовления.

    В силу перечисленных соображений линзовые компенсаторы применяются очень редко, а именно при совпадении ряда специфических условий: при низком давлении среды (от вакуума до 0,2 МПа), при наличии трубопровода большого диаметра (не менее 100 мм), при малой длине участка, обслуживаемого компенсатором (обычно не более 20 м), при передаче по трубопроводу газов и паров, но не жидкостей.

    Сальниковые компенсаторы. Простейший тип сальникового компенсатора (так называемый односторонний неразгруженный компенсатор) показан на рис. 5.9. Он состоит из корпуса 4 с лапой (которой он крепится к неподвижной опоре), стакана 1 и сальника. Последний включает, сальниковую набивку 3 и грундбуксу (уплотнитель набивки) 2. Набивка сальника выполняется обычно из натертого графитом асбестового шнура, уложенного в виде отдельных колец. Стакан и корпус присоединяются посредством фланцев к трубопроводу. Стакан имеет бортик (помечен буквой а ), предотвращающий выпадение стакана из корпуса.

    Основными достоинствомами сальниковых компенсаторов являются их компактность и значительная компенсирующая способность (обычно до 200 мм и выше).

    Недостатки сальниковых компенсаторов:

    · большие осевые усилия,

    · необходимость периодического обслуживания сальников (что требует остановки трубопровода),

    · возможность пропуска (протечки) среды через сальник,

    · возможность заедания сальника, приводящая к поломке какой-либо детали трубопровода.

    Заедание сальника может произойти вследствие неточной укладки трубопровода по прямой линии, оседания одной из опор в процессе эксплуатации, искривления продольной оси трубопровода под влиянием температурных изменений в ответвлении, разъедания поверхностей скольжения и отложения на них накипи или ржавчины.

    В силу перечисленных недостатков сальниковые компенсаторы на трубопроводах общего назначения применяются чрезвычайно редко (например, на теплотрассах в стесненных городских условиях). Они находят применение на трубопроводах, выполненных из таких материалов, как: чугун (ферросилид и антихлор), стекло и фарфор, фаолит. Эти материалы по своим свойствам требуют укладки на жесткие основания, которые могут обеспечить хорошую работу сальниковых компенсаторов и из-за своей хрупкости исключают возможность применения самокомпенсации. Сальниковые компенсаторы, устанавливаемые на трубопроводах из этих материалов, выполняются из коррозионностойких материалов, что исключает заедание от ржавления трущихся поверхностей.

    Все прочие трубопроводы, требующие компенсации тепловых удлинений, рекомендуется выполнять самокомпенсируемыми или снабжать, по возможности, компенсаторами из гнутых труб. О них ниже.

    Компенсаторы, гнутые из труб. Компенсаторы этого типа в условиях предприятий и на магистральных трубопроводах являются наиболее распространенными. Гнутые компенсаторы выполняются из стальных, медных, алюминиевых и винипластовых труб.

    а б
    Рис. 5.11.– Гнутые компенсаторы а – П-образный; б – S-образный

    В зависимости от способа изготовления различают компенсаторы: гладкие (рис. 5.10, а), складчатые (рис. 5.10, б), волнистые (рис. 5.10, в), а в зависимости от конфигурации – лирообразные (рис. 5.10), П-образные (рис. 5.11, а) и S-образные (рис. 5.11, б).

    Под термином «складчатый» понимается компенсатор, кривизна которого получается вследствие образования складок на внутренней поверхности изгибов, под термином «волнистый» – компенсатор, имеющий на криволинейных участках волны по всему сечению трубы. Основное различие между этими компенсаторами заключается в их компенсирующей способности и гидравлическом сопротивлении. Если принять компенсирующую способность гладкого компенсатора за единицу, то при прочих равных условиях компенсирующая способность складчатого компенсатора составит около 3, а волнистого около 5 – 6. В то же время гидравлическое сопротивление этих устройств минимально у гладкого и максимально у волнистого компенсатора.

    К недостаткам гнутых компенсаторов всех без исключения типов следует отнести:

    · значительные габариты, затрудняющие применение этих компенсаторов в тесных местах;

    · сравнительно большое гидравлическое сопротивление;

    · возникновение со временем явлений усталости в материале компенсатора.

    Наряду с этим гнутые компенсаторы обладают следующими преимуществами:

    · значительной компенсирующей способностью (обычно до 400 мм);

    · незначительной величиной осевых усилий, нагружающих неподвижные опоры трубопровода;

    · легкостью изготовления на месте монтажа;

    · нетребовательностью в отношении прямолинейности трубопровода и появления перекосов в нем в процессе работы;

    · простотой эксплуатации (не требует обслуживания).

    12.1. Одно из условий сохранения прочности и надежной работы трубопроводов - полная компенсация температурных деформаций.

    Температурные деформации компенсируют за счет поворотов и изгибов трассы трубопроводов. При невозможности ограничиться самокомпенсацией (например, на совершенно прямых участках значительной протяженности) на трубопроводах устанавливают П-образные, линзовые или волнистые компенсаторы.

    12.2. Не допускается применять сальниковые компенсаторы на технологических трубопроводах, транспортирующих среды групп А и Б.

    12.3. При расчете самокомпенсации трубопроводов и конструктивных размеров специальных компенсирующих устройств можно рекомендовать следующую литературу:

    Справочник проектировщика. Проектирование тепловых сетей. М.: Стройиздат, 1965. 396 с.

    Справочник по проектированию электрических станций и сетей. Раздел IX. Механические расчеты трубопроводов. М.: Теплоэлектропроект, 1972. 56 с.

    Компенсаторы волнистые, их расчет и применение. М.: ВНИИОЭНГ, 1965. 32 с.

    Руководящие указания по проектированию стационарных трубопроводов. Вып. II. Расчеты трубопроводов на прочность с учетом напряжений компенсации, № 27477-Т. Всесоюзный государственный проектный институт «Теплопроект», Ленинградское отделение, 1965. 116 с.

    12.4. Тепловое удлинение участка трубопровода определяют по формуле:

    где l - тепловое удлинение участка трубопровода, мм; - средний коэффициент линейного расширения, принимаемый по табл. 18 в зависимости от температуры; l - длина участка трубопровода, м; t м - максимальная температура среды, °С; t н - расчетная температура наружного воздуха наиболее холодной пятидневки, °С; (для трубопроводов с отрицательной температурой среды t н - максимальная температура окружающего воздуха, °С; t м - минимальная температура среды, °С).

    12.5. П-образные компенсаторы можно применять для технологических трубопроводов всех категорий. Их изготовляют либо гнутыми из цельных труб, либо с использованием гнутых, крутоизогнутых или сварных отводов; наружный диаметр, марку стали труб и отводов принимают такими же, как и для прямых участков трубопровода.

    12.6. Для П-образных компенсаторов гнутые отводы следует применять только из бесшовных, а сварные - из бесшовных и сварных труб. Сварные отводы для изготовления П-образных компенсаторов допускаются в соответствии с указаниями п. 10.12 .

    12.7. Применять водогазопроводные трубы по ГОСТ 3262- 75 для изготовления П-образных компенсаторов не разрешается, а электросварные со спиральным швом, указанные в табл. 5 , рекомендуются только для прямых участков компенсаторов.

    12.8. П-образные компенсаторы должны быть установлены горизонтально с соблюдением необходимого общего уклона. В виде исключения (при ограниченной площади) их можно размещать вертикально петлей вверх или вниз с соответствующим дренажным устройством в низшей точке и воздушниками.

    12.9. П-образные компенсаторы перед монтажом должны быть установлены на трубопроводах вместе с распорными приспособлениями, которые удаляют после закрепления трубопроводов на неподвижных опорах.

    12.10. Линзовые компенсаторы, осевые, изготовляемые по ОСТ 34-42-309-76 - ОСТ 34-42-312-76 и ОСТ 34-42-325-77 - ОСТ 34-42-328-77, а также линзовые компенсаторы шарнирные, изготовляемые по ОСТ 34-42-313-76 - ОСТ 34-42-316-76 и ОСТ 34-42-329-77 - ОСТ 34-42-332-77 применяют для технологических трубопроводов, транспортирующих неагрессивные и малоагрессивные среды при давлении Р у до 1,6 МПа (16 кгс/см 2), температуре до 350 °С и гарантированном числе повторяющихся циклов не более 3000. Компенсирующая способность линзовых компенсаторов приведена в табл. 19 .

    12.11. При установке линзовых компенсаторов на горизонтальных газопроводах с конденсирующимися газами для каждой линзы должен быть предусмотрен дренаж конденсата. Патрубок для дренажной трубы изготовляют из бесшовной трубы по ГОСТ 8732-78 или ГОСТ 8734-75 . При установке линзовых компенсаторов с внутренним стаканом на горизонтальных трубопроводах с каждой стороны компенсатора должны быть предусмотрены направляющие опоры.

    12.12. Для увеличения компенсирующей способности компенсаторов допускается их предварительная растяжка (сжатие). Значение предварительной растяжки указывают в проекте, а при отсутствии данных ее можно принимать равной не более 50 %-ной компенсирующей способности компенсаторов.

    12.13. Поскольку температура окружающего воздуха в период монтажа чаще всего превышает наименьшую температуру трубопровода, предварительную растяжку компенсаторов необходимо уменьшить на  попр , мм, которую определяют по формуле:

    Где - коэффициент линейного расширения трубопровода, принимаемый по табл. 18 ; L 0 - длина участка трубопровода, м; t монт - температура при монтаже, °С; t min - минимальная температура при эксплуатации трубопровода, °С.

    12.14. Пределы применения линзовых компенсаторов по рабочему давлению в зависимости от температуры транспортируемой среды устанавливают по ГОСТ 356-80 ; пределы применения их по цикличности приведены ниже:


    Общее число циклов работы компенсатора за период эксплуатации

    Компенсирующая способность линзы при толщине стенки, мм

    2,5

    3,0

    4,0

    300

    5,0

    4,0

    3,0

    500

    4,0

    3,5

    2,5

    1000

    4,0

    3,5

    2,5

    2000

    2,8

    2,5

    2,0

    3000

    2,8

    2,2

    1,6

    12.15. При установке шарнирных компенсаторов ось шарниров должна быть перпендикулярна плоскости изгиба трубопровода.

    При сварке узлов шарнирного компенсатора предельные отклонения от соосности не должны превышать для условного прохода: до 500 мм - 2 мм; от 500 до 1400 мм - 3 мм; от 1400 до 2200 мм - 4 мм.

    Несимметричность осей шарниров относительно вертикальной плоскости симметрии (вдоль оси трубопровода) должна быть для условного прохода не более: до 500 мм - 2 мм; от 500 до 1400 мм - 3 мм; от 1400 до 2200 мм - 5 мм.

    12.16. Качество линзовых компенсаторов, подлежащих установке на технологических трубопроводах, должно подтверждаться паспортами или сертификатами.

    12.17. Сильфонные осевые компенсаторы КО, угловые КУ, сдвиговые КС и универсальные КМ в соответствии с ОСТ 26-02-2079-83 применяют для технологических трубопроводов с условным проходом D y от 150 до 400 мм при давлении от остаточного 0,00067 МПа (5 мм рт. ст.) до условного Р у 6,3 МПа (63 кгс/см 2), при рабочей температуре от - 70 до + 700 °С.

    12.18. Выбор типа сильфонного компенсатора, схема его установки и условия его применения должны быть согласованы с автором проекта или с ВНИИнефтемашем.

    Варианты материального исполнения сильфонных компенсаторов приведены в табл. 20 , а их техническая характеристика - в табл. 21 - 30 .

    12.19. Сильфонные компенсаторы необходимо монтировать в соответствии с инструкцией по монтажу и эксплуатации, входящей в комплект поставки компенсаторов.

    12.20. В соответствии с ОСТ 26-02-2079-83 средний срок службы сильфонных компенсаторов до списания - 10 лет, средний ресурс до списания - 1000 циклов для компенсаторов КО-2 и КС-2 и 2000 - для компенсаторов остальных типов.

    Средний ресурс до списания компенсаторов КС-1 при вибрации с амплитудой колебаний 0,2 мм и частоте, не превышающей 50 Гц, - 10000 ч.

    Примечание. Под циклом работы компенсатора понимают «пуск - остановку» трубопровода для ремонта, освидетельствования, реконструкции и т. п., а также каждое колебание температурного режима работы трубопровода, превышающее 30 °С.

    12.21. При ремонтных работах на участках трубопроводов с компенсаторами необходимо исключить: нагрузки, приводящие к скручиванию компенсаторов, попадание искр и брызг на сильфоны компенсаторов при сварочных работах, механические повреждения сильфонов.

    12.22. При наработке 500 циклов для компенсаторов КО-2 и КС-2 и 1000 циклов для сильфонных компенсаторов остальных типов необходимо:

    при эксплуатации на пожаро-взрывоопасных и токсичных средах заменить их новыми;

    при эксплуатации на других средах техническому надзору предприятия принять решение о возможности их дальнейшей эксплуатации.

    12.23. При установке компенсатора в паспорт трубопровода вносят следующие данные:

    техническую характеристику, завод-изготовитель и год изготовления компенсатора;

    расстояние между неподвижными опорами, необходимую компенсацию, предварительное растяжение;

    температуру окружающего воздуха при монтаже компенсатора и дату.

    Современным способом продления срока эксплуатации трубопроводных систем является использование компенсаторов. Они помогают предотвратить различные изменения, которые происходят в трубах из-за постоянного перепада температур, давления и разного рода вибраций. Отсутствие компенсаторов на трубах может привести к таким нежелательным последствиям, как изменение длины трубы, ее расширение либо сжатие, что в дальнейшем приводит к прорыву трубопровода. В этой связи проблеме надежности трубопроводов и компенсаторов уделяется самое пристальное внимание и осуществляется поиск оптимальных решений по обеспечению технической безопасности компенсационных систем.

    Существуют компенсаторы трубные, сальниковые, линзовые и сильфонные. Наиболее простым способом является применение естественной компенсации за счет гибкости самого трубопровода с использованием при этом колен П-образной формы. П-образные компенсаторы применяются при надземных и канальных прокладках трубопроводов. Для них при надземной прокладке требуются дополнительные опоры, а при канальной - специальные камеры. Всё это приводит к значительному удорожанию трубопровода и вынужденному отчуждению зон дорогостоящей земли.

    Сальниковые компенсаторы, которые до недавнего времени чаще всего использовались в российских теплосетях, тоже имеют ряд серьезных недостатков. С одной стороны, сальниковый компенсатор может обеспечить компенсацию любых по величине осевых перемещений. С другой стороны, сейчас не существует сальниковых уплотнений, способных обеспечивать герметичность трубопроводов с горячей водой и паром в течение длительного времени. В связи с этим требуется регулярное обслуживание сальниковых компенсаторов, но даже это не спасает от протечек теплоносителя. А поскольку при подземной прокладке теплопроводов для установки сальниковых компенсаторов требуются специальные камеры обслуживания, это значительно усложняет и делает более дорогим строительство и эксплуатацию теплотрасс с компенсаторами такого типа.

    Линзовые компенсаторы применяются, в основном, на тепло-, газовых магистралях, водо- и нефтепроводах. Жесткость этих компенсаторов такова, что для их деформации требуются значительные усилия. Тем не менее, линзовые компенсаторы обладают весьма низкой компенсирующей способностью по сравнению с другими типами компенсаторов, к тому же трудоемкость их изготовления достаточно высока, а большое количество сварных швов (что вызвано технологией изготовления) снижает надежность этих устройств.

    Учитывая данное обстоятельство, актуальным в настоящее время становится применение компенсаторов сильфонного типа, которые не дают утечек и не требуют обслуживания. Сильфонные компенсаторы имеют малые габариты, могут устанавливаться в любом месте трубопровода при любом способе его прокладки, не требуют строительства специальных камер и обслуживания в течение всего срока эксплуатации. Срок их службы, как правило, соответствует сроку службы трубопроводов. Применение сильфонных компенсаторов обеспечивает надежную и эффективную защиту трубопроводов от статистических и динамических нагрузок, возникающих при деформациях, вибрации и гидроударе. Благодаря использованию при изготовлении сильфонов высококачественных нержавеющих сталей, сильфонные компенсаторы способны работать в самых жестких условиях с температурами рабочих сред от «абсолютного нуля» до 1000 °С и воспринимать рабочие давления от вакуума до 100 атм., в зависимости от конструкции и условий работы.

    Основной частью сильфонного компенсатора является сильфон - упругая гофрированная металлическая оболочка, обладающая способностью растягиваться, изгибаться либо сдвигаться под действием перепада температур, давления и другого рода изменений. Между собой они различаются по таким параметрам как размеры, давление и типы смещений в трубе (осевые, сдвиговые и угловые).

    На основании данного критерия компенсаторы выделяют осевые, сдвиговые, угловые (поворотные) и универсальные.

    Сильфоны современных компенсаторов состоят из нескольких тонких слоев нержавеющей стали, которые формируются при помощи гидравлической или обычной прессовки. Многослойные компенсаторы нейтрализуют воздействие высокого давления и различного рода вибраций, не вызывая при этом реакционных сил, которые в свою очередь провоцируются деформацией.

    Компания «Кронштадт» (Санкт-Петербург), официальный представитель датского производителя Belman Production A/S, поставляет на российский рынок сильфонные компенсаторы, специально разработанные для тепловых сетей. Этот тип компенсаторов широко применяется при строительстве теплосетей в Германии и странах Скандинавии.

    Устройство данного компенсатора имеет ряд отличительных особенностей.

    Во-первых, все слои сильфона выполнены из высококачественной нержавеющей стали AISI 321 (аналог 08Х18Н10Т) или AISI 316 TI (аналог 10Х17Н13М2Т). В настоящее время, при строительстве тепловых сетей часто используются компенсаторы, в которых внутренние слои сильфона изготавливаются из материала более низкого качества, чем наружные. Это может привести к тому, что при любом, даже незначительном повреждении внешнего слоя, или при небольшом дефекте сварного шва, вода, в которой содержатся хлор, кислород и различные соли, попадет внутрь сильфона и спустя некоторое время он разрушается. Конечно, стоимость сильфона, в котором из качественной стали изготавливаются только внешние слои, несколько ниже. Но эта разница в цене не идет ни в какое сравнение со стоимостью работ в случае аварийной замены вышедшего из строя компенсатора.

    Во-вторых, компенсаторы Belman оснащаются как наружным защитным кожухом, защищающим сильфон от механических повреждений, так и внутренним патрубком, который защищает внутренние слои сильфона от воздействия абразивных частиц, содержащихся в теплоносителе. Кроме того, наличие внутренней защиты сильфона препятствует отложению песка на линзы сильфона и снижает сопротивление потоку, что тоже немаловажно при проектировании теплотрассы.

    Удобство монтажа - ещё одна отличительная особенность компенсаторов Belman. Этот компенсатор, в отличие от аналогов, поставляется полностью готовым к установке в теплосеть: наличие специального фиксирующего устройства позволяет монтировать компенсатор не прибегая к какой-либо предварительной растяжке и не требует дополнительного нагрева участка теплосети перед установкой. Компенсатор оснащен предохранительным приспособлением, которое защищает сильфон от перекручивания при монтаже и препятствует чрезмерному сжатию сильфона в период эксплуатации.

    В тех случаях, когда вода, протекающая по трубопроводу, содержит много хлора или возможно поступление к компенсатору грунтовых вод, компания Belman предлагает сильфон, в котором наружный и внутренний слои изготовлены из специального сплава, особо устойчивого к воздействию агрессивных веществ. Для бесканальной прокладки теплотрасс данные компенсаторы выпускаются в пенополиуретановой изоляции и оснащаются системой оперативного дистанционного контроля.

    Все указанные преимущества компенсаторов для тепловых сетей производства компании Belman, вкупе с высоким качеством изготовления, позволяют гарантировать безаварийную работу сильфона в течение не менее 30 лет.

    Литература:

    1. Антонов П.Н. «Об особенностях применения компенсаторов», журнал «Трубопроводная арматура», № 1, 2007.
    2. Поляков В. «Локализация деформации труб посредством сильфонных компенсаторов», «Промышленные Ведомости» №№ 5-6, май-июнь 2007
    3. Логунов В.В., Поляков В.Л., Слепченок В.С. «Опыт применения осевых сильфонных компенсаторов в тепловых сетях», журнал «Новости теплоснабжения», № 7, 2007.